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Causality for CHARN models

Xiaoling Dou

Abstract. In this study, we consider Granger causality with a highly flexible nonlin-
ear time series model, the conditional heteroscedastic autoregressive nonlinear (CHARN)
model. We show that the causality of the CHARN models can be examined by a
Portmanteau test based on a constrained maximum likelihood estimator of the param-
eters, and the test statistic has an approximate asymptotic Chi-square distribution.
We describe the Chi-square asymptotics of the Portmanteau test for a CHARN model,
provide calculations of the test statistic and investigate the performance of the Port-
manteau test using a simulation. This idea is also illustrated using a real data set.

1 Introduction Causality is a relationship between a cause and an effect. The cause is
considered to occur not later than the effect and it can help in predictions of the effect.
Granger causality, defined by [8], is not necessarily a true causality, but a contributory
factor in prediction. That is, for two random variables, X and Y , Granger causality does
not clarify whether X causes Y , but focuses on whether X forecasts Y .

Granger causality was proposed in a vector autoregressive (VAR) processes, that is,
a linear combination form of random vectors of stationary time series. A standard way
to examine Granger causality is the Wald test for the coefficients of VAR model with a
limiting χ2-distribution ([14]). It tests whether the coefficients of the elements from distinct
sequences in the VAR system are zero or not. Since the asymptotic χ2 distribution is often
a poor approximation when sample size is small, an F -version of the Wald test is often used
instead. The test statistic is obtained by dividing the χ2-statistic by its degrees of freedom,
and is considered from an F -distribution. Likelihood ratio test, the Lagrange multiplier
test ([16]) and the other test methods for Granger causality are discussed and compared in
[7]. These classical tests give pairwise diagnoses for fixed time lag.

For multiple testing, Portmanteau test is popular. It can test overall significance of the
serial correlations over various time lags. Portmanteau test was first proposed by Box and
Pierce [2] for model diagnostics of autoregressive and moving average processes. For an
autoregressive moving average model of order (p, q), ARMA(p, q), the Box and Pierce test

statistic is defined as n
∑h

k=1 r̂
2
k, where n is the sample size, r̂k is the residual empirical

autocorrelation at lag k. For moderately large n and h, the Box-Pierce test statistic is con-
sidered approximately χ2 distributed with degrees of freedom h− p− q. A modified version
of the Box-Pierce test, i.e. Ljung-Box test ([12]), substantially improves the approximation
of the χ2(h− p− q) distribution and is frequently applied in a variety of fields.

Many other modifications have been suggested. Among them, Taniguchi and Amano [17]
pointed out that both the Box-Pierce statistic and the Ljung-Box statistic never converge
to χ2(h− p− q) for finite h. Instead, they proposed a modified Whittle likelihood ratio test
which is asymptotically chi-square distributed for any finite h under ARMA(p, q) models and
Bloomfield’s exponential spectral density assumption. Recently, Chen and Lee [4] developed
a Bayesian procedure for Granger causality test based on the generalized auto-regressive
conditional heteroscedasticity (GARCH) type of integer-valued models and applied it to
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testing causality relationships between temperature and crime data, as well as air pollution
and human influenza data ([5]). Moreover, Akashi et al [1] proposed a new likelihood ratio
based Portmanteau test which is applicable in more general situations. They also showed
application examples for linear models.

Ideas for test of nonlinearity are also available. For example, Tsay [20] generalized
Keenan’s ([11]) Tukey nonadditivity-type test, improved its power, and proposed a test for
concurrent nonlinearity as a diagnostic tool to examine the linearity assumption of time
series models. Castle and Hendry [3] provided a Portmanteau test based on polynomial
and exponential functions. It focuses on the nonlinearity in the conditional mean. Chen et
al [6] proposed a hysteretic vector autoregressive (HVAR) model to test nonlinear Granger
causality between two target time series and using posterior odds ratios for multiple testing.

To investigate Granger causality for nonlinear time series models, we consider a more
flexible model, the conditional heteroscedastic autoregressive nonlinear (CHARN) model,
where both the conditional mean and the residual are functions of the past. The CHARN
model was introduced by [9] for financial data analysis. Because of its non-normality, non-
linearity and the blindingly general form, it has come into use in various fields of time series
([10], [19]).

