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Abstract. Consider the following property (P ) for a bounded closed convex set C 
in a Banach space X. (P ) : For every x ∈ X, a positive-scalar multiple of x gives a 
nearest point in C to x. Then it is clear that a closed ball with its center at the origin 
has this property. The converse of this assertion is the subject of this paper, and it is 
proved that a bounded closed convex set C ⊂ X with 0 ∈ Int C possessing property 
(P ) is a closed ball with center 0, provided dim X > 1. The proof is achieved by 
reducing the general case to that of 2-dimensional spaces.

1 Introduction LetX denote a real Banach space with norm ∥·∥ and let A be a subset of
X. Then, x0 ∈ A is called a nearest point in A to x ∈ X if ∥x−x0∥ = min { ∥x−y∥ | y ∈ A }
holds. In this sense, for a closed ball C in X with center 0 (the origin) and radius r, it is
clear that a nearest point Px in C to x ∈ X is given by the following formula:

Px =

{ r

∥x∥
· x (x ̸∈ C),

x (x ∈ C).

In other words, Px is a positive-scalar multiple of x for every x ∈ X.
The authors happened to wonder if the converse of this fact holds or not. That is to say,

suppose that C ⊂ X is a bounded closed convex set with 0 in its interior, and also suppose
that for every x ∈ X a positive-scalar multiple of x gives a nearest point in C to x, then
should C be a closed ball centered at the origin or not?

It is clear that this question is answered in the negative for the extreme case of 1-
dimensional spaces: Consider C = [−1, 2] in R with the usual norm. However, the present
authors could firstly answer affirmatively for the case of Hilbert spaces with dimension
greater than 1. Their proof depends heavily on the neat geometric property of Hilbert
spaces. Namely, for every non-empty closed convex set C in a Hilbert space X, there exists
so-called metric projection PC : X → C that maps x ∈ X to the unique nearest point in
C to x, and the proof utilized the characterization of PC by inner products, and also the
contractivity of PC .

As an extension of the case of Hilbert spaces, the authors found that the question is
affirmatively answered for Lebesgue’s Lp spaces with p ∈ [2, 4). This result is based on
the following theorem in Li–Wang–Yang [5] saying that in case of p-uniformly convex and
simultaneously q-uniformly smooth Banach spaces, metric projections onto a closed convex
set is locally Hölder continuous of order q/p.

Moreover, no example of a Banach space with dimension greater than 1 was found
which answers the question in the negative. So, the authors formulated the question into
the following conjecture and began to investigate its validity in earnest:
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Conjecture: For every real Banach space X with dim X > 1 the following assertion (A)
holds:

(A) If C ⊂ X is a bounded closed convex set with 0 in its interior, and also suppose that
for every x ∈ X a positive-scalar multiple of x gives a nearest point in C to x, then
C should be a closed ball with center 0.

Note that the uniqueness of nearest points is not assumed in the conjecture.

As a result of investigation, the authors have managed to prove that the conjecture is
right (Theorem 15). However, in the real process of investigation, they first found that the
conjecture is right when it is restricted to the category of smooth Banach spaces (Theorem 4).

In Section 2, we give a proof of Theorem 4 since this proof contains the essence of that
for general case (Theorem 15) and easier to understand. Moreover, it seems interesting that
Theorem 4 is proved by making the best use of undergraduate calculus. In Section 3, the
proof of the full conjecture is given, with a detailed description of facts necessary for the
line of the proof in Section 2 to work.

Throughout this paper, conventional notations concerning general topology are freely
used. For example, IntA denotes the interior of A, ∂A the boundary of A and A the closure
of A.

2 Preliminaries and the result for smooth Banach spaces The following Proposi-
tion shows that 2-dimensional case is essential for our problem.

Proposition 1. Let X be a real Banach space with dim X > 1. Then the following asser-
tions hold.

(1) If C ⊂ X is a bounded closed convex set with 0 ∈ IntC, then for every 2-dimensional
subspace E of X, C ∩ E is a bounded closed convex set with 0 ∈ Int (C ∩ E) in E.
Moreover, provided that a nearest point in C to x ∈ X is always given by a positive-
scalar multiple of x, a nearest point in C ∩ E to x ∈ E is given by a positive-scalar
multiple of x.

