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On bounded Q/QS-algebras
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ABSTRACT. In this article we discuss not only the newly established properties
of bounded Q/QS-algebras but also some of their substructures such as, for
example, (incomplete) sub-algebras and ideals. Additionally, it was shown
that on a (bounded) QS-algebra the natural congruence can be determined so
that the corresponding quotient-algebra is a (bounded) BCH-algebra.

1. Introduction

Considering the properties of BCK-algebras in 1979, K. Iseki raised the ques-
tion of the existence of non-commutative BCK-algebras that satisfy the so-called
double negation condition ([13]). Such logical algebras, i.e. bounded logical alge-
bras that, in addition, satisfy the double negation condition, are called involutive
algebras. The study of various bounded (and involutive) algebras has been the
focus of several researchers. So, for example, bounded BCK-algebras are stud-
ied in [11, 12] by K. Iséki. Bounded and involutive BE-algebras are studied in
[8] by R. Borzooei et al. Bounded GE-algebras were discussed in [7] by R. K.
Bandaru et al. The internal architecture of involutive WE-algebras was the fo-
cus of a paper [24] written by A. Walendziak. This author participated in the
consideration of the properties of involutive WE-algebras by the article [17]. The
boundedness property of logical algebras has been the focus of this author for a long
time. This author introduced and analyzed the concepts of bounded and involutive
BI/QI/BH-algebras ([18, 19, 20]). It seems that these aforementioned studies of
bounded WE/BI/QI/BH-algebras can serve as a justification for our strong interest
in studying the boundedness property in other algebras as well.

In 2001, Neggers et al. defined ([16]) a generalization of BCH/BCI/BCK-
algebras as a new notion, called Q-algebra. (The definition of the concepts BCH
/ BCI / BCK-algebras can be found, for example, in [10].) Also, authors looked
at the validity of some of the properties expressed about BCH/BCI/BCK-algebras
now in a new environment. This class of logical algebras has been the subject of

study by several researchers. The concept of QS-algebras, as a subclass of the class
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2 D. A. ROMANO

Q-algebras, was introduced in [3] by S. S. Ahn and H. S. Kim. The study of ideals
([1] by H. K. Abdullah and H. K. Jawad.) and filters ([2] by H. K. Abdullah and
H. S. Salman) in Q-algebras, led to the concept of "bounded Q-algebras’.

In this article, which is, in a literal sense, a continuation of the research started
in [1, 2], we focus on examining the internal architecture of bounded Q-algebras
as well as the properties of their substructures. Besides analyzing the properties of
standard substructures in bounded Q-algebra, we introduce and analyze some new
substructures in bounded Q-algebra such as, for example, 'incomplete sub-algebra’.
Thus, it was shown that every ideal in a bounded Q-algebra is an incomplete
sub-algebra and that the converse need not hold. Also, it is shown that in a
(bounded) QS-algebra 2 there exists a natural congruence relation = and that the
corresponding quotient-algebra 2/ = is a (bounded) BCH-algebra.

2. Preliminaries

In this section, the necessary notions and notations and some of their interre-
lationships, mostly taken from paper [10, 17], are listed in the order to enable a
reader to comfortably follow the presentation in this report. It should be pointed
out here that the notations for logical conjunction, logical implication and others
have a literal meaning. The notation =: in the formula A =: B serves to indicate
that A in it is the abbreviation for the formula B.

The concept of Q-algebra first appeared in 1999 in [3] based on the article [16]
written by J. Neggers, S. S. Ahn and H. S. Kim, but which appeared three years
later.

DEFINITION 2.1. ([16], pp. 749) A Q-algebra is a non-empty set A with a
constant 0 and a binary operation ”*” satisfying axioms:

(Re) (Vx € A)(xzxx =0),

(M) (Ve € A)(xx0=x),

(Ex) (Vz,y,2 € A)((z xy) x 2 = (z % 2) * y).
We denote this axiomatic system by Q and the corresponding algebra 2 =: (A, x,0)
by Q-algebra.

REMARK 2.1. The concept of Q-algebra, defined here, should not be confused
with the term ’'Q-algebra’ described, for example, in the text [23] in the following
sense: ”A commutative Banach algebra A is called Q-algebra if it is isomorphic to
a quotient algebra B/J where B is a uniform algebra and J is a closed ideal in B.”

REMARK 2.2. This class of logical algebras is also known as RME-algebra (see,
for example, [10], Definition 4.6(6)).

REMARK 2.3. The concept of Cl-algebra was introduced in 2009 in [14], Defini-
tion 3.1, by B. L. Meng as dual Q-algebra. A Cl-algebra is an algebra 2 =: (A, x, 1)
of type (2,0) satisfying the condition (Re) and the following axioms:

(Mp) (Vz e A)(1xz = x)
(Exp) (Vo,y,z € A)(x * (y*2) =y * (z*2)).
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For any Q-algebra 2 =: (A, x,0), the set B(X) =: {x € A: 0%z = 0} is
called the p-radical of 2 (see, [16], pp. 752). If B(A) = {0}, then we say that
2 is a p-semisimple Q-algebra. Also, the 'G-part’ of a Q-algebra 2 =: (A, *,0) is
determined as follows G(A) =: {x € A: 0%z = z}.

However, not every logical algebra has to be a Q-algebra (see, for example, the
following example).

