
On bounded Q/QS-algebras1

Daniel A. Romano2

Abstract. In this article we discuss not only the newly established properties
of bounded Q/QS-algebras but also some of their substructures such as, for

example, (incomplete) sub-algebras and ideals. Additionally, it was shown
that on a (bounded) QS-algebra the natural congruence can be determined so
that the corresponding quotient-algebra is a (bounded) BCH-algebra.

1. Introduction3

Considering the properties of BCK-algebras in 1979, K. Iseki raised the ques-4

tion of the existence of non-commutative BCK-algebras that satisfy the so-called5

double negation condition ([13]). Such logical algebras, i.e. bounded logical alge-6

bras that, in addition, satisfy the double negation condition, are called involutive7

algebras. The study of various bounded (and involutive) algebras has been the8

focus of several researchers. So, for example, bounded BCK-algebras are stud-9

ied in [11, 12] by K. Iséki. Bounded and involutive BE-algebras are studied in10

[8] by R. Borzooei et al. Bounded GE-algebras were discussed in [7] by R. K.11

Bandaru et al. The internal architecture of involutive WE-algebras was the fo-12

cus of a paper [24] written by A. Walendziak. This author participated in the13

consideration of the properties of involutive WE-algebras by the article [17]. The14

boundedness property of logical algebras has been the focus of this author for a long15

time. This author introduced and analyzed the concepts of bounded and involutive16

BI/QI/BH-algebras ([18, 19, 20]). It seems that these aforementioned studies of17

bounded WE/BI/QI/BH-algebras can serve as a justification for our strong interest18

in studying the boundedness property in other algebras as well.19

In 2001, Neggers et al. defined ([16]) a generalization of BCH/BCI/BCK-20

algebras as a new notion, called Q-algebra. (The definition of the concepts BCH21

/ BCI / BCK-algebras can be found, for example, in [10].) Also, authors looked22

at the validity of some of the properties expressed about BCH/BCI/BCK-algebras23

now in a new environment. This class of logical algebras has been the subject of24

study by several researchers. The concept of QS-algebras, as a subclass of the class25
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Q-algebras, was introduced in [3] by S. S. Ahn and H. S. Kim. The study of ideals1

([1] by H. K. Abdullah and H. K. Jawad.) and filters ([2] by H. K. Abdullah and2

H. S. Salman) in Q-algebras, led to the concept of ’bounded Q-algebras’.3

In this article, which is, in a literal sense, a continuation of the research started4

in [1, 2], we focus on examining the internal architecture of bounded Q-algebras5

as well as the properties of their substructures. Besides analyzing the properties of6

standard substructures in bounded Q-algebra, we introduce and analyze some new7

substructures in bounded Q-algebra such as, for example, ’incomplete sub-algebra’.8

Thus, it was shown that every ideal in a bounded Q-algebra is an incomplete9

sub-algebra and that the converse need not hold. Also, it is shown that in a10

(bounded) QS-algebra A there exists a natural congruence relation ≡ and that the11

corresponding quotient-algebra A/ ≡ is a (bounded) BCH-algebra.12

2. Preliminaries13

In this section, the necessary notions and notations and some of their interre-14

lationships, mostly taken from paper [10, 17], are listed in the order to enable a15

reader to comfortably follow the presentation in this report. It should be pointed16

out here that the notations for logical conjunction, logical implication and others17

have a literal meaning. The notation =: in the formula A =: B serves to indicate18

that A in it is the abbreviation for the formula B.19

The concept of Q-algebra first appeared in 1999 in [3] based on the article [16]20

written by J. Neggers, S. S. Ahn and H. S. Kim, but which appeared three years21

later.22

Definition 2.1. ([16], pp. 749) A Q-algebra is a non-empty set A with a23

constant 0 and a binary operation ”∗” satisfying axioms:24

(Re) (∀x ∈ A)(x ∗ x = 0),25

(M) (∀x ∈ A)(x ∗ 0 = x),26

(Ex) (∀x, y, z ∈ A)((x ∗ y) ∗ z = (x ∗ z) ∗ y).27

We denote this axiomatic system by Q and the corresponding algebra A =: (A, ∗, 0)28

by Q-algebra.29

Remark 2.1. The concept of Q-algebra, defined here, should not be confused30

with the term ’Q-algebra’ described, for example, in the text [23] in the following31

sense: ”A commutative Banach algebra A is called Q-algebra if it is isomorphic to32

a quotient algebra B/J where B is a uniform algebra and J is a closed ideal in B.”33

Remark 2.2. This class of logical algebras is also known as RME-algebra (see,34

for example, [10], Definition 4.6(6)).35

Remark 2.3. The concept of CI-algebra was introduced in 2009 in [14], Defini-36

tion 3.1, by B. L. Meng as dual Q-algebra. A CI-algebra is an algebra A =: (A, ∗, 1)37

of type (2,0) satisfying the condition (Re) and the following axioms:38

(ML) (∀x ∈ A)(1 ∗ x = x)39

(ExL) (∀x, y, z ∈ A)(x ∗ (y ∗ z) = y ∗ (x ∗ z)).40
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For any Q-algebra A =: (A, ∗, 0), the set B(X) =: {x ∈ A : 0 ∗ x = 0} is1

called the p-radical of A (see, [16], pp. 752). If B(A) = {0}, then we say that2

A is a p-semisimple Q-algebra. Also, the ’G-part’ of a Q-algebra A =: (A, ∗, 0) is3

determined as follows G(A) =: {x ∈ A : 0 ∗ x = x}.4

However, not every logical algebra has to be a Q-algebra (see, for example, the5

following example).6

Example 2.1. Let A = {0, a, b, c} a set and the operation ∗ given by the
following table

∗2 0 a b c
0 0 b a 0
a a 0 0 0
b b 0 0 0
c c c c 0

∗ 0 a b c
0 0 0 0 0
a a 0 0 0
b b 0 0 0
c c c c 0

7

Then A =: (A, ∗, 0) is a Q-algebra ([16], Example 2.2) bit the structure (A, ∗2, 0)8

is not a Q-algebras because, for example, we have (a ∗2 b) ∗2 c = 0 ∗2 c = 0 and9