(2) Assertion (A) holds for X if (A) holds for every 2-dimensional subspace of X.

Proof. Since assertion (1) is trivial, we only give a proof of (2). So, suppose that C ⊂ X
satisfies the assumption in assertion (A). Then, for every 2-dimensional subspace E of X,
C ∩ E satisfies the assumption in (A) as a subset of E (cf. assertion (1) in the present
proposition). Therefore if (A) holds for every 2-dimensional subspace of X, C ∩E is a ball
in E with center 0. So, take a fixed element e0 ∈ ∂C, and choose an arbitrary e1 ∈ ∂C
that is linearly independent of e0. Then, for the 2-dimensional subspace E generated by
{e0, e1}, e0, e1 ∈ ∂(C ∩ E) holds and hence ∥e1∥ = ∥e0∥. Moreover, if e1 ∈ ∂C is linearly
dependent of e0, by taking another e2 ∈ ∂C that is linearly independent of e0 and setting E
the linear span of {e0, e2}, it is shown that ∥e0∥ = ∥e1∥ = ∥e2∥ since e0, e1, e2 ∈ ∂(C ∩ E).
Thus the norm of every element of ∂C is equal, which shows that C is a ball centered at
the origin.

Here let us record the following immediate

Corollary 2. The conjecture above holds if its restriction to 2-dimensional Banach spaces
holds.
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Next we recall the definition of the smoothness of Banach spaces (see e.g. [1]). A Banach
space (X, ∥·∥) is said to be smooth if there exists a unique bounded linear functional fx ∈ X∗

such that
fx(x) = ∥x∥ and ∥fx∥ = 1

for each x ∈ X \ {0}. It is known that X is smooth if and only if

(1) lim
t→0

∥x+ ty∥ − ∥x∥
t

exists for every x ∈ X \ {0} and y ∈ X. Moreover it is also known that

(2) fx(y) = lim
t→0

∥x+ ty∥ − ∥x∥
t

holds for every x ∈ X \ {0} and y ∈ X, and the mapping x 7−→ fx from X \ {0} to X∗ is
norm to weak∗ continuous. For these facts, see [1, pp. 20–23].

Although the following lemma is an easy consequence of the definition of smoothness
itself, characterization by the existence of the limit in (1) makes the proof completely trivial.

Lemma 3. Let X denote a real Banach space with dim X > 1. Then X is smooth if and
only if every 2-dimensional subspace E of X is smooth.

Now we prove the following

Theorem 4. For every smooth Banach space X with dim X > 1, assertion (A) in our
Conjecture holds.

Proof. Step 1. (Preliminaries)
Because of Proposition 1 and Lemma 3, it suffices to show that assertion (A) holds for

2-dimensional smooth Banach spaces. So, hereafter in this proof we assume that (X, ∥ ·∥) is
a 2-dimensional smooth Banach space and C ⊂ X is a bounded closed convex set containing
the origin in its interior, and a positive-scalar multiple of x ∈ X gives a nearest point in C
to x.

Now let e1, e2 ∈ X be linearly independent vectors and define

p(s, t) = ∥se1 + te2∥

for (s, t) ∈ R2. Then p is a norm on R2. Since the mapping ι from (R2, p) to (X, ∥ · ∥)
defined by ι(s, t) := se1 + te2 is an isometric isomorphism, we may identify (R2, p) with
(X, ∥ · ∥). Hence we prove the theorem in (R2, p) instead of (X, ∥ · ∥). By equation (2), we
obtain the following equality for the gradient ∇p:

∇p(s, t) = (fse1+te2(e1), fse1+te2(e2)),

which implies that p(s, t) is of class C1 on R2 \ {(0, 0)}. Moreover,

∇p(λs, λt) = ∇p(s, t) (λ > 0),

(∇p)(−s,−t) = −∇p(s, t)(3)

hold by equation (2).
In addition to the Cartesian coordinates (s, t), we also use polar coordinates (r, θ) defined

through s = r cos θ, t = r sin θ. Then, the boundary of the unit disk with respect to the
norm p is described by a polar equation r = g(θ). Note that g(−θ) = g(θ) holds for any θ.
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Figure 1: For specification of a supporting line

Note also that the function g is of class C1 by our assumption of smoothness. Moreover,
the boundary ∂C of the closed convex set C is also described by another polar equation
r = l(θ). Lastly, the open disk with center P and radius ρ with respect to the norm p will
be denoted by B(P, ρ).