EXAMPLE 2.1. Let A = {0,a,b,c} a set and the operation * given by the
following table

*2‘0abc *‘Oabc
00 b a O 0/0 0 0 O
ala 0 0 O ala 0 0 O
bbb 0 0 0 bi{b 0 0 O
clc ¢ ¢ 0 clec ¢ ¢ 0

Then 2 =: (A4, %,0) is a Q-algebra ([16], Example 2.2) bit the structure (A4, *2,0)
is not a Q-algebras because, for example, we have (a *2 b) *3 ¢ = 0% ¢ = 0 and
(axg¢)*2b=0%2b=a. O

S. S. Ahn and H. S. Kim introduced ([3], Definition 2.1) the notion of QS-
algebras. A Q-algebra 20 =: (A, x,0) is said to be a QS-algebra if it satisfies the
additional relation:

(QS) (Vz,y,z € A)((x *xy) * (x*2) = zxy).

EXAMPLE 2.2. ([15], Example 5.2) Let A = {0, a,b, c} a set and the operation
x given by the following table

* ‘ 0 a b ¢
0]0 a b c
ala 0 ¢ b
blb ¢ 0 a
cle b a 0
Then 20 =: (4, *,0) is a QS-algebras. O

EXAMPLE 2.3. ([16], Example 4.3) Let & =: GF(p™) be a Galois field. Define
x*xy=:x—y+e, where e € &. Then (8, *,¢) is a quadratic Q-algebra. (For the
definition of the concept 'the quadratic Q-algebra’, see [16], Section 4.)

Let G be a field with |G| > 3. Then every quadratic Q-algebra on G is a
(quadratic) QS-algebra ([16], Theorem 4.4). O

The properties of this class of logical algebras are summarized in the following
proposition.

PROPOSITION 2.1. Let A =: (A, *,0) be a Q-algebra. Then:

(a) ([16], Lemma 3.1) (Vz,y,z € A)(z*xy=x*2z = 0%y = 0x2).

(b) ([5], Lemma 2.4) (Vx,y € A)(0x* (xxy) = (0xx) % (0xy)).
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4 D. A. ROMANO

DEFINITION 2.2. ([5], Definition 2.1) Let 2 =: (A,*,0) be a Q-algebra. A
nonempty subset S in A is called a sub-algebra in 2 if the following holds:

(S1) Ve e A)((x e SANyeS) = xxyell).
We denote the family of all sub-algebras in the Q-algebra 2l by G(A).

It can be shown without difficulty that every sub-algebra S in a Q-algebra 2
satisfies the condition

(S0)0 e S.
Indeed, since S is not empty, there exists at least some z € A such that z € S.
Now we have 0 = z x x € S according to (S1) with respect to (Re).

DEFINITION 2.3. ([16], Definition 3.6) Let 2 =: (A, *,0) be a Q-algebra. A
nonempty subset J in A is called an ideal in 2 if the following holds:

(JO) 0 € J.

(J1) Vz,ye A)((xxyeJ ANyeJ) = xz € J).
We denote the family of all ideals in the Q-algebra 2 by J(A).

DEFINITION 2.4. ([2], Definition (2.2)) A Q-algebra 2 =: (A4, *,0) is called a

bounded Q-algebra if there exists an element 1 € A which, additionally, satisfies
the condition

(F) (Vx € A)(x+x1=0).
The element 1 € A, which satisfies the condition (F), is called the unit in 2(. We
denote the bounded Q-algebra by (A4, x,0,1).

REMARK 2.4. The concept of bounded Q-algebras was introduced in 2018 in
the paper [1] written by H. K. Abdullah and H. K. Jawad. However, this article is
not available to the public. That’s why we took the determination of this concept
from the available article [2] written by H. K. Abdullah and H. S. Salman.

EXAMPLE 2.4. Let A ={0,a,b,c} a set and the operation * given by the table
as in Example 2.1 Then ([2], Example (2.1)) 2 = (A, ,0) is a bounded Q-algebra
with the unit c. O

REMARK 2.5. The unit in a bounded Q-algebra not be a unique as explain in
the following example: Let A = {0,a,b} a set and the operation * given by the
following table

Then 2 = (A, *,0) is a bounded Q-algebra with two the units a and b. It should
be said here that this algebra is a bounded QS-algebra. O

Let 2 =: (A,%,0,1) be a bounded Q-algebra. We will put y~ =: 1 x y for
arbitrary y € A. It is clear that 0~ = 1%0 = 1 according to (M), and 1~ =1x1 =0
according to (Re).
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ON BOUNDED Q/QS-ALGEBRAS 5

3. The main results

3.1. A bit more about bounded Q-algebras. In this article, we will con-
sider bounded Q-algebras that have only one the unit. The following lemma gives
an important property of bounded Q-algebras:

LEMMA 3.1. Let A =: (A, *,0,1) be a bounded Q-algebra. Then

(L) (¥y € A)(0+y = 0).

PrROOF. If we put z = 1 in (Ex), we get (z xy) * 1 = (x x 1) x y for arbitrary
x,y € A. From here it follows (L), according to (F) and with respect to (M). O

Additionally, for every bounded Q-algebra 2 =: (A, *,0, 1), we have B(A) = A
and G(A) = {0}.

As a consequence of the previous lemma, we have:

COROLLARY 3.1. Let 2 =: (A,*,0,1) be a bounded Q-algebra. Then

(1) (Va,y € A)((x +y) + o = 0).