(a ∗2 c) ∗2 b = 0 ∗2 b = a. �10

S. S. Ahn and H. S. Kim introduced ([3], Definition 2.1) the notion of QS-11

algebras. A Q-algebra A =: (A, ∗, 0) is said to be a QS-algebra if it satisfies the12

additional relation:13

(QS) (∀x, y, z ∈ A)((x ∗ y) ∗ (x ∗ z) = z ∗ y).14

Example 2.2. ([15], Example 5.2) Let A = {0, a, b, c} a set and the operation
∗ given by the following table

∗ 0 a b c
0 0 a b c
a a 0 c b
b b c 0 a
c c b a 0

15

Then A =: (A, ∗, 0) is a QS-algebras. �16

Example 2.3. ([16], Example 4.3) Let G =: GF (pn) be a Galois field. Define17

x ∗ y =: x− y + e, where e ∈ G. Then (G, ∗, e) is a quadratic Q-algebra. (For the18

definition of the concept ’the quadratic Q-algebra’, see [16], Section 4.)19

Let G be a field with |G| > 3. Then every quadratic Q-algebra on G is a20

(quadratic) QS-algebra ([16], Theorem 4.4). �21

The properties of this class of logical algebras are summarized in the following22

proposition.23

Proposition 2.1. Let A =: (A, ∗, 0) be a Q-algebra. Then:24

(a) ([16], Lemma 3.1) (∀x, y, z ∈ A)(x ∗ y = x ∗ z =⇒ 0 ∗ y = 0 ∗ z).25

(b) ([5], Lemma 2.4) (∀x, y ∈ A)(0 ∗ (x ∗ y) = (0 ∗ x) ∗ (0 ∗ y)).26
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Definition 2.2. ([5], Definition 2.1) Let A =: (A, ∗, 0) be a Q-algebra. A1

nonempty subset S in A is called a sub-algebra in A if the following holds:2

(S1) (∀x ∈ A)((x ∈ S ∧ y ∈ S) =⇒ x ∗ y ∈ S).3

We denote the family of all sub-algebras in the Q-algebra A by S(A).4

It can be shown without difficulty that every sub-algebra S in a Q-algebra A5

satisfies the condition6

(S0) 0 ∈ S.7

Indeed, since S is not empty, there exists at least some x ∈ A such that x ∈ S.8

Now we have 0 = x ∗ x ∈ S according to (S1) with respect to (Re).9

Definition 2.3. ([16], Definition 3.6) Let A =: (A, ∗, 0) be a Q-algebra. A10

nonempty subset J in A is called an ideal in A if the following holds:11

(J0) 0 ∈ J .12

(J1) (∀x, y ∈ A)((x ∗ y ∈ J ∧ y ∈ J) =⇒ x ∈ J).13

We denote the family of all ideals in the Q-algebra A by J(A).14

Definition 2.4. ([2], Definition (2.2)) A Q-algebra A =: (A, ∗, 0) is called a15

bounded Q-algebra if there exists an element 1 ∈ A which, additionally, satisfies16

the condition17

(F) (∀x ∈ A)(x ∗ 1 = 0).18

The element 1 ∈ A, which satisfies the condition (F), is called the unit in A. We19

denote the bounded Q-algebra by (A, ∗, 0, 1).20

Remark 2.4. The concept of bounded Q-algebras was introduced in 2018 in21

the paper [1] written by H. K. Abdullah and H. K. Jawad. However, this article is22

not available to the public. That’s why we took the determination of this concept23

from the available article [2] written by H. K. Abdullah and H. S. Salman.24

Example 2.4. Let A = {0, a, b, c} a set and the operation ∗ given by the table25

as in Example 2.1 Then ([2], Example (2.1)) A = (A, ∗, 0) is a bounded Q-algebra26

with the unit c. �27

Remark 2.5. The unit in a bounded Q-algebra not be a unique as explain in
the following example: Let A = {0, a, b} a set and the operation ∗ given by the
following table

∗ 0 a b
0 0 0 0
a a 0 0
b b 0 0

28

Then A = (A, ∗, 0) is a bounded Q-algebra with two the units a and b. It should29

be said here that this algebra is a bounded QS-algebra. �30

Let A =: (A, ∗, 0, 1) be a bounded Q-algebra. We will put y− =: 1 ∗ y for31

arbitrary y ∈ A. It is clear that 0− = 1∗0 = 1 according to (M), and 1− = 1∗1 = 032

according to (Re).33
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3. The main results1

3.1. A bit more about bounded Q-algebras. In this article, we will con-2

sider bounded Q-algebras that have only one the unit. The following lemma gives3

an important property of bounded Q-algebras:4

Lemma 3.1. Let A =: (A, ∗, 0, 1) be a bounded Q-algebra. Then5

(L) (∀y ∈ A)(0 ∗ y = 0).6

Proof. If we put z = 1 in (Ex), we get (x ∗ y) ∗ 1 = (x ∗ 1) ∗ y for arbitrary7

x, y ∈ A. From here it follows (L), according to (F) and with respect to (M). �8

Additionally, for every bounded Q-algebra A =: (A, ∗, 0, 1), we have B(A) = A9

and G(A) = {0}.10

As a consequence of the previous lemma, we have:11

Corollary 3.1. Let A =: (A, ∗, 0, 1) be a bounded Q-algebra. Then12

(1) (∀x, y ∈ A)((x ∗ y) ∗ x = 0).13

Proof. According to (Ex), (Re) and (L), for arbitrary x, y ∈ A, we have14

(x ∗ y) ∗ x = (x ∗ x) ∗ y = 0 ∗ y = 0. �15

Remark 3.1. Let us recall (see, for example, [9]) that the algebra (A, ∗, 0) of16

type (2,0) is a BCH-algebra if it satisfies the conditions (Re), (Ex) and the following17

axiom18

(An) (∀x, y ∈ A)((x ∗ y = 0 ∧ y ∗ x = p) =⇒ x = y).19

In any BCH-algebra A, the condition (M) holds. Therefore, every BCH-algebra is20

a Q-algebra.21

Let A =: (A, ∗, 0, c) be a bounded Q-algebra as in Example 2.1, but it is not a22