Step 2. (Specification of a tangent-like line at a point of ∂C)

By the well-known Hahn–Banach separation theorem, it is proved that for every point
U ∈ ∂C, there exists a line m that supports C and passes U , i.e., U ∈ m and IntC
is contained in one of the half-spaces separated by m. Since the smoothness of ∂C is not
assumed, mmight not be uniquely defined. However, an appropriatem could be determined
under the assumption that a positive-scalar multiple of x gives a nearest point in C to x.
Namely, let Vθ ∈ ∂C be the point that is specified as (l(θ), θ) in polar coordinates. Then,
our assumption about nearest points implies that Vθ becomes a nearest point in C to the
following point Ṽθ (see Figure 1):

Ṽθ :=

(
1 +

g(θ)

l(θ)

)
· Vθ.

It is easy to see that the distance of Ṽθ and Vθ with respect to p is equal to 1. Hence,

C ∩ B(Ṽθ, 1) = ∅ and Vθ ∈ C ∩ B(Ṽθ, 1). Therefore the Hahn–Banach separation theorem

yields a line mθ that passes Vθ and separates C and B(Ṽθ, 1). This time mθ is uniquely

determined since the boundary of B(Ṽθ, 1) is smooth. To obtain the precise description of
mθ, note that because of the symmetry −B(O, 1) = B(O, 1) it is parallel to the tangent m′

θ

to ∂B(Ṽθ, 1) at Wθ in Figure 1 (analytically speaking, this is proved by (3)). And m′
θ is

further parallel to the tangent m′′
θ to ∂B(O, 1) (O denotes the origin) at the point Uθ with

angular coordinate θ (see Figure 2). Since m′′
θ is not radial, there exists a point T on m′′

θ for
which the angular coordinate is greater than that of Uθ. Then an angle ϕ(θ) is introduced
by the following formula:

∠OUθT =
π

2
+ ϕ(θ)

(
−π
2
< ϕ(θ) <

π

2

)
.
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Figure 2: tangent to ∂B(0, 1)

As to ϕ(θ), an elementary argument in calculus gives

(4)
g′(θ)

g(θ)
= tanϕ(θ),

where g′ means the derivative of g. Therefore, the continuity of g′ implies the existence of
a constant M > 0 such that

(5) | tanϕ(θ)| ≤M (θ ∈ [0, 2π]).

Step 3. (Estimate of l(θ))

Now, we have seen that a supporting line mθ for C at Vθ is parallel to m′′
θ . Hence

the angle ϕ(θ) ∈ (−π/2, π/2) in Figure 3 is the same as in Figure 2 and so determined by
(4). Note also that because of (5), there exists an ε > 0 such that the radial half-line with
angular coordinate θ + ∆θ intersect with mθ for any θ ∈ [0, 2π] and ∆θ ∈ (0, ε). So, let
0 < ∆θ < ε and let T ′ be the intersection point of radial half-line with angular coordinate
θ +∆θ and mθ. Further let l̂ be the radial coordinate of T ′ as in Figure 3, while we have
already denoted the radial coordinate of Vθ by l(θ). Then we obtain

l(θ)

sin
(π
2
− ϕ(θ)−∆θ

) =
l̂

sin
(π
2
+ ϕ(θ)

)
by applying the sine rule to △OVθT ′. Hence

l(θ +∆θ) ≤ l̂ = l(θ) · cosϕ(θ)

cos(ϕ(θ) + ∆θ)

and so

(6)
l(θ)

l(θ +∆θ)
≥ cos(ϕ(θ) + ∆θ)

cosϕ(θ)
.
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Now take θ1, θ2 ∈ [0, 2π] with θ1 < θ2. Then ∆nθ := (θ2 − θ1)/n < ε for sufficiently large
n ∈ N (n > 2π/ε will do). For such n, inequality (6) yields

l(θ1)

l(θ2)
=

l(θ1)

l(θ1 +∆nθ)
· l(θ1 +∆nθ)

l(θ1 + 2∆nθ)
· · · · · l (θ1 + (n− 1)∆nθ)

l(θ2)

≥
n−1∏
k=0

cos(ϕ(θ1 + k∆nθ) + ∆nθ)

cosϕ(θ1 + k∆nθ)