PROOF. According to (Ex), (Re) and (L), for arbitrary z,y € A, we have
(xxy)rx=(r*xx)*xy=0xy=0. O

REMARK 3.1. Let us recall (see, for example, [9]) that the algebra (A4, x,0) of
type (2,0) is a BCH-algebra if it satisfies the conditions (Re), (Ex) and the following
axiom

(An) (Vz,y e A)((z*xy=0 A yxax=p) = z=y).

In any BCH-algebra 2, the condition (M) holds. Therefore, every BCH-algebra is
a Q-algebra.

Let 20 =: (A, ,0,¢) be a bounded Q-algebra as in Example 2.1, but it is not a
BCH/BCI/BCK-algebra since, in the general case, it does not satisfy the condition
(An).

The following two propositions give some important properties of bounded
Q/QS-algebras.

PROPOSITION 3.1. Let A =: (A, %,0,1) be a bounded Q-algebra. Then

(Vy,z € A)(y” x2=2" *y).

PRrROOF. This is a valid formula in every bounded Q-algebra 2 since it can be
obtained by putting z = 1 in (Ex). O

PROPOSITION 3.2. Let 2 =: (A, *,0,1) be a bounded QS-algebra. Then

(a) (Vy,z € A)(y~ x 2~ = zxy).

(b) (Vo,y e A)(wxy=y~).

PROOF. (a): The validity of formula (a) is obtained from the presence of for-
mula (QS) by putting z = 1.

(b): The validity of the formula (b) is obtained from the validity of the formula
(QS) by setting z = 1 and taking into account (M): zxy = (x*y)*0 = (xxy)*(r*l) =
lxy=y". (]
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6 D. A. ROMANO
In the following example we illustrate the appearance of a bounded Q-algebra,
taking into account property (L).

ExampLE 3.1. ([2], Example (2.3)) Let A = {0,a,b,c,1} a set and the opera-
tion * given by the following table

— 0 o9 OO
S O O
O O OO o0
=N eloBoNellS

— 0 o O %
[ S e Nl s

Then 2 = (4, *,0,1) is a bounded Q-algebra with the units ¢ and 1. O

However, not every Q-algebra has to be a bounded Q-algebra nor can every
Q-algebra be extended to a bounded Q-algebra as the following example shows.

ExAaMPLE 3.2. Let A = {0,a,b,c,d} a set and the operation * given by the
following table

QU O T O %
QO o Oolo
S0 OO Ol
L T OO oo
Qo oo o So
O OO0 O X

Then 2A = (A, %,0,1) is a Q-algebra ([6], Example 3.3) which is not a bounded
Q-algebra nor can it be extended to a bounded Q-algebra. Indeed, in order for
a Q/QS-algebra to be extended to a bounded Q/QS-algebra, it must satisfy the
condition (L), which, in the general case, is not present. O

In what follows, we deal with the creation of the direct product bounded Q-
algebras. Let {(A;,#;,0;,1;) : 4 € I} be a family of bounded Q-algebras. If on the
set

[TAi = {f:1T— UicsAi | (Vi € D)(£(i) € A},
iel
we define the operation ® as follows
(V1,9 € [T AV € D((f © 9)(i) = (i) *i 9(0)),
iel
we created the structure ([[,.; As, ©, fo, f1), where fo and fi were chosen as follows

(VZ € I)(fo(l) =: 01) and

Before we start working with direct products of bounded Q-algebras, we say that the
operation, determined in this way, is well-defined. If a priori we accept conditions
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ON BOUNDED Q/QS-ALGEBRAS 7

that ensure the existence of non-empty direct product, we can prove the following
theorem.

THEOREM 3.1. The direct product of any family of bounded Q-algebras, deter-
mined as above, is a bounded Q-algebra.

PROOF. According to [6], Proposition 5, structure (] [,c; 4i, ®, fo, f1) is a Q-
algebra since it satisfies all its axioms. It remains to show that this structure is a
bounded Q-algebra. We have (f ® f1)(1) = f(i) x; f1(i) = f(3) %, 1, = 0; = fo (i) by
(F) in (Ai, *i, OZ', 11) }IGDCG7 f @ fl = fo.

Therefore, the structure (J],c; As, ®, fo, f1) is a bounded Q-algebra with the
unit fi. O

The previous theorem is a necessary predecessor of Theorem 3.6.

EXAMPLE 3.3. Let 2 =: (A, *,0,1) be a bounded Q-algebra as in the Example
3.1. Then the product A x A = (4 x 4,©,(0,0),(1,1)) is a bounded Q-algebra,
where the operation ® is determined by

(Va,y,u,v € A)((z,y) © (u,0) =: (z % u,y *v)).
O

3.2. Sub-algebras and ideals. The concept of sub-algebra in a bounced Q-
algebra is introduced by the following way:

DEFINITION 3.1. Let 2 =: (A,*,0,1) be a bounded Q-algebra. A nonempty
subset of K in A is called a sub-algebra in 2 if

(K1) 1 e K.
(S1) (Ve,ye A)((zre K Nye K) = zxy € K).
We denote the family of all sub-algebras in the bounded Q-algebra 2 by R(A).

As can be seen from the previous definition, the concept of a sub-algebra in
a bounded Q-algebra is somewhat different from the concept of a sub-algebra in
Q-algebras in the general case. (Compare this definition with Definition 2.2.)

PROPOSITION 3.3. If K is a sub-algebra in a bounded Q-algebrad =: (A, *,0,1),
then holds

(S0) 0 € K.