BCH/BCI/BCK-algebra since, in the general case, it does not satisfy the condition23

(An).24

The following two propositions give some important properties of bounded25

Q/QS-algebras.26

Proposition 3.1. Let A =: (A, ∗, 0, 1) be a bounded Q-algebra. Then27

(∀y, z ∈ A)(y− ∗ z = z− ∗ y).
Proof. This is a valid formula in every bounded Q-algebra A since it can be28

obtained by putting x = 1 in (Ex). �29

Proposition 3.2. Let A =: (A, ∗, 0, 1) be a bounded QS-algebra. Then30

(a) (∀y, z ∈ A)(y− ∗ z− = z ∗ y).31

(b) (∀x, y ∈ A)(x ∗ y = y−).32

Proof. (a): The validity of formula (a) is obtained from the presence of for-33

mula (QS) by putting x = 1.34

(b): The validity of the formula (b) is obtained from the validity of the formula35

(QS) by setting z = 1 and taking into account (M): x∗y = (x∗y)∗0 = (x∗y)∗(x∗1) =36

1 ∗ y = y−. �37
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In the following example we illustrate the appearance of a bounded Q-algebra,1

taking into account property (L).2

Example 3.1. ([2], Example (2.3)) Let A = {0, a, b, c, 1} a set and the opera-
tion ∗ given by the following table

∗ 0 a b c 1
0 0 0 0 0 0
a a 0 a 0 0
b b b 0 0 0
c c b a 0 0
1 1 0 0 0 0

3

Then A = (A, ∗, 0, 1) is a bounded Q-algebra with the units c and 1. �4

However, not every Q-algebra has to be a bounded Q-algebra nor can every5

Q-algebra be extended to a bounded Q-algebra as the following example shows.6

Example 3.2. Let A = {0, a, b, c, d} a set and the operation ∗ given by the
following table

∗ 0 a b c d
0 0 0 c b c
a a 0 c b c
b b b 0 c 0
c c c b 0 b
d d b a c 0

7

Then A = (A, ∗, 0, 1) is a Q-algebra ([6], Example 3.3) which is not a bounded8

Q-algebra nor can it be extended to a bounded Q-algebra. Indeed, in order for9

a Q/QS-algebra to be extended to a bounded Q/QS-algebra, it must satisfy the10

condition (L), which, in the general case, is not present. �11

In what follows, we deal with the creation of the direct product bounded Q-12

algebras. Let {(Ai, ∗i, 0i, 1i) : i ∈ I} be a family of bounded Q-algebras. If on the13

set14 ∏
i∈I

Ai =: {f : I −→ ∪i∈IAi | (∀i ∈ I)(f(i) ∈ Ai)},

we define the operation ⊙ as follows15

(∀f, g ∈
∏
i∈I

Ai)(∀ ∈ I)((f ⊙ g)(i) =: f(i) ∗i g(i)),

we created the structure (
∏

i∈I Ai,⊙, f0, f1), where f0 and f1 were chosen as follows16

(∀i ∈ I)(f0(i) =: 0i) and
17

(∀i ∈ I)(f1(i) =: 1i).

Before we start working with direct products of bounded Q-algebras, we say that the18

operation, determined in this way, is well-defined. If a priori we accept conditions19
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that ensure the existence of non-empty direct product, we can prove the following1

theorem.2

Theorem 3.1. The direct product of any family of bounded Q-algebras, deter-3

mined as above, is a bounded Q-algebra.4

Proof. According to [6], Proposition 5, structure (
∏

i∈I Ai,⊙, f0, f1) is a Q-5

algebra since it satisfies all its axioms. It remains to show that this structure is a6

bounded Q-algebra. We have (f ⊙ f1)(i) = f(i) ∗i f1(i) = f(i) ∗i 1i = 0i = f0(i) by7

(F) in (Ai, ∗i, 0i, 1i). Hence, f ⊙ f1 = f0.8

Therefore, the structure (
∏

i∈I Ai,⊙, f0, f1) is a bounded Q-algebra with the9

unit f1. �10

The previous theorem is a necessary predecessor of Theorem 3.6.11

Example 3.3. Let A =: (A, ∗, 0, 1) be a bounded Q-algebra as in the Example12

3.1. Then the product A × A = (A × A,⊙, (0, 0), (1, 1)) is a bounded Q-algebra,13

where the operation ⊙ is determined by14

(∀x, y, u, v ∈ A)((x, y)⊙ (u, v) =: (x ∗ u, y ∗ v)).15

�16

3.2. Sub-algebras and ideals. The concept of sub-algebra in a bounced Q-17

algebra is introduced by the following way:18

Definition 3.1. Let A =: (A, ∗, 0, 1) be a bounded Q-algebra. A nonempty19

subset of K in A is called a sub-algebra in A if20

(K1) 1 ∈ K.21

(S1) (∀x, y ∈ A)((x ∈ K ∧ y ∈ K) =⇒ x ∗ y ∈ K).22

We denote the family of all sub-algebras in the bounded Q-algebra A by K(A).23

As can be seen from the previous definition, the concept of a sub-algebra in24

a bounded Q-algebra is somewhat different from the concept of a sub-algebra in25

Q-algebras in the general case. (Compare this definition with Definition 2.2.)26

Proposition 3.3. If K is a sub-algebra in a bounded Q-algebra A =: (A, ∗, 0, 1),27

then holds28

(S0) 0 ∈ K.29

Proof. Since the sub-algebra K is not empty, there exists at least some x ∈ A30

such that x ∈ K. For that x ∈ K, we have 0 = x ∗ x ∈ K according to (S1) and31

with respect to (Re). �32

Example 3.4. Let A =: (A, ∗, 0, 1) be a bounded Q-algebra as in the Example33

3.1.34

Subsets K0 =: {0, 1}, K1 =: {0, 1, a}, K2 =: {0, 1, b}, K3 =: {0, 1, c}, K4 =:35

{0, 1, a, b} are sub-algebras in A. The subset K5 =: {0, 1, a, c} is not a sub-algebra36

in A because, for example, we have c∗a = b /∈ K5. Also, the subset K6 =: {0, 1, b, c}37

is not a sub-algebra in A because, for example, we have c ∗ b = a /∈ K6. �38
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In the previous example, the following subsets S0 =: {0}, S1 =: {0, a}, S2 =:1