= cosn(∆nθ)

n−1∏
k=0

{1− tan(ϕ(θ1 + k∆nθ)) tan(∆nθ)} .(7)

Noting the estimates (5) and 0 < ∆nθ ≤ 2π/n, we see that for sufficiently large n ∈ N,

O
θ

∂C
ϕ(θ)

T ′

Vθ
∆θ

l̂

l(θ)

mθ

s

t

Figure 3: mθ and ∂C

log{1− tan(ϕ(θ1 + k∆nθ)) tan(∆nθ)}

=− tan(ϕ(θ1 + k∆nθ)) tan(∆nθ) +
{tan(ϕ(θ1 + k∆nθ)) tan(∆nθ)}2

2{1− η tan(ϕ(θ1 + k∆nθ)) tan(∆nθ)}2

and

tan(∆nθ) = ∆nθ +
sin(η′∆nθ)

cos3(η′∆nθ)
· (∆nθ)

2

hold for some η, η′ ∈ (0, 1) by applying Taylor’s theorem to log(1− x) and tanx. Hence

(8) log{1− tanϕ(θ1 + k∆nθ) tan(∆nθ)} = − tanϕ(θ1 + k∆nθ)∆nθ +O

(
1

n2

)
holds by (5), where O

(
1/n2

)
is Landau’s big O notation. Precisely speaking, the absolute

value of this remainder term is estimated by K/n2 from above where K is independent of
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θ1, θ2 and sufficiently large n. Therefore we obtain

n−1∑
k=0

log{1− tanϕ(θ1 + k∆nθ) tan(∆nθ)}

= −
n−1∑
k=0

g′(θ1 + k∆nθ)

g(θ1 + k∆nθ)
·∆nθ +O

(
1

n

)

→ −
∫ θ2

θ1

g′(θ)

g(θ)
dθ = log

g(θ1)

g(θ2)
(n −→ ∞)

by (4) and (8). Hence by taking the logarithm of both sides in (7) and letting n −→ ∞, we
obtain

log
l(θ1)

l(θ2)
≥ log

g(θ1)

g(θ2)
,

since limn→∞ cosn(∆nθ) = 1.
Therefore l(θ)/g(θ) is a decreasing function of θ. However l(0)/g(0) = l(2π)/g(2π) and

so l(θ)/g(θ) is a constant, which implies ∂C = ∂B(O, r) for some r > 0. Thus C is a closed
ball with center 0.

3 Result without the assumption of smoothness

3.1 Preliminaries This section is devoted to a proof that the conclusion in Theorem 4
holds without the assumption of smoothness. For this purpose, it suffices to prove that
assertion (A) (in the Conjecture in Section 1) holds for general 2-dimensional real Banach
space X, by virtue of Corollary 2.

So, hereafter let X denote a 2-dimensional Banach space and X is identified with R2 as
in Step 1 of the proof of Theorem 4 via a basis of X. We use freely the standard Cartesian
coordinate (s, t) and the polar coordinate (r, θ) of R2 that are defined there. We also adopt
the notation B(P, ρ) to denote the open disk with center P and radius ρ with respect to
the norm on R2 that is induced from that of X through the identification.

The boundary ∂B(O, 1) is described by a polar equation r = g(θ). Firstly, just to be
sure, we record the fact that g is continuous without the assumption of smoothness of the
norm.

Lemma 5. ∂B(O, 1) is described by a polar equation r = g(θ) with a continuous periodic
function g.

This continuity of g could be proved quite easily, e.g., by using the fact that equalities
1 = p(g(θ) cos(θ), g(θ) sin(θ)) = g(θ)p(cos(θ), sin(θ)) hold and p is continuous.

Next we recall well-known fundamental properties of convex functions, which will be
crucial to treat the present non-smooth case. For a proof, see e.g., Tiel [4, Chapter 1] or
Godement [2, Chapitre V, Théorème 15].

Proposition 6. Let I be an open interval of R and f : I → R a convex function. Then f
enjoys the following properties.

(i) For every t ∈ I, the left [resp. right] derivative f ′−(t) [resp. f ′+(t)] exists and the
inequality f ′−(t) ≤ f ′+(t) holds.