PROOF. Since the sub-algebra K is not empty, there exists at least some x € A
such that € K. For that z € K, we have 0 =  xx € K according to (S1) and
with respect to (Re). O

EXAMPLE 3.4. Let 2l =: (A, *,0,1) be a bounded Q-algebra as in the Example
3.1.

Subsets Ky =: {0,1}, K1 =: {0,1,a}, Ky =: {0,1,b}, K5 =: {0,1,¢}, K4 =:
{0,1,a,b} are sub-algebras in 2. The subset K5 =: {0,1, a,c} is not a sub-algebra
in 2 because, for example, we have cxa = b ¢ K;5. Also, the subset K¢ =: {0,1,b,c}
is not a sub-algebra in 2 because, for example, we have cx b =a ¢ K. O
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8 D. A. ROMANO

In the previous example, the following subsets Sy =: {0}, S1 =: {0,a}, Sy =:
{0,b}, S5 =: {0,c}, Sy =: {0,a,b} and S; =: {0,a,b,c} in A although satisfy
the condition (S1), but they do not satisfy the condition (KO0). This justifies the
introduction of a new concept in bounded Q-algebras:

DEFINITION 3.2. Let 20 =: (A4, %,0,1) be a bounded Q-algebras. A nonempty
subset S of A that satisfies (S1) and the following condition

(S01) 1¢ S
is called an incomplete sub-algebra of 2. We denote the family of all incomplete
sub-algebras in 2 by G(A).

The family G(A) is not empty since Sy = {0} € G(A). However, A ¢ S(A)
and G(A) N K(A) = 0.

The concept of ideal in bounded Q-algebra is introduced by means of Definition
2.3. For an ideal J in a bounded Q-algebra 2 we say that it is a nontrivial ideal
in 2 if holds J # A. We denote the family of all ideals in a bounded Q-algebra
A =:(4,%,0,1) by J(A). Additionally, we write J,(A) =: J(4) \ A.

In any bounded Q-algebra 2 =: (A, *,0,1) we define a binary relation < by
x <X y if and only if x *x y = 0 for arbitrary elements xz,y € A.

PROPOSITION 3.4. Let J be an ideal in a bounded Q-algebra A =: (A, *,0,1).
Then

(2) Vz,ye A)((zxxyAnyed) = zelJ).

(B) (Ve,yc A)(z e J = xxyeclJ).

PROOF. (2): Let x,y € A be such that © < y and y € J. This means x xy =
0€ Jandye J. Thus z € J by (J1).

(3): Let x,y € J be arbitrary elements. Then z*y < « by (1). Thus xxy € J
according to (2). O

PROPOSITION 3.5. Let J be a nontrivial ideal in a bounded @Q-algebra A =:
(A,%,0,1). Then

(4)1¢J.

Proor. If it were 1 € J, we would have z x 1 = 0 € J, by (F), from which it
follows that = € J according to (J1) for arbitrary € A, which is impossible because

J is not a trivial ideal in 2. The resulting contradiction breaks the assumption
led. O

Now, we have:

THEOREM 3.2. Ewvery nontrivial ideal in a bounded Q-algebra 2 is an incom-
plete sub-algebra in A This means J,(A) C S(A).

PROOF. Let J be a nontrivial ideal in a bounded Q-algebra 2 =: (A, x,0,1)
and let z,y € A be sych that x € J and y € J. Then x *xy € J in accordance

with (3). so, the ideal J is an incomplete sub-algebra in 2 since 1 ¢ J according
to (4). O
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ON BOUNDED Q/QS-ALGEBRAS 9

EXAMPLE 3.5. Let A = {0,a,b,c,1} a set and the operation * given by the
following table

*10 a b ¢ 1
0/|0 0 0O O O
ala 0 a 0 O
blb b 0 b O
clc ¢ ¢ 0 0
1/1 1 ¢ b 0

Then A = (4, %*,0,1) is a bounded Q-algebra with the unit 1 ([2], Example (2.5)).

Subsets Ky =: {0,1}, Ky =: {0,1,a}, Ko =: {0,1,b}, Ky =: {0,1,a,b}
and Kg =: {0,1,b,c} are sub-algebras in 2. Subsets K3 =: {0,1,¢} and K5 =:
{0,1,a,c} are not sub-algebras in 2.

Subsets Sy = {0}, S1 = {0,a}, So = {0,b}, S5 = {0,¢}, Sy = {0,a,b},
S5 ={0,a,c} and Sg = {0,b, ¢} are incomplete sub-algebras in 2.

Subsets Jy = {0}, J1 = {0,a}, J» = {0,b} and Jy = {0,a,b} are ideals in 2.
Subset J3 = {0, ¢} is not an ideal in 2 because, for example, we have axc =0 € Js3
but a ¢ Js. Subsets J5 = {0,a,c} and Js = {0,b,c} are not ideals in A either.
Indeed, for J; we have 1 xb = ¢ € J; but 1 ¢ Js5. Similarly, for Js, we have
axc=0¢€ Jsbut a ¢ Js. O

REMARK 3.2. An incomplete sub-algebra in a bounded Q-algebra 2 does not
have to be an ideal in 2 as shown in the previous example: Incomplete sub-algebras

S3, S5 and Sg in 2 are not ideals in . So, J,(A4) & &(A).
Since the family 8(A)/&(A)/J(A) is not empty, it can be proved:

THEOREM 3.3. Let A = (A4,%,0,1) be a bounded Q-algebra. Then the family
R(A)/6(A)/3,(A)/I(A) forms a complete lattice.