{0, b}, S3 =: {0, c}, S4 =: {0, a, b} and S7 =: {0, a, b, c} in A although satisfy2

the condition (S1), but they do not satisfy the condition (K0). This justifies the3

introduction of a new concept in bounded Q-algebras:4

Definition 3.2. Let A =: (A, ∗, 0, 1) be a bounded Q-algebras. A nonempty5

subset S of A that satisfies (S1) and the following condition6

(S01) 1 /∈ S7

is called an incomplete sub-algebra of A. We denote the family of all incomplete8

sub-algebras in A by S(A).9

The family S(A) is not empty since S0 = {0} ∈ S(A). However, A /∈ S(A)10

and S(A) ∩ K(A) = ∅.11

The concept of ideal in bounded Q-algebra is introduced by means of Definition12

2.3. For an ideal J in a bounded Q-algebra A we say that it is a nontrivial ideal13

in A if holds J ̸= A. We denote the family of all ideals in a bounded Q-algebra14

A =: (A, ∗, 0, 1) by J(A). Additionally, we write Jp(A) =: J(A)rA.15

In any bounded Q-algebra A =: (A, ∗, 0, 1) we define a binary relation 4 by16

x 4 y if and only if x ∗ y = 0 for arbitrary elements x, y ∈ A.17

Proposition 3.4. Let J be an ideal in a bounded Q-algebra A =: (A, ∗, 0, 1).18

Then19

(2) (∀x, y ∈ A)((x 4 y ∧ y ∈ J) =⇒ x ∈ J).20

(3) (∀x, y ∈ A)(x ∈ J =⇒ x ∗ y ∈ J).21

Proof. (2): Let x, y ∈ A be such that x 4 y and y ∈ J . This means x ∗ y =22

0 ∈ J and y ∈ J . Thus x ∈ J by (J1).23

(3): Let x, y ∈ J be arbitrary elements. Then x ∗ y 4 x by (1). Thus x ∗ y ∈ J24

according to (2). �25

Proposition 3.5. Let J be a nontrivial ideal in a bounded Q-algebra A =:26

(A, ∗, 0, 1). Then27

(4) 1 /∈ J .28

Proof. If it were 1 ∈ J , we would have x ∗ 1 = 0 ∈ J , by (F), from which it29

follows that x ∈ J according to (J1) for arbitrary x ∈ A, which is impossible because30

J is not a trivial ideal in A. The resulting contradiction breaks the assumption31

1 ∈ J . �32

Now, we have:33

Theorem 3.2. Every nontrivial ideal in a bounded Q-algebra A is an incom-34

plete sub-algebra in A This means Jp(A) ⊆ S(A).35

Proof. Let J be a nontrivial ideal in a bounded Q-algebra A =: (A, ∗, 0, 1)36

and let x, y ∈ A be sych that x ∈ J and y ∈ J . Then x ∗ y ∈ J in accordance37

with (3). so, the ideal J is an incomplete sub-algebra in A since 1 /∈ J according38

to (4). �39
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Example 3.5. Let A = {0, a, b, c, 1} a set and the operation ∗ given by the
following table

∗ 0 a b c 1
0 0 0 0 0 0
a a 0 a 0 0
b b b 0 b 0
c c c c 0 0
1 1 1 c b 0

1

Then A = (A, ∗, 0, 1) is a bounded Q-algebra with the unit 1 ([2], Example (2.5)).2

Subsets K0 =: {0, 1}, K1 =: {0, 1, a}, K2 =: {0, 1, b}, K4 =: {0, 1, a, b}3

and K6 =: {0, 1, b, c} are sub-algebras in A. Subsets K3 =: {0, 1, c} and K5 =:4

{0, 1, a, c} are not sub-algebras in A.5

Subsets S0 = {0}, S1 = {0, a}, S2 = {0, b}, S3 = {0, c}, S4 = {0, a, b},6

S5 = {0, a, c} and S6 = {0, b, c} are incomplete sub-algebras in A.7

Subsets J0 = {0}, J1 = {0, a}, J2 = {0, b} and J4 = {0, a, b} are ideals in A.8

Subset J3 = {0, c} is not an ideal in A because, for example, we have a ∗ c = 0 ∈ J39

but a /∈ J3. Subsets J5 = {0, a, c} and J6 = {0, b, c} are not ideals in A either.10

Indeed, for J5 we have 1 ∗ b = c ∈ J5 but 1 /∈ J5. Similarly, for J6, we have11

a ∗ c = 0 ∈ J6 but a /∈ J6. �12

Remark 3.2. An incomplete sub-algebra in a bounded Q-algebra A does not13

have to be an ideal in A as shown in the previous example: Incomplete sub-algebras14

S3, S5 and S6 in A are not ideals in A. So, Jp(A) & S(A).15

Since the family K(A)/S(A)/J(A) is not empty, it can be proved:16

Theorem 3.3. Let A = (A, ∗, 0, 1) be a bounded Q-algebra. Then the family17

K(A)/S(A)/Jp(A)/J(A) forms a complete lattice.18

Proof. (a) Let {Si}i∈I be a family of (incomplete) sub-algebras / ideals in a19

bounded Q-algebra A = (A, ∗, 0, 1). Then 0 ∈ ∩i∈ISi since each of the aforemen-20

tioned substructures contains the element 0.21

(i) Let {Si}i∈I be a family of (incomplete) sub-algebras in A and let x, y ∈ A22

be such that x ∈ ∩i∈ISi and y ∈ ∩i∈ISi. Then x ∈ Si and y ∈ Si, for each i ∈ I.23