(ii) f ′− and f ′+ are increasing functions and are continuous except for points of an at most
countable set. Here, the term “increasing” is used in its wider sense, i.e., t ≤ s implies
f ′−(t) ≤ f ′−(s) [resp. f

′
+(t) ≤ f ′+(s)].
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(iii) For every subinterval [a, b] of I, |f ′−(t)| and |f ′+(t)| are bounded by
max { |f ′−(a)|, |f ′+(a)|, |f ′−(b)|, |f ′+(b)| }. Hence they are locally bounded on (−ρ, ρ).

(iv) Except for at most countably many points, f ′−(t) = f ′+(t) holds and hence f is differ-
entiable there. Moreover, f ′− and f ′+ are continuous at points where f is differentiable.

For later use we record the following fact.

Lemma 7. Let ρ > 0 and h : (−ρ, ρ) → R be a negative valued convex function. Then the
following inequality holds where h′± denotes either of the one-sided derivatives h′− and h′+:

(9) uh′±(u)− h(u) > 0 (∀u ∈ (−ρ, ρ))

Proof. uh′±(u)− h(u) > 0 clearly holds for u = 0. Suppose now 0 < u < ρ. Then,

h(u)

u
<
h(u)− h(0)

u
≤ h′−(u) ≤ h′+(u)

holds, and consequently we obtain uh′±(u)− h(u) > 0.

In the case of −ρ < u < 0,

h(u)

u
>
h(u)− h(0)

u
=
h(0)− h(u)

0− u
≥ h′+(u) ≥ h′−(u)

imply the desired inequality.

3.2 Introduction of a collection of coordinate systems A key to our proof is to
show that the function g above has the same level of differentiability property as that of
convex functions. To do so, it is necessary to introduce a collection of coordinate systems
that is fitted to make well use of the convexity of B(O, 1). The need for such a collection
would be understood by the fact that g itself is convex if and only if it is constant, hence
the polar coordinate does not immediately lead to useful knowledge that compensates for
the lack of smoothness.

Set θ = θ1 in Figure 2 and let the coordinate system (frame) F for the Cartesian
coordinates (s, t) be rotated around the origin by the angle π

2 +θ1 to form a new coordinate
system Fθ1 (see Figure 4). In the sequel, (u, v)Fθ1

denotes the geometric point for which
the coordinate with respect to Fθ1 is (u, v).

The merit of introducing the coordinate system Fθ1 is well explained by the following

Lemma 8. There exists a positive constant ρ0 such that for every angle θ1 there exists a
unique convex function hθ1(u) < 0 of u ∈ (−ρ0, ρ0) for which (u, hθ1(u))Fθ1

∈ ∂B(O, 1).

Proof. Since the origin is an interior point of B(O, 1), there exists a ρ0 > 0 such that
s2 + t2 < ρ0

2 implies (s, t) ∈ B(O, 1).

Now, take an arbitrary angle θ1. Then, (u, v)Fθ1
∈ B(O, 1) holds provided u2+v2 < ρ0

2.
This means that (u, 0)Fθ1

∈ B(O, 1) holds for each u with |u| < ρ0. For such u, it is clear
that the half-line { (u, v)Fθ1

| v ≤ 0 } intersects ∂B(O, 1) at a single point (u, vu)Fθ1
for

some vu < 0. Then hθ1(u) := vu clearly yields the desired convex function.

3.3 Differentiability of g(θ)
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Figure 4: a new coordinate system (u, v)Fθ1

3.3.1 θ as an independent variable and as a function Lemma 8 implies that u ∈ (−ρ0, ρ0)
gives a local coordinate for the curve ∂B(O, 1) by the correspondence u 7→ (u, hθ1)Fθ1

. On
the other hand, the angular variable θ could also be used as a local coordinate for ∂B(O, 1)
by the mapping θ 7→ (g(θ), θ)rad , where (g(θ), θ)rad denotes the geometric point with the
polar coordinates (g(θ), θ), i.e., (g(θ) cos θ, g(θ) sin θ) ∈ R2.