PRrROOF. (a) Let {S;}icr be a family of (incomplete) sub-algebras / ideals in a
bounded Q-algebra 2 = (A, *,0,1). Then 0 € N;¢;S; since each of the aforemen-
tioned substructures contains the element 0.

(i) Let {S;}icsr be a family of (incomplete) sub-algebras in 2 and let z,y € A
be such that x € N;c1S; and y € N1 S;. Then x € S; and y € S;, for each ¢ € 1.
Thus z xy € S; since S; is a (an incomplete) sub-algebra in 2 for all ¢ € I. Hence
x*y € NierSi. S0, NicrS; is a (an incomplete) sub-algebra in 2.

(ii) Let Let {S;}icr be a family of (non-trivial) ideals in 2 and let z,y € A be
such that x xy € N;crS; and y € NerS;. Then zxy € S; and y € S; for each
i € I. Thus x € S; because S; is an (non-trivial) ideal in 2 for each i € I. Hence
x € NierSi. So, NierS; is (a non-trivial) an ideal in 2.

(iii) Let {S;}ier be a family of sub-algebras in 2. Then 1 € N;¢;.S; since each of
the aforementioned substructures contains the element 1. This family also satisfies
the condition (S1) as shown in (i) of this proof. So, N;crS; is a sub-algebra in 2L

(b) Let Z be the family of all incomplete sub-algebras/(non-trivial) ideals/sub-
algebras in 2 that contain U;erS;. Then NZ is an incomplete sub-algebra / (a
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10 D. A. ROMANO

non-trivial) an ideal / a sub-algebra in 2, respectively, according to the first part
of the proof of this theorem.

(C) If we put MrerS; = NierS; and U;erS; = NZ, then
(6(4),M,1), (J(4),M,1), (Jp(4),M,U) and (K(A4),M,L)
are complete lattices, respectively. O

COROLLARY 3.2. Let A =: (A, %,0,1) be a bounded Q-algebra and x € A. Then
there is a smallest incomplete sub-algebra / (non-trivial) ideal / sub-algebra S, in
A that contains x.

PrOOF. Let Z be the family of all incomplete sub-algebras / ideals / sub-
algebras in 2 that contain the element x. Then, by the previous theorem, S, =: NZ
is an incomplete sub-algebra / an ideal / a sub-algebra in 2 that contains x.

Let Y be an incomplete sub-algebra / an ideal / a sub-algebra in 2 which
contains . Then Y € Z, so, therefore, S, C Y. Therefore, S, is the smallest
incomplete subalgebra/ideal/sub-algebra in 2 containing . (]

The following theorem gives a criterion for recognizing ideals in bounded Q-
algebras.

THEOREM 3.4. Let 2 =: (A, %,0,1) be a bounded Q-algebra and let J be a
subset in A that satisfies the condition (J0). Then J is an ideal in 2 if and only if
it holds

(J2) (Vz,y,z € A)(((xxy)xze€J NyeJ) = xzxz€J).

PROOF. Let J be an ideal in 2 and let z,y, z € A such that (z*y)*z € J and
y€J. Then (xx2)xy=(xxy)*xz € J and y € J in accordance with (Ex). This
x * z € J according to (J1) since J is an ideal in 2. Therefore, the formula (J2) is
valid.

Conversely, suppose that the subset J satisfies the condition (J2). If we put
z=01in (J2), we get (J1) according to (M). O

Here it should be said that condition (J2), together with condition (J0), de-
termine the concept of strong ideal in an algebra (see, for example [21], Definition
2.3). Thus, in a bounded Q-algebra 2, every ideal in 2 is a strong ideal in 2I.

On the other hand, we have the determination of the concept of weak ideal
(see, for example, [22], Definition 3.1) in a bounded Q-algebra as follows:

DEFINITION 3.3. Let 2 =: (A, *,0,1) be a bounded Q-algebra. A nonempty
subset J in A is called a weak ideal in 2 if, in addition to the conditions (J0), it
also satisfies the condition

(Jw) (Vz,y,z € A)((xx (yx2) e J ANyeJ) = zxz€J).

We denote the family of all weak ideals in a bounded Q-algebra 2 by J,,(A).

REMARK 3.3. This concept, the concept of weak ideals in Q-algebras, is some-
times called a 'T-ideal’ (see, for example, [5], Definition 3.13).
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ON BOUNDED Q/QS-ALGEBRAS 11

PROPOSITION 3.6. Let 2 =: (A,*,0,1) be a bounded Q-algebra and J a weak
ideal in 2. Then J also satisfies the condition (J0).

PROOF. Since J is a nonempty subset of A, there exists at least some z € A
such that € J. Now, from z = %0 = x % (x xx) € J and x € J, according to
(Jw), it follows zxx =0 € J. O

PROPOSITION 3.7. FEvery weak ideal in a bounded Q-algebra A is an ideal in 2A.
This means J, C J(A).

PRrROOF. If we put z =0 in (Jw), we get (J1) with respect to (M). O
However, we can prove that the reverse is also true.

THEOREM 3.5. Let 2 =: (A, *,0,1) be a bounded Q-algebra. A nonempty subset
J in A is a weak ideal in A if and only if it is an ideal in A. This means J,(A) =
J(A).