Thus x ∗ y ∈ Si since Si is a (an incomplete) sub-algebra in A for all i ∈ I. Hence24

x ∗ y ∈ ∩i∈ISi. So, ∩i∈ISi is a (an incomplete) sub-algebra in A.25

(ii) Let Let {Si}i∈I be a family of (non-trivial) ideals in A and let x, y ∈ A be26

such that x ∗ y ∈ ∩i∈ISi and y ∈ ∩i∈ISi. Then x ∗ y ∈ Si and y ∈ Si for each27

i ∈ I. Thus x ∈ Si because Si is an (non-trivial) ideal in A for each i ∈ I. Hence28

x ∈ ∩i∈ISi. So, ∩i∈ISi is (a non-trivial) an ideal in A.29

(iii) Let {Si}i∈I be a family of sub-algebras in A. Then 1 ∈ ∩i∈ISi since each of30

the aforementioned substructures contains the element 1. This family also satisfies31

the condition (S1) as shown in (i) of this proof. So, ∩i∈ISi is a sub-algebra in A.32

(b) Let Z be the family of all incomplete sub-algebras/(non-trivial) ideals/sub-33

algebras in A that contain ∪i∈ISi. Then ∩Z is an incomplete sub-algebra / (a34
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non-trivial) an ideal / a sub-algebra in A, respectively, according to the first part1

of the proof of this theorem.2

(c) If we put ⊓I∈ISi = ∩i∈ISi and ⊔i∈ISi = ∩Z, then3

(S(A),⊓,⊔), (J(A),⊓,⊔), (Jp(A),⊓,⊔) and (K(A),⊓,⊔)4

are complete lattices, respectively. �5

Corollary 3.2. Let A =: (A, ∗, 0, 1) be a bounded Q-algebra and x ∈ A. Then6

there is a smallest incomplete sub-algebra / (non-trivial) ideal / sub-algebra Sx in7

A that contains x.8

Proof. Let Z be the family of all incomplete sub-algebras / ideals / sub-9

algebras in A that contain the element x. Then, by the previous theorem, Sx =: ∩Z10

is an incomplete sub-algebra / an ideal / a sub-algebra in A that contains x.11

Let Y be an incomplete sub-algebra / an ideal / a sub-algebra in A which12

contains x. Then Y ∈ Z, so, therefore, Sx ⊆ Y . Therefore, Sx is the smallest13

incomplete subalgebra/ideal/sub-algebra in A containing x. �14

The following theorem gives a criterion for recognizing ideals in bounded Q-15

algebras.16

Theorem 3.4. Let A =: (A, ∗, 0, 1) be a bounded Q-algebra and let J be a17

subset in A that satisfies the condition (J0). Then J is an ideal in A if and only if18

it holds19

(J2) (∀x, y, z ∈ A)(((x ∗ y) ∗ z ∈ J ∧ y ∈ J) =⇒ x ∗ z ∈ J).20

Proof. Let J be an ideal in A and let x, y, z ∈ A such that (x ∗ y) ∗ z ∈ J and21

y ∈ J . Then (x ∗ z) ∗ y = (x ∗ y) ∗ z ∈ J and y ∈ J in accordance with (Ex). This22

x ∗ z ∈ J according to (J1) since J is an ideal in A. Therefore, the formula (J2) is23

valid.24

Conversely, suppose that the subset J satisfies the condition (J2). If we put25

z = 0 in (J2), we get (J1) according to (M). �26

Here it should be said that condition (J2), together with condition (J0), de-27

termine the concept of strong ideal in an algebra (see, for example [21], Definition28

2.3). Thus, in a bounded Q-algebra A, every ideal in A is a strong ideal in A.29

On the other hand, we have the determination of the concept of weak ideal30

(see, for example, [22], Definition 3.1) in a bounded Q-algebra as follows:31

Definition 3.3. Let A =: (A, ∗, 0, 1) be a bounded Q-algebra. A nonempty32

subset J in A is called a weak ideal in A if, in addition to the conditions (J0), it33

also satisfies the condition34

(Jw) (∀x, y, z ∈ A)((x ∗ (y ∗ z) ∈ J ∧ y ∈ J) =⇒ x ∗ z ∈ J).35

We denote the family of all weak ideals in a bounded Q-algebra A by Jw(A).36

Remark 3.3. This concept, the concept of weak ideals in Q-algebras, is some-37

times called a ’T-ideal’ (see, for example, [5], Definition 3.13).38
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Proposition 3.6. Let A =: (A, ∗, 0, 1) be a bounded Q-algebra and J a weak1

ideal in A. Then J also satisfies the condition (J0).2

Proof. Since J is a nonempty subset of A, there exists at least some x ∈ A3

such that x ∈ J . Now, from x = x ∗ 0 = x ∗ (x ∗ x) ∈ J and x ∈ J , according to4

(Jw), it follows x ∗ x = 0 ∈ J . �5

Proposition 3.7. Every weak ideal in a bounded Q-algebra A is an ideal in A.6

This means Jw ⊆ J(A).7

Proof. If we put z = 0 in (Jw), we get (J1) with respect to (M). �8

However, we can prove that the reverse is also true.9

Theorem 3.5. Let A =: (A, ∗, 0, 1) be a bounded Q-algebra. A nonempty subset10

J in A is a weak ideal in A if and only if it is an ideal in A. This means Jw(A) =11

J(A).12

Proof. If J is a weak ideal in A, then, according to Proposition 3.7, J is an13

ideal in A.14

Let J be an ideal in A and let x, y, z ∈ A be such that x∗ (y ∗z) ∈ J and y ∈ J .15

Then (x∗ (y ∗ z))∗ z ∈ J and y ∗ z ∈ J with respect to (3). Thus (x∗ z)∗ (y ∗ z) ∈ J16

and y ∗ z ∈ J with the use of (Ex). Hence x ∗ z ∈ J according (J1). �17

Further on, we have:18

Theorem 3.6. Let {(Ai, ∗i, 0i) : i ∈ I} be a family of (bounded) Q-algebras, K19

be a subset of I and let Ji be an ideal in (Ai, ∗i, 0i) for each i ∈ K. Then
∏

i∈I Ti,20

where Ti = Ji for i ∈ K and Ti = Ai for i ∈ I\K, is an ideal in the (bounded)21

Q-algebra
∏

i∈I Ai.22

Proof. First, it is clear that f0 ∈
∏

i∈I Ti.23

If K = ∅, then
∏

i∈I Ti =
∏

i∈I Ai, so
∏

i∈I Ti is certainly an ideal in
∏

i∈I Ai.24

Assume, therefore, that K ̸= ∅.25

Let x, y ∈
∏

i∈I Ai be such that x⊙ y ∈
∏

i∈I Ti and y ∈
∏

i∈I Ti. This means26

(x⊙ y)(i) = x(i) ∗i y(i) ∈ Ji and y(i) ∈ Ji for each i ∈ K. Then x(i) ∈ Ji since Ji27