We can see that θ is determined (mod 2π) as a continuous function of u ∈ (−ρ0, ρ0)
by (u, hθ1(u))Fθ1

= (g(θ), θ)rad, since { (u, hθ1(u))Fθ1
| u ∈ (−ρ0, ρ0) } is contained in

the half-space { (u, v)Fθ1
| u ∈ R, v ≤ 0 }. Therefore, once a coordinate system Fθ1 is

designated, local coordinate θ for ∂B(O, 1) might be considered as a continuous function
of u ∈ (−ρ0, ρ0), where u denotes the first component of the coordinate with respect to
Fθ1 . In the sequel, θ considered as a function in this way will be denoted simply by
θ(u), avoiding more accurate but rather awkward expression such as θθ1(u). In addition,
intuitively speaking, it is clear that the function θ(u) defined above is a strictly increasing
continuous function of u ∈ (−ρ0, ρ0). To prove these facts analytically, we give an explicit
expression of θ(u).

Lemma 9. Let θ1 be arbitrarily fixed and let hθ1(u) be the convex function described in
Lemma 8. Then, the relation (u, hθ1)Fθ1

= (r, θ)rad (−ρ0 < u < ρ0) is satisfied if and only
if

(10) θ = arcsin

(
u√

u2 + hθ1(u)
2

)
+ θ1.

Therefore, by taking the principal branch of arcsin, a continuous function θ = θ(u) of
u ∈ (−ρ0, ρ0) is obtained. Then, the left derivative θ′−(u) and the right derivative θ′+(u)
everywhere exist and are positive, and hence θ(u) is a strictly increasing function of u.
Moreover, the set N of points where θ(u) is not differentiable is at most countable and θ′−
and θ′+ are continuous at points in (−ρ0, ρ0) \ N .
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Proof. (u, hθ1)Fθ1
= (r, θ)rad is nothing but

u = g(θ) sin(θ − θ1),

hθ1(u) = −g(θ) cos(θ − θ1).

Hence

g(θ)2 = u2 + hθ1(u)
2,(11)

u =
√
u2 + hθ1(u)

2 sin(θ − θ1),(12)

whence follows (10). Since Lemma 8 and Proposition 6 yield one-sided differentiability of
hθ1 , (10) shows that θ = θ(u) is one-sided differentiable at every u ∈ (−ρ0, ρ0) and

(13) θ′±(u) = −
hθ1(u)− u(hθ1)

′
±(u)

u2 + hθ1(u)
2

holds. Hence we obtain θ′±(u) > 0 by virtue of Lemma 7.
The assertions on the differentiability of θ(u) and the continuity of θ′± follow immediately

from (13) and Lemma 8 applied for hθ1 .

3.3.2 Proof of the differentiability of g(θ) As a consequence of the results proved so far,
the following assertion concerning the differentiability of g(θ) is obtained.

Lemma 10. Let θ1 be arbitrarily fixed and let θ = θ(u) is defined by (10) as a function
of u ∈ (−ρ0, ρ0) (arcsin is construed to mean its principal branch). Then, by virtue of
Lemma 9, the range of θ(u) is an open interval Iθ1 containing θ1, and one-sided derivatives
of g(θ) exist at every θ ∈ Iθ1 . Moreover, there exists an at most countable set N for which
g′±(θ) is continuous and g(θ) is differentiable at every point in Iθ1 \ N . In addition, g′±(θ)
is bounded in a neighbourhood of θ1.

Proof. Let |u| < ρ0 and k ̸= 0 is sufficiently close to 0, then the following algebraic trans-
formation is valid (note that θ(u) is 1 to 1 by Lemma 9):

g(θ(u+ k))− g(θ(u))

θ(u+ k)− θ(u)
· θ(u+ k)− θ(u)

k

=
g(θ(u+ k))− g(θ(u))

k

=

√
(u+ k)2 + hθ1(u+ k)2 −

√
u2 + hθ1(u)

2

k
.(14)

Here, k → +0 [resp. k → −0] implies θ(u + k) → θ(u) + 0 [resp. θ(u + k) → θ(u) − 0
by Lemma 9. Therefore, by letting k → ±0 in (14), the one-sided differentiability of hθ1
and θ(u) (Lemma 9) with θ′±(u) > 0 yield the one-sided differentiability of g(θ). Explicitly
speaking, calculation of the limit of (14) as k → ±0 yields

(15) g′±(θ)
∣∣
θ=θ(u)

=
u+ hθ1(u)(hθ1(u))

′
±√

u2 + hθ1(u)
2

· 1

θ′±(u)
.