We are interested in whether the Portmanteau test proposed by [1] can be used to
detect the Granger causality for the CHARN model. In this paper, we examine nonlinear
causality with this method. To show the feasibility and the performance of the method, we
provide an example with the calculation of the test statistic for a specified CHARN model
and conduct a simulation to confirm its capability for different sample sizes and different
parameter settings of the CHARN model. We also demonstrate that the Portmanteau test
can be used in practice if the the normality of the residuals of the CHARN model is satisfied.

The paper is organized as follows. Section 2 sets up the high dimensional stochastic
process of the CHARN model, provides assumptions for stationarity of the process and
requirements for the asymptotic optimal estimation theory of the parameters in the model,
and formulates the nonlinear Portmanteau test for the CHARN model. Section 3 discusses
the asymptotic distribution of the Portmanteau test and calculates the test statistic for a
given CHARN model. In Section 4, we investigate the performance of the test by simulation.
Finally, in Section 5, supposing that data follow CHARN models, we test whether the
infection number of COVID-19 in Tokyo Granger causes the infection numbers in two of
surrounding prefectures of Tokyo in Japan.

2 Assumptions and the Portmanteau Test Let

X(t) =

(
X1(t)
X2(t)

)
=



X1,1(t)
...

X1,m1(t)
X2,1(t)

...
X2,m2

(t)


(1)

be a (m1 +m2 =)m-dimensional stochastic process generated by

X(t) = Fθ{X(t− 1), . . . ,X(t− p)}+Hθ{X(t− 1), . . . ,X(t− q)} U(t),(2)

where Fθ : Rmp → Rm is a vector-valued measurable function, Hθ : Rmq → Rm×m is a
positive definite matrix-valued measurable function, and U(t) = (U1(t),U2(t))

′ combining
an m1-vector U1(t) and an m2-vector U2(t), is a sequence of m i.i.d. random variables
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with E{U(t)} = 0, E|U(t)| < ∞, and U(t) is independent of {X(s), s < t}. Here,
θ = (θ1, . . . , θr)

′ ∈ Θ ⊂ Rr is a vector of unknown parameters.
We write x = (x11, . . . , x1m, x21, . . . , x2m, . . . , xp1, . . . , xpm)′ as an (mp)-vector, and u =

(u1,u2)
′ = (u1, u2, . . . , um1

, um1+1, . . . , um2)
′ an m-vector. From now on, without loss of

generality, we assume p = q and make the following assumptions.

Assumption 1 ([13]) (A.1) U(t) has a probability density p(u) > 0 on Rm.

(A.2) There exist constants aij ≥ 0, bij ≥ 0, 1 ≤ i ≤ p, 1 ≤ j ≤ m, such that as |x| → ∞,

|Fθ(x)| ≤
p∑

i=1

m∑
j=1

aij |xij |+ o(|x|),

|Hθ(x)| ≤
p∑

i=1

m∑
j=1

bij |xij |+ o(|x|),

where |A| denotes the sum of the absolute values of all entries of A.

(A.3) Hθ(x) is continuous and symmetric on Rmp, and there exists a positive constant λ
such that

λm{Hθ(x)} ≥ λ for all x ∈ Rmp,

where λm{(·)} is the minimum eigenvalue of (·).

(A.4)

max
1≤j≤m

{
p∑

i=1

aij + E|U(t)|
p∑

i=1

bij

}
< 1.

Assumption 1 guarantees that {Xt} is strictly stationary.

Assumption 2 ([18]) (B.1)

Eθ||Fθ(X(t− 1), . . . ,X(t− p))||2 < ∞,

Eθ||Hθ(X(t− 1), . . . ,X(t− p))||2 < ∞, for all θ ∈ Θ,

where ||A|| indicates the Euclidian norm of a vector A or a matrix A.

(B.2) There exists c > 0 such that

c ≤ ||H−1/2

θ′ (x)Hθ(x)H
−1/2

θ′ (x)|| < ∞,

for all θ,θ′ ∈ Θ, and for all x ∈ Rmp.