is an ideal in (Ai, ∗i, 0i) for each i ∈ K. Hence x ∈
∏

i∈I Ti.28

As shown,
∏

i∈I Ti is an ideal in
∏

i∈I Ai. �29

This theorem is an extension of Proposition 6 in [6].30

Example 3.6. Let A =: (A, ∗, 0, 1) be a bounded Q-algebra as in Example31

3.5. Then A × A =: (A × A,⊙, (0, 0), (1, 1)) is a bounded Q-algebra according to32

Theorem 3.1, where the operation is ⊙ determined as follows33

(∀x, y, u, v ∈ A)((x, y)⊙ (u, v) =: (x ∗ u, y ∗ v)).

The subset J4 =: {0, a, b} is an ideal in A as shown in Example 3.5. Now, according34

to the previous theorem, the subsets J4 × A, J4 × J4 and J4 × A of the set A× A35

are ideals in A× A. �36
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3.3. (Left, right) congruence and corresponding substructures. Let1

A =: (A, ∗, 0, 1) be a bounded Q-algebra. For an equivalence relation ρ on A we2

say that it is a left congruence on A if holds3

(∀x, y, z ∈ A)((x, y) ∈ ρ =⇒ (z ∗ x, z ∗ y) ∈ ρ).

Right congruence can be defined analogously. For an equivalence of ρ on A, we4

say that a is a congruence on A if it is both a left and a right congruence on A.5

We denote the family of all (left, right) congruences on A by (Ql(A), Qr(A)) Q(A)6

respectively. Using analogous technology as in Theorem 3.3, it can be proven that7

the family Q(A) (Ql(A), Qr(A), respectively) forms a complete lattice.8

For the sake of consistency in the presentation of the material in this report,9

we state the previous result in the form of a lemma:10

Lemma 3.2. Let A =: (A, ∗, 0, 1) be a bounded Q-algebra and Ql(A) (Qr(A),11

Q(A)) be the family of all (left, right) congruence on A respectively. Each of the12

aforementioned families forms complete lattice.13

Proof. Let {ρi}i∈I be a family of (left, right) congruences on A.14

(a) If we take arbitrary elements x, y, z ∈ A, then we have:15

(i) Since every ρi for arbitrary i ∈ I is a reflexive relation, we have (x, x) ∈ ρi16

for each i ∈ I and for every x ∈ A. So (x, x) ∈ ∩i∈Iρi for every x ∈ A. This shows17

that ∩i∈Iρi is a reflexive relation on A.18

(ii) Let (x, y) ∈ ∩i∈Iρi for some x, y ∈ A. This means that (x, y) ∈ ρi for every19

i ∈ I. Then (y, x) ∈ ρi since ρi is a symmetric relation on A for every i ∈ I. Thus20

(y, x) ∈ ∩i∈Iρi. This shows that ∩i∈Iρi is a symmetric relation on A.21

(iii) Let (x, y) ∈ ∩i∈Iρi and (y, z) ∈ ∩i∈Iρi for some x, y, z ∈ A. This means22

that (x, y) ∈ ρi and (y, z) ∈ ρi for every i ∈ I. Then (x, z) ∈ ρi for every i ∈ I23

since ρi is a transitive relation for every i ∈ I. Thus (x, z) ∈ ∩i∈Iρi. This shows24

that ∩i∈Iρi is a transitive relation on A.25

(iv) Let (x, y) ∈ ∩i∈Iρi for some x, y ∈ A. This means (x, y) ∈ ρi for every26

i ∈ I. Then (z ∗ x, z ∗ y) ∈ ρi ((x ∗ z, y ∗ z) ∈ ρi) for every i ∈ I since ρi is27

compatible with the left side (res. with the right side) with the operation in A.28

Thus (z ∗ x, z ∗ y) ∈ ∩i∈Iρi (res. (x ∗ z, y ∗ z) ∈ ∩i∈Iρi).29

(b) Let Z be the family of all (left, right) congruences on A containing ∪i∈Iρi.30

Then, according to the first part of this proof, ∩Z is a (left, right) congruence on31

A containing ∪i∈Iρi.32

(c) If we put ⊓I∈Iρi = ∩i∈Iρi and ⊔i∈Iρi = ∩Z, then33

(Ql(A),⊓,⊔), (Qr(A),⊓,⊔) and (Q(A),⊓,⊔)

are complete lattices, respectively. �34

In the next three propositions we will consider the kernel [0] =: {x ∈ A : (x, 0) ∈35

ρ} of the (left, right) congruence ρ on a bounded Q-algebra A = (A, ∗, 0, 1). The36

knowledge we gain in this process allows us to establish correspondences between37
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the families Ql(A), Qr(A), Q(A) with the corresponding substructures in that1

algebra.2

Proposition 3.8. Let ρ be a left congruence on a bounded Q-algebra A =:3

(A, ∗, 0, 1). Then4

(5) The class [0] =: {x ∈ A : (x, 0) ∈ ρ} is an ideal in A.5

(6) (∀x, y ∈ A)((x ∈ [0] ∧ y ∈ [0]) =⇒ (y ∗ (y ∗ x) ∈ [0] ∧ x ∗ (x ∗ y) ∈ [0])).6

Proof. (5): Let x, y ∈ A be such that x ∗ y ∈ [0] and y ∈ [0]. This means7

(x ∗ y, 0) ∈ ρ and (y, 0) ∈ ρ. Then (x ∗ y, 0) ∈ ρ and (x ∗ y, x ∗ 0) ∈ ρ since ρ is a left8

congruence on A. Thus (x ∗ y, 0) ∈ ρ and (x ∗ y, x) ∈ ρ according to (M). Hence9

(x, 0) ∈ ρ by transitivity of ρ. So, x ∈ [0]. Therefore, [0] is an ideal in A.10

(6): Let x, y ∈ A be such that x ∈ [0] and y ∈ [0]. This means (x, 0) ∈ ρ11

and (y, 0) ∈ ρ. Then (y ∗ x, y ∗ 0) = (y ∗ x, y) ∈ ρ and (y, 0) ∈ ρ since ρ is a left12

congruence on A. Thus (y ∗x, 0) ∈ ρ by transitivity of ρ. Hence (y ∗ (y ∗x), y ∗0) =13

(y∗(y∗x), y) ∈ ρ and (y, 0) ∈ ρ. Finally, we get (y∗(y∗x), 0) ∈ ρ. So, y∗(y∗x) ∈ [0].14

The second part of the implication (6) can be obtained analogously. �15

Remark 3.4. The previous proposition illustrates the correspondence16

Ql(A) −→ Jp(A).