The existence of an at most countable set N as stated in the Lemma follows from this
expression, Proposition 6, Lemma 8, Lemma 9 and the fact that θ(u) is an order preserving
homeomorphism from (−ρ0, ρ0) to Iθ1 .

The boundedness of g′± in a neighbourhood of θ1 is clear from (15) and (13) since (hθ1)
′
±

is locally bounded on (−ρ0, ρ0) by Proposition 6 and Lemma 8.
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Remark 11. By a detailed analysis, it can be shown that g′± is locally bounded on Iθ1 .

Remark 12. For later use, note that (15), (13) and equality hθ1(0) = −g(θ1) imply

(16) (hθ1)
′
±(0) = −

g′±(θ1)

g(θ1)

for every θ1.

Arbitrariness of θ1 in the previous Lemma and the compactness of [0, 2π] readily lead
to the following

Lemma 13. One-sided derivatives g′± exist everywhere and are bounded on [0, 2π]. In
addition there exists an at most countable set N ⊂ [0, 2π] for which g is differentiable and
g′± are continuous at each point of [0, 2π] \ N .

Although the next lemma might be well known, we state it with a proof since it is crucial
to our purpose.

Lemma 14. The function log g(θ) is uniformly Lipschitz continuous on [0, 2π].

Proof. Set ψ(θ) := log g(θ). Then it is clear from Lemma 13 that ψ has left and right
derivative at every point and that ψ′

± = g′±/g is bounded on [0, 2π]. So let us take a
constant K such that K ≥ |ψ′

±(θ)| for every θ ∈ [0, 2π].
Suppose that η, η̃ ∈ [0, 2π], η < η̃ and set

F (θ) := ψ(θ)− ψ(η)− ψ(η̃)− ψ(η)

η̃ − η
(θ − η)

for θ ∈ [η, η̃]. Then

F ′
±(θ) = ψ′

±(θ)−
ψ(η̃)− ψ(η)

η̃ − η
.

Since F (θ) is continuous, F (θ) attains its maximum value and minimum value on [η, η̃].
Since F (η) = F (η̃) = 0, F (θ) attains at least either of the maximum value or the minimum
value at some ξ ∈ (η, η̃). If F (ξ) is the maximum value, then

0 ≤ F ′
−(ξ) = ψ′

−(ξ)−
ψ(η̃)− ψ(η)

η̃ − η

0 ≥ F ′
+(ξ) = ψ′

+(ξ)−
ψ(η̃)− ψ(η)

η̃ − η
,

and so

ψ′
+(ξ) ≤

ψ(η̃)− ψ(η)

η̃ − η
≤ ψ′

−(ξ).

Similarly, if F (ξ) is the minimum value,

ψ′
−(ξ) ≤

ψ(η̃)− ψ(η)

η̃ − η
≤ ψ′

+(ξ).

Thus, in either case we obtain

|ψ(η̃)− ψ(η)| ≤ K|η̃ − η|

and hence ψ is uniformly Lipschitz continuous.
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3.4 Completion of the proof In this last subsection we give a proof of the following
theorem by completing the proof for the special case of dim X = 2.

Theorem 15. For every Banach space X with dim X > 1, assertion (A) in our Conjecture
holds.

So, as stated at the beginning of this Section 3, let X denote a Banach space with
dim X = 2 identified with R2 and let the unit “sphere” ∂B(O, 1) be described by a polar
equation r = g(θ). Note that we have shown Lemmas 10 to 14 concerning analytic properties
of g.

Now, suppose that C ⊂ X is a bounded closed convex set with 0 in its interior, and also
suppose that for every x ∈ X a positive-scalar multiple of x gives a nearest point in C to x.
Our task is to show that on this supposition C is indeed a closed ball. The proof proceeds
along the line of that in Section 2 (the case of smooth Banach spaces).

Firstly, note that for every angle θ our supposition yields the existence of a line mθ en-
joying the following properties: mθ supports C at Vθ in Fig. 1 and is parallel to a supporting
line m′′

θ of B(O, 1) at (g(θ), θ)rad (see Fig. 2). This is a consequence of the Hahn–Banach
separation theorem that does not require smoothness. Although mθ is not uniquely de-
termined in general, consider that one of such line is assigned for every θ and named mθ.
Then, one can see that the angle ϕ(θ) in Fig. 2 satisfies the following estimate by locally
considering the curve ∂B(O, 1) as the graph { (u, hθ(u)) | |u| < ρ0 } in the coordinate system
Fθ:

(hθ)
′
−(0) ≤ − tanϕ(θ) ≤ (hθ)

′
+(0).