(B.3) Hθ and Fθ are continuously differentiable with respect to θ, and their derivatives
∂jHθ and ∂jFθ (∂j = ∂/∂θj), j = 1, . . . , r, satisfy the condition that there exist
square-integrable functions Aj and Bj such that ||∂jHθ|| ≤ Aj, and ||∂jFθ|| ≤ Bj

(j = 1, . . . , r), for all θ ∈ Θ.

(B.4) Density p(·) satisfies

lim
||u||→∞

||u||p(u) = 0 and

∫
uu′p(u)du = Im,

where Im is the m×m identity matrix.
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(B.5) The continuous derivative Dp = Dp(u) ≡
(

d
du1

p(u), . . . , d
dum

p(u)
)′

exists on Rm

and ∫
||p−1Dp||4p(u)du < ∞,∫

||u||2||p−1Dp||2p(u)du < ∞.

Assumption 2 is necessary in construction of the asymptotic optimal estimation theory for
θ.

For given time series data in (1), to consider the Granger causality from X2(t) to
X1(t), we focus on the prediction of X1(t), t = 1, . . . , n. Similar to (2), assume that X1(t)
is observed from the following CHARN model

X1(t) = F
1,θ{X(t− 1), . . . ,X(t− p)}+H

1,θ{X(t− 1), . . . ,X(t− q)} U1(t),(3)

where θ is a vector of unknown parameters, F
1,θ : Rmp → Rm1 is a vector-valued mea-

surable function, H
1,θ : Rmq → Rm1×m1 is a positive definite matrix-valued measurable

function, and the model satisfies Assumptions 1 and 2 for U1(t), F
1,θ and H

1,θ instead

of U(t), Fθ and Hθ, respectively.
Suppose that the dynamic part of (3) can be expressed as

F
1,θ = F

1,θ1,θ2
{X(t− 1), . . . ,X(t− p)}

= F
1,θ1

{X1(t− 1), . . . ,X1(t− p)}+ θ∗
r1+1X2(t− 1) + . . .+ θ∗

r1+r
′
1
X2(t− p)

+

p∑
ℓ=1

exp

{
−1

2
tr{X1(t− ℓ)X1(t− ℓ)′}

}
θ∗
r1+r

′
1+ℓ

X2(t− ℓ),(4)

where F 1,θ is the prediction of X1(t) using information of both X1(t− ℓ) and X2(t− ℓ),

F
1,θ1

is the prediction of X1(t) with only information of X1(t − ℓ), for ℓ = 1, . . . , p, and

the subscript of θ∗
r1+r

′
1+ℓ

changes from (r1 + r′1 + 1) to (r1 + r′1 + p) = (r1 + r2).

In the vector of the unknown parameters

θ = (vec(θ1),θ2)
′
=

(
vec(θ1), vec(θ

∗
r1+1), · · · , vec(θ

∗
r1+r

′
1
), · · · , vec(θ∗

r1+r2)
)′

,

θ1 is an m1 × r1 matrix in function F
1,θ1

of X1(t − ℓ); θ∗
r1+1, . . ., θ

∗
r1+r

′
1
, . . . , and θ∗

r1+r2

are m1 ×m2 matrices for terms containing X2(t− ℓ), ℓ = 1, . . . , p.
Then the prediction error of X1(t) by F

1,θ1
becomes

P1 = E[tr{(X1(t)− F
1,θ1

)(X1(t)− F
1,θ1

)′}]

and that by F
1,θ is

P2 = E[tr{(X1(t)− F
1,θ)(X1(t)− F

1,θ)
′}].

Letting V ≡ P1 − P2, we can introduce a nonlinear causality from {X2(t)} to {X1(t)}
by V , i.e., if V = 0, then we say that {X2(t)} does not cause {X1(t)} in our CHARN
setting (for short, X2(t) ↛ X1(t)). We can understand that X2(t) ↛ X1(t) is grasped by
the testing problem:

H : θ2 = 0, v.s. A : θ2 ̸= 0.(5)
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Let X(1), . . . ,X(n) be an observed stretch from (2), and let

ℓ(θ1,θ2) = log{likelihood function based on X(1), . . . ,X(n)}

=

n∑
t=p

log
[
p{H−1

θ (X(t)− Fθ)}{detHθ}
−1

]
.