The previous proposition is a justification for introducing the following concept:17

Definition 3.4. Let A =: (A, ∗, 0, 1) be a bounded Q-algebra. For a subset H18

of A we say that it is of class H in A if it holds19

(H1) (∀x, y ∈ A)((x ∈ H ∧ y ∈ H) =⇒ (y ∗ (y ∗ x) ∈ H ∧ x ∗ (x ∗ y) ∈ H)).20

Let A =: (A, ∗, 0, 1) be a bounded Q-algebra. Consider the family H(A) of21

subsets of the set A that satisfy the condition (H1). First, this family is not empty,22

because every singleton {x} for arbitrary x ∈ A, is a member of this family since23

x ∗ (x ∗ x) = x ∗ 0 = x. Therefore, {x} ∈ H(A). Also, all subsets of the set A of the24

form {0, x} are members of the family H(A) since 0∗ (0∗x) = 0 and x∗ (x∗0) = x.25

Therefore, there are some members of the family H(A) in a bounded Q-algebra26

A that do not have to be (incomplete) sub-algebras in A.27

Furthermore:28

Proposition 3.9. Let A =: (A, ∗, 0, 1) be a bounded Q-algebra. All incomplete29

sub-algebras and all sub-algebras in A are members of the family H(A).30

However, not all subsets of the set A in a bounded Q-algebra A =: (A, ∗, 0, 1)31

need to be members of the family H(A). For illustration:32

Example 3.7. In Example 3.5, for a subset T =: {a, c} we have a ∗ (a ∗ c) =33

a ∗ 0 = a but c ∗ (c ∗ a) = c ∗ c = 0 /∈ T . Therefore, T /∈ H(A). �34

Remark 3.5. The Proposition 3.8 also illustrates the correspondence35

Ql(A) −→ H(A).
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Proposition 3.10. Let ρ be a right congruence on a bounded Q-algebra A =:1

(A, ∗, 0, 1). Then2

(7) (∀x, y ∈ A)((x ∈ [0] ∧ y ∈ [0]) =⇒ ((x ∗ y) ∗ y ∈ [0] ∧ (y ∗ x) ∗ x ∈ [0])).3

Proof. Let x, y ∈ A be such that x ∈ [0] and y ∈ [0]. This means (x, 0) ∈ ρ4

and (y, 0) ∈ ρ. Then (x ∗ y, 0 ∗ y) = (x ∗ y, 0) ∈ ρ since ρ is a right congruence5

on A and with respect to (L). Further on, for the same reasons we have again6

((x ∗ y) ∗ y, 0 ∗ y) = ((x ∗ y) ∗ y, 0) ∈ ρ. Hence, (x ∗ y) ∗ y ∈ [0]. The second part of7

the implication can be obtained analogously. �8

The previous proposition is a justification for introducing the following concept:9

Definition 3.5. Let A =: (A, ∗, 0, 1) be a bounded Q-algebra. For a subset G10

of A we say that it is of class G in A if it holds11

(G1) (∀x, y ∈ A)((x ∈ G ∧ y ∈ G) =⇒ ((y ∗ x) ∗ x ∈ G ∧ (x ∗ y) ∗ y ∈ G)).12

Let A =: (A, ∗, 0, 1) be a bounded Q-algebra. Consider the family G(A) of13

subsets of the set A that satisfy the condition (G1). This family is not empty14

because {0} ∈ G(A). However, no singleton belongs to this family because, for15

arbitrary x ∈ A, we have (x ∗ x) ∗ x = 0 ∗ x = 0 according to (L). So, {x} /∈ G(A).16

On the other hand, every subset of the form {0, x}, for arbitrary x ∈ A belongs to17

the family G(A) because we have (x ∗ 0) ∗ 0 = 0 ∗ 0 = 0 and (0 ∗ x) ∗ x = 0 ∗ x = 018

according to (L). Therefore, {0, x} ∈ G(A).19

Proposition 3.11. Let A =: (A, ∗, 0, 1) be a bounded Q-algebra. All incomplete20

sub-algebras and all sub-algebras in A are members of the family G(A).21

Further on, we have:22

Example 3.8. In Example 3.1, the subset T =: {a, c} does not belong to the23

family G(A) because we have (a ∗ c) ∗ c = 0 ∗ c = 0 but (c ∗ a) ∗ a = b ∗ a = b /∈ T .24

Therefore, T /∈ G(A). �25

Remark 3.6. The Proposition 3.10 illustrates the correspondence26

Qr(A) −→ G(A).
Proposition 3.12. Let A =: (A, ∗, 0, 1) be a bounded Q-algebra. If ρ is a27

congruence on A, then:28

(8) (∀x, y, z ∈ A)((x ∗ (y ∗ z) ∈ [0] ∧ y ∈ [0]) =⇒ x ∗ z ∈ [0]).29

Proof. Let x, y, z ∈ A be such that (x ∗ y) ∗ z ∈ [0] and y ∈ [0]. This30

means (x ∗ (y ∗ z), 0) ∈ ρ and (y, 0) ∈ ρ. Then (y ∗ z, 0 ∗ z) = (y ∗ z, 0) ∈ ρ31

since ρ is a right congruence on A and with respect to (L). Firther on, we have32