Hence (16) yields

(17)
g′+(θ)

g(θ)
≤ tanϕ(θ) ≤

g′−(θ)

g(θ)

for every θ, and Lemma 10 shows that | tanϕ(θ)| is bounded on [0, 2π].

Now, prior to going into the heart of the proof, note that the boundedness of various
quantities can be readily obtained from Lemma 13: There exists a constant K > 0 such
that

(18) |g′±(θ)|,
|g′±(θ)|
g(θ)

, | tanϕ(θ)| ≤ K (∀θ ∈ [0, 2π]).

As in the previous section, let the curve ∂C be described by a polar equation r = ℓ(θ)
and let us return to Fig. 3. Because of estimate (18), there exists an ε > 0 for which the ray
with angle θ + ∆θ intersects the line mθ, which separates C and a translation of the unit
ball (see Fig. 1), provided 0 < ∆θ < ε. Now take θ1, θ2 ∈ [0, 2π] with θ1 < θ2 and n ∈ N
with n > 2π/ε and set ∆nθ := (θ2 − θ1)/n. Then the argument leading to (7) is also valid
in the present case and we obtain

(19)
l(θ1)

l(θ2)
≥ cosn(∆nθ)

n−1∏
k=0

{1− tan(ϕ(θ1 + k∆nθ)) tan(∆nθ)} .
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From (17) and (18), we obtain the following asymptotic formula as n→ ∞:

n−1∑
k=0

log
(
1− {tanϕ(θ + k∆nθ)} tan(∆nθ)

)
= −

n−1∑
k=0

tanϕ(θ1 + k∆nθ)∆nθ +O

(
1

n

)

≥ −
n−1∑
k=0

g′−(θ + k∆nθ)

g(θ + k∆nθ)
∆nθ +O

(
1

n

)
.(20)

By Lemma 13, g′−(θ)/g(θ) is Riemann integrable on [θ1, θ2], and so

−
n−1∑
k=0

g′−(θ + k∆nθ)

g(θ + k∆nθ)
∆nθ +O

(
1

n

)

−→ −
∫ θ2

θ1

g′−(θ)

g(θ)
dθ (n −→ ∞).

Taking the logarithm of (19) and using the asymptotic formula above, we obtain

(21) log
l(θ1)

l(θ2)
≥ −

∫ θ2

θ1

g′−(θ)

g(θ)
dθ

since cosn(∆nθ) → 1 as n → ∞. Moreover, Lemma 14 shows that log(g(θ)) is absolutely
continuous on [θ1, θ2]. Hence the Fundamental Theorem of Calculus for Lebesgue Integral
([3, p. 148]) implies

(22) −(L)

∫ θ2

θ1

1

g(θ)
· dg
dθ

(θ) dθ = log
g(θ1)

g(θ2)
,

where (L)
∫
means the Lebesgue integral. In addition, Lemma 13 shows that

1

g(θ)
· dg
dθ

(θ) =
g′−(θ)

g(θ)

holds except for θ in some at most countable set. Hence

(23) (L)

∫ θ2

θ1

1

g(θ)
· dg
dθ

(θ) dθ = (L)

∫ θ2

θ1

g′−(θ)

g(θ)
dθ

holds. Since Lebesgue integral and Riemann integral coincide for Riemann integrable func-
tions, (21), (23) and (22) yield

log
l(θ1)

l(θ2)
≥ −(L)

∫ θ2

θ1

g′−(θ)

g(θ)
dθ

= −(L)

∫ θ2

θ1

1

g(θ)
· dg
dθ

(θ) dθ

= log
g(θ1)

g(θ2)
.
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Therefore

log
ℓ(θ1)

g(θ1)
≥ log

ℓ(θ2)

g(θ2)

holds and hence ℓ(θ)/g(θ) is a decreasing function (in the wider sense) of θ ∈ [0, 2π]. This
in turn implies that ℓ(θ)/g(θ) is a constant function since the values at 0 and 2π coincide,
and the proof is thus completed.
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