PROOF. If J is a weak ideal in 2, then, according to Proposition 3.7, J is an
ideal in 2.

Let J be an ideal in A and let z,y,z € A be such that z*(y*z) € Jand y € J.
Then (z*(yxz))*z € J and y*z € J with respect to (3). Thus (x*z)*(y*z) € J
and y * z € J with the use of (Ex). Hence x x z € J according (J1). O

Further on, we have:

THEOREM 3.6. Let {(A;,*;,0;) : i € I} be a family of (bounded) Q-algebras, K
be a subset of I and let J; be an ideal in (A, *;,0;) for each i € K. Then [],c; Ts,
where T; = J; fori € K and T; = A; for i € I\K, is an ideal in the (bounded)
Q-algebra [];c; Ai.

PROOF. First, it is clear that fo € [];c; Ti-

If K =0, then [],c; T; = I1,c; Ai, so [,c; Ti is certainly an ideal in ], A;.
Assume, therefore, that K # ().

Let 2,y € [[,c; A: be such that  © y € [[,; Ti and y € [[,.; 7. This means
(x ©@y)(t) = x(3) *; y(i) € J; and y(i) € J; for each ¢ € K. Then (i) € J; since J;
is an ideal in (A;, *;,0;) for each i € K. Hence z € [[,c; Ti.

As shown, [[,.; T; is an ideal in [];.; A;. O

This theorem is an extension of Proposition 6 in [6].

ExXAMPLE 3.6. Let 2 =: (A,%,0,1) be a bounded Q-algebra as in Example
3.5. Then A x A =: (A x A4,0,(0,0),(1,1)) is a bounded Q-algebra according to
Theorem 3.1, where the operation is ® determined as follows
(Vz,y,u,v € A)((z,y) © (u,v) =: (2 * u,y *v)).

The subset Jy =: {0, a,b} is an ideal in 2 as shown in Example 3.5. Now, according
to the previous theorem, the subsets Jy x A, Jy x Jy and J4 x A of the set A x A
are ideals in A x 2. O
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12 D. A. ROMANO

3.3. (Left, right) congruence and corresponding substructures. Let
A =: (A,%,0,1) be a bounded Q-algebra. For an equivalence relation p on A we
say that it is a left congruence on 2 if holds

(Ve,y,z € A)((z,y) € p = (zxx,2xy) € p).

Right congruence can be defined analogously. For an equivalence of p on A, we
say that a is a congruence on 2l if it is both a left and a right congruence on 2.
We denote the family of all (left, right) congruences on 2 by (2;(A4), Q,(4)) Q(A)
respectively. Using analogous technology as in Theorem 3.3, it can be proven that
the family Q(A) (9Q;(A4), Q.(A), respectively) forms a complete lattice.

For the sake of consistency in the presentation of the material in this report,
we state the previous result in the form of a lemma:

LEMMA 3.2. Let A =: (A,%,0,1) be a bounded Q-algebra and Q;(A) (Q,(A),
Q(A)) be the family of all (left, right) congruence on A respectively. Each of the
aforementioned families forms complete lattice.

PROOF. Let {p;}icr be a family of (left, right) congruences on 2.
(a) If we take arbitrary elements x,y,z € A, then we have:

(i) Since every p; for arbitrary i € I is a reflexive relation, we have (x,z) € p;
for each i € I and for every x € A. So (z,x) € Nierp; for every € A. This shows
that N;ezp; is a reflexive relation on 2.

(ii) Let (z,y) € Nierp; for some x,y € A. This means that (x,y) € p; for every
1 € I. Then (y,z) € p; since p; is a symmetric relation on A for every i € I. Thus
(y,x) € Nierp;. This shows that N;ecrp; is a symmetric relation on 2A.

(iii) Let (x,y) € Nierp; and (y,z) € Nierp; for some z,y,z € A. This means
that (z,y) € p; and (y,2) € p; for every ¢ € I. Then (x,z) € p; for every i € I
since p; is a transitive relation for every ¢ € I. Thus (z,z) € N;erp;- This shows
that N;crp; is a transitive relation on A.

(iv) Let (z,y) € Nierp; for some x,y € A. This means (z,y) € p; for every
t € 1. Then (zxz,z%y) € p; ((x*2z,yx*z) € p;) for every i € I since p; is
compatible with the left side (res. with the right side) with the operation in 2.
Thus (z *x, 2 *y) € Nierp; (ves. (x %2,y *2) € Nicrp;)-

(b) Let Z be the family of all (left, right) congruences on 2 containing U;erp;.
Then, according to the first part of this proof, NZ is a (left, right) congruence on
2 containing U;erp;.

(¢) If we put Myerp; = Nicrpi and Uierp; = NZ, then
(Qu(A4),m,u), (Qr(A),Nn,U) and (Q(A),M,U)
are complete lattices, respectively. O
In the next three propositions we will consider the kernel [0] =: {x € A: (z,0) €

p} of the (left, right) congruence p on a bounded Q-algebra 2 = (A, *,0,1). The
knowledge we gain in this process allows us to establish correspondences between
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ON BOUNDED Q/QS-ALGEBRAS 13

the families 9;(4), Q,(4), Q(A) with the corresponding substructures in that
algebra.

ProOPOSITION 3.8. Let p be a left congruence on a bounded @-algebra A =:
(A,%,0,1). Then

(5) The class [0] =: {z € A: (x,0) € p} is an ideal in 2.