(x ∗ (y ∗ z), x ∗ 0) = (x ∗ (y ∗ z), x) ∈ ρ since ρ is a left congruence on A with respect33

to (M). From here, due to the transitivity of the relation ρ, we get (x, 0) ∈ ρ. Thus,34

x ∈ [0]. Finally, according to (3), we get x ∗ z ∈ [0] since [0] is an ideal in A by35

(5). �36

Summarizing the previous facts, we conclude that there is a correspondence37

Q(A) −→ J(A) ∩H(A) ∩ G(A).
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Example 3.9. Let A =: (A, ∗A, 0A, 1A) and B =: (B, ∗B , 0B , 1A) be two Q-1

algebras. A mapping f : A −→ B is called a homomorphism between Q-algebras if2

the following holds:3

(f1) f(1A) = 1B .4

(f2) (∀x, y ∈ A)(f(x ∗A y) = f(x) ∗B f(y)).5

It is easy to see that it is valid6

f(0A) = 0B.7

We denote this homomorphism by f : A −→ B. For any x, y ∈ A, we define8

(x, y) ∈ ρf if and only if f(x) = f(y). Then, according to [4], Lemma 2.6, the9

relation ρf is a congruence on A. �10

In what follows we need the following lemma.11

Lemma 3.3 ([3], Proposition 2.5). Let A =: (A, ∗, 0, 1) be a bounded QS-algebra.12

Then13

(9) (∀x, y, z ∈ A)((x 4 y ∧ y 4 z) =⇒ x 4 z).14

(10) (∀x, y, z ∈ A)(x 4 y =⇒ z ∗ y 4 z ∗ x)15

(11) (∀x, y, z ∈ A)(x 4 y =⇒ x ∗ z 4 y ∗ z).16

As can be concluded from the previous lemma, the relation 4 determined in17

this way, is a quasi-order on the set A (a reflexive and transitive relation) right18

compatible and left reverse compatible with the operation in A.19

Theorem 3.7. Let us define the relation ≡ on the (bounded) QS-algebra A =:20

(A, ∗, 0, 1) as follows21

(∀x, y ∈ A)(x ≡ y ⇐⇒ (x 4 y ∧ y 4 x)).

Then ≡ is a congruence on A.22

Proof. (i) Let x ∈ A be an arbitrary element. It is clear that x ≡ x holds23

due to the reflexivity of the relation 4.24

Let x, y, z ∈ A be such that x ≡ y and y ≡ z. This means x 4 y, y 4 x, y 4 z25

and z 4 y. Then x 4 z and z 4 x in accordance with (9). Hence, x ≡ z which26

proves that ≡ is a transitive relation on A.27

Since the symmetry of the relation ≡ is obvious, we conclude that ≡ is an28

equivalence relation on A.29

(ii) Let x, y ∈ A be such that x ≡ y. This means x 4 y and y 4 x. Then30

x ∗ z 4 y ∗ z and y ∗ z 4 x ∗ z according to (11). So, x ∗ z ≡ y ∗ z. Therefore, the31

relation ≡ is right compatible with the operation in A.32

(iii) That the relation ≡ is left compatible with the operation in A can be33

proved analogously. �34

Denote A/ ≡ =: {[x] : x ∈ A}, where [x] =: {y ∈ A : x ≡ y}, and define that35

(∀x, y ∈ A)([x] ⋆ [y] =: [x ∗ y]).
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Since ≡ is a congruence relation on A, the operation ⋆ is well-defined. The structure1

(A/ ≡, ⋆, [0]) is a Q-algebra, as shown in [4], Theorem 2.7.2

We show here the relation between Q-algebras and BCH-algebras. The follow-3

ing lemma can be easily proved.4

Lemma 3.4 ([16], Theorem 2.4). Every BCH-algebra A is a Q-algebra. Every5

Q-algebra A satisfying the condition (An) is a BCH-algebra.6

Summarizing the above facts we have the following theorem.7

Theorem 3.8. Let A =: (A, ∗, 0, 1) be a (bounded) QS-algebra. Then the Q-8

algebra A/ ≡ =: (A/ ≡, ⋆, [0], [1]) is a (bounded) BCH-algebra.9

Proof. To prove the theorem, it remains to check that the formulas (QS), (F)10

and (An) are valid in A/ ≡.11

Let x, y, z ∈ A be arbitrary elements. We have:12

([x] ⋆ [y]) ⋆ ([x] ⋆ [z]) = [x ∗ y] ⋆ [x ∗ z] = [(x ∗ y) ∗ (x ∗ z)] = [z ∗ y] = [z] ⋆ [y].13

[x] ⋆ [1] = [x ∗ 1] = [0].14

Let us assume that [x] ⋆ [y] = [0] and [y] ⋆ [x] = [0]. Applying (QS) to [y], [0]15

and [x], we have16

[y] = [y] ⋆ [0] = ([x] ⋆ [0]) ⋆ ([x] ⋆ [y]) = [x] ⋆ [0] = [x].

This shows that the (bounded) Q-algebra A/ ≡ is a (bounded) BCH-algebra. �17

4. Final comments18

The algebraic structure, known as ’Q-algebra’, as a generalization of BCH/BCI/19

BCK-algebras, introduced in 2001 by J. Neggers, S. S. Ahn and H. S. Kim. This20

class of logical algebras has been the subject of study by several researchers. The21

determination of bounded Q-algebras is discussed in [1, 2] by H. K. Abdullah et22

al.23

In this paper we also consider properties of bounded Q/QS-algebras. We relate24

substructures of (incomplete) subalgebras and substructures of ideals in bounded25

Q-algebras. Furthermore, we consider (left, right) congruence on bounded Q/QS-26

algebras and relate them to corresponding substructures in such algebras. Finally, it27

is shown that in a (bounded) QS-algebra A one can determine a congruence relation28

≡. It is proved that the corresponding quotient-algebra A/ ≡ is a BCH-algebra.29

The author is convinced that this contribution to the consideration of bounded30

Q/QS-algebras opens at least one door for a broader and deeper study of (bounded)31

Q/QS-algebras and their substructures. So, for example, among other things, one32

could consider in more detail the theories of ideals and filters in (bounded) Q/QS-33

algebras.34
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