(6) (Va,y € A)((z € [0] Ay €[0]) = (y*(yxx) €[0] A zx(zxy)e[0])).

PROOF. (5): Let x,y € A be such that z xy € [0] and y € [0]. This means
(zxy,0) € pand (y,0) € p. Then (zxy,0) € p and (z*y,z*0) € p since p is a left
congruence on A. Thus (z *y,0) € p and (z *y,x) € p according to (M). Hence
(x,0) € p by transitivity of p. So, = € [0]. Therefore, [0] is an ideal in .

(6): Let z,y € A be such that z € [0] and y € [0]. This means (z,0) € p
and (y,0) € p. Then (yxz,y*0) = (y*xz,y) € p and (y,0) € p since p is a left
congruence on 2. Thus (y*z,0) € p by transitivity of p. Hence (y* (y*x),y*0) =
(y*(y*x),y) € pand (y,0) € p. Finally, we get (y*(y*x),0) € p. So, yx(yxz) € [0].
The second part of the implication (6) can be obtained analogously. O

REMARK 3.4. The previous proposition illustrates the correspondence
Qi(A) — Jp(4).

The previous proposition is a justification for introducing the following concept:

DEFINITION 3.4. Let 2 =: (A, %,0,1) be a bounded Q-algebra. For a subset H
of A we say that it is of class H in 2 if it holds

(H1) Ve,ye A)((re HANyeH) = (yx(yxx) € H AN zxx(zxy) € H)).

Let 24 =: (4,%,0,1) be a bounded Q-algebra. Consider the family H(A) of
subsets of the set A that satisfy the condition (H1). First, this family is not empty,
because every singleton {z} for arbitrary x € A, is a member of this family since
z* (x+x) =2 +0 = x. Therefore, {z} € H(A). Also, all subsets of the set A of the
form {0, z} are members of the family H(A) since 0% (0x2) = 0 and z * (x x0) = x.

Therefore, there are some members of the family H(A) in a bounded Q-algebra
2 that do not have to be (incomplete) sub-algebras in 2.

Furthermore:

PROPOSITION 3.9. Let A =: (A, *,0,1) be a bounded Q-algebra. All incomplete
sub-algebras and all sub-algebras in A are members of the family H(A).

However, not all subsets of the set A in a bounded Q-algebra 2 =: (A, x,0,1)
need to be members of the family H(A). For illustration:

EXAMPLE 3.7. In Example 3.5, for a subset T' =: {a,c} we have a * (a * ¢) =
ax0=abut cx(cxa) =cxc=0¢T. Therefore, T ¢ H(A). O

REMARK 3.5. The Proposition 3.8 also illustrates the correspondence
Q(A) — H(A).
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14 D. A. ROMANO

ProPOSITION 3.10. Let p be a right congruence on a bounded @Q-algebra A =:
(A,*,0,1). Then

(7) (Va,y e A)((z € 0] Ay € [0]) = ((wxy)*xy €[0] A (y*z)*xel0]).

PROOF. Let z,y € A be such that z € [0] and y € [0]. This means (z,0) € p
and (y,0) € p. Then (z *y,0*y) = (z *y,0) € p since p is a right congruence
on A and with respect to (L). Further on, for the same reasons we have again
((xxy)*y,0%xy) = ((r*y) *y,0) € p. Hence, (zxy) xy € [0]. The second part of
the implication can be obtained analogously. O

The previous proposition is a justification for introducing the following concept:

DEFINITION 3.5. Let 2 =: (A, %,0,1) be a bounded Q-algebra. For a subset G
of A we say that it is of class G in 2 if it holds

(Gl) Vz,ye A)((z e GANyelG) = ((yxz)xx € G A (zxy)xy € G)).

Let 24 =: (A, %,0,1) be a bounded Q-algebra. Consider the family G(A) of
subsets of the set A that satisfy the condition (G1). This family is not empty
because {0} € G(A). However, no singleton belongs to this family because, for
arbitrary = € A, we have (z * ) xx = 0 x z = 0 according to (L). So, {z} ¢ G(A).
On the other hand, every subset of the form {0, 2z}, for arbitrary = € A belongs to
the family G(A) because we have (z x0)«*0=0x0=0and (0xz)*x=0*xz=0
according to (L). Therefore, {0,2} € G(A4).

PROPOSITION 3.11. Let A =: (A, ,0,1) be a bounded Q-algebra. All incomplete
sub-algebras and all sub-algebras in A are members of the family G(A).

Further on, we have:

ExAMPLE 3.8. In Example 3.1, the subset T' =: {a, ¢} does not belong to the
family G(A) because we have (a*c)*c=0%xc=0but (cxa)*xa=bxa=b¢T.
Therefore, T ¢ G(A). O

REMARK 3.6. The Proposition 3.10 illustrates the correspondence

PROPOSITION 3.12. Let A =: (A,*,0,1) be a bounded Q-algebra. If p is a
congruence on 2, then:

(8) (Va,y,z€ A)((z*(y*x2) € [0] Ay e[0]) = xxz€]0]).

PROOF. Let z,y,z € A be such that (x * y) x z € [0] and y € [0]. This
means (z * (y * 2),0) € p and (y,0) € p. Then (y * 2,0 % 2) = (y *2,0) € p
since p is a right congruence on 2 and with respect to (L). Firther on, we have
(xx(yxz),zx0) = (zx(y=*2),x) € psince p is a left congruence on A with respect
to (M). From here, due to the transitivity of the relation p, we get (z,0) € p. Thus,
x € [0]. Finally, according to (3), we get x * z € [0] since [0] is an ideal in 2 by
(5). O

Summarizing the previous facts, we conclude that there is a correspondence

Q(A) — J(A)NH(A) NGA).
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ON BOUNDED Q/QS-ALGEBRAS 15

EXAMPLE 3.9. Let 2 =: (A,%4,04,14) and B =: (B,*p5,05,14) be two Q-
algebras. A mapping f: A — B is called a homomorphism between Q-algebras if
the following holds:

(f1) f(1a) = 15.
(£2) (Va,y € A)(f(zxay) = f(z) B [(y))-
It is easy to see that it is valid
f(04) =0p.
We denote this homomorphism by f : 2 — 9B. For any z,y € A, we define

(z,y) € py if and only if f(z) = f(y). Then, according to [4], Lemma 2.6, the
relation p¢ is a congruence on 2. O

In what follows we need the following lemma.

LEMMA 3.3 ([3], Proposition 2.5). Let 2 =: (A4, *,0,1) be a bounded QS-algebra.
Then

9) (Vr,y,zeA)((zxyNysz) = <2).

(10) (Ya,y,2 € A)(z <y = 24y < 2 +2)

(11) Vz,y,z € A)(a xy = x*2 <K y*2).

As can be concluded from the previous lemma, the relation < determined in

this way, is a quasi-order on the set A (a reflexive and transitive relation) right
compatible and left reverse compatible with the operation in 2I.

THEOREM 3.7. Let us define the relation = on the (bounded) QS-algebra A =:
(A,%,0,1) as follows

(Ve,y e A)(z=y < (zxy Ay <))
Then = is a congruence on 2.

PROOF. (i) Let € A be an arbitrary element. It is clear that = z holds
due to the reflexivity of the relation <.

Let z,y,2 € A be such that t =y and y = 2. Thismeans s <y, y <z, y < 2
and z < y. Then z < z and z < z in accordance with (9). Hence, x = z which
proves that = is a transitive relation on A.

Since the symmetry of the relation = is obvious, we conclude that = is an
equivalence relation on A.

(ii) Let x,y € A be such that x = y. This means z < y and y < . Then
x*xz < yxzand y*z < xx*z according to (11). So, x * z = y * z. Therefore, the
relation = is right compatible with the operation in 2I.

(iii) That the relation = is left compatible with the operation in A can be
proved analogously. O

Denote A/ = =: {[z] : « € A}, where [z] =: {y € A : x = y}, and define that
(V,y € A)([z] x [y] =[x y]).
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16 D. A. ROMANO

Since = is a congruence relation on 2, the operation x is well-defined. The structure
(A/ =,%,[0]) is a Q-algebra, as shown in [4], Theorem 2.7.

We show here the relation between Q-algebras and BCH-algebras. The follow-
ing lemma can be easily proved.

LEMMA 3.4 ([16], Theorem 2.4). Every BCH-algebra 2 is a Q-algebra. Every
Q-algebra A satisfying the condition (An) is a BCH-algebra.

Summarizing the above facts we have the following theorem.

THEOREM 3.8. Let A =: (A, *,0,1) be a (bounded) QS-algebra. Then the Q-
algebra A/ = =: (A/ =,%,[0],[1]) is a (bounded) BCH-algebra.

PRrROOF. To prove the theorem, it remains to check that the formulas (QS), (F)
and (An) are valid in 2/ =.

Let x,y, z € A be arbitrary elements. We have:
(o] % []) % (2] % [2]) = [z 9] w5 2] = (2 %9) * (w5 2)] = [2 %] = [2] % o]
] % [1] = [z 1] = [0]

dIfe]t us a;sume that [z] * [y] = [0] and [y] x [x] = [0]. Applying (QS) to [y], [0]

[y] = [y] % [0] = ([z] * [0]) % ([] x [y]) = [2] % [0] = [].
This shows that the (bounded) Q-algebra 21/ = is a (bounded) BCH-algebra. O

4. Final comments

The algebraic structure, known as ’Q-algebra’, as a generalization of BCH/BCI/
BCK-algebras, introduced in 2001 by J. Neggers, S. S. Ahn and H. S. Kim. This
class of logical algebras has been the subject of study by several researchers. The
determination of bounded Q-algebras is discussed in [1, 2] by H. K. Abdullah et
al.

In this paper we also consider properties of bounded Q/QS-algebras. We relate
substructures of (incomplete) subalgebras and substructures of ideals in bounded
Q-algebras. Furthermore, we consider (left, right) congruence on bounded Q/QS-
algebras and relate them to corresponding substructures in such algebras. Finally, it
is shown that in a (bounded) QS-algebra 2( one can determine a congruence relation
=. It is proved that the corresponding quotient-algebra 2/ = is a BCH-algebra.

The author is convinced that this contribution to the consideration of bounded
Q/QS-algebras opens at least one door for a broader and deeper study of (bounded)
Q/QS-algebras and their substructures. So, for example, among other things, one
could consider in more detail the theories of ideals and filters in (bounded) Q/QS-
algebras.

Acknowledgement. The author thanks the editor/reviewer of the journal for
suggestions that significantly improved the consistency of the presented material in
the second version of the article.
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