In what follows we deal with the following marginal log-likelihood function:

ℓ1(θ1,θ2) =

n∑
t=p

log

[
p1

{
H−1

1,θ

(
X1(t)− F

1,θ

)}(
detH

1,θ

)−1
]
,(6)

where p1(·) is the marginal pdf of U1(t).
Define

θ̂1 = arg max
θ1

ℓ1(θ1,0), θ̂2 = arg max
θ2

ℓ1(θ̂1,θ2).

For the problem of testing (5), we introduce the following test of Portmanteau type:

PT = 2[ℓ1(θ̂1, θ̂2)− ℓ1(θ̂1,0)].(7)

The Fisher information matrix for the general model is given by

F(θ) ≡ lim
n→∞

1

n
E

[
∂

∂θ
ℓ1(θ)

∂

∂θ′ ℓ1(θ)

]
=

[
F 11 F 12

F 21 F 22

]
, (say).

The following two lemmas follow from [1].

Lemma 1 Under H,

PT = N ′
R2

F
1/2
22·1F

−1
22 F

1/2
22·1NR2

+ op(1),

where NR2
is the R2(= m1m2r2)-dimensional standard normal random vector, and F 22·1 =

F 22 − F 21F
−1
11 F 12.

Lemma 2 (i) Let R1 = m1r1. If R1 < R2, F 22 = IR2 and F 21F
−1
11 F 12 is idempotent

with rank r̄, then

PT
d−−→ χ2

R2−r̄ under H.

(ii) If F 22 ̸= IR2
and F 12 = 0, then

PT
d−−→ χ2

R2
under H.

3 Asymptotic Distribution of Portmanteau Test In this section, we describe the
χ2-asymptotics of the Portmanteau test PT for the simplest case of (1), wherem1 = m2 = 1,
that is, X(t) = (X1(t), X2(t))

′.
Let

Z(t) =

(
X2(t− 1), . . . , X2(t− p), exp

(
−1

2
X1(t− 1)2

)
X2(t− 1), . . . ,

exp

(
−1

2
X1(t− p)2

)
X2(t− p)

)′

,
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whose dimension is r2. Then we can write F
1,θ of (4) as

F
1,θ = F

1,θ1,θ2
{X(t− 1), . . . ,X(t− p)}

= F
1,θ1

{X1(t− 1), . . . , X1(t− p)}+ θ′
2Z(t),

where θ1 and θ2 are r1 and r2-vectors, respectively.
If p1(·) is Gaussian, it is not difficult to show

F 12 = lim
n→∞

−1

n
E

[
∂2

∂θ1∂θ
′
2

ℓ1(θ)

]
= 0.

Then we have

Proposition 1 If p1(·) is a Gaussian probability density, under H,

PT
d−→ χ2

(r2)
.

Example 1. In (4), let

F
1,θ = θ1X1(t− 1) + θ2 exp

(
−1

2
X1(t− 1)2

)
+ θ3X2(t− 1) + θ4 exp

(
−1

2
X1(t− 1)2

)
X2(t− 1)

= Y ′(t− 1)θ,

where

Y (t− 1) := (Y1(t− 1), Y2(t− 1), Y3(t− 1), Y4(t− 1))′

(8)

:=

(
X1(t− 1), exp

(
−1

2
X1(t− 1)2

)
, X2(t− 1), exp

(
−1

2
X1(t− 1)2

)
X2(t− 1)

)′

,

and θ = (θ1, θ2, θ3, θ4)
′. In (6), letH

1,θ =
√
0.1 + εX1(t− 1)2 + δX2(t− 1)2 =:

√
W (t− 1),

where ε and δ are small positive values providing minor effects on the residual part of the
CHARN model. Assume that p1(·) is the pdf of N(0, 1). We see that θ1 = (θ1, θ2)

′,

θ2 = (θ3, θ4)
′, r1 = 2, r2 = 2. Suppose that

∑4
j=1 |θj | < 1. Then we can find PT in the

following way.
Since

p1

{
X1(t)− F

1,θ
H

1,θ

}
× 1

H
1,θ

=
1√

2π × {0.1 + εX1(t− 1)2 + δX2(t− 1)2}
exp

−

(
X1(t)− F

1,θ

)2
2
(
H

1,θ

)2


=
1√

2π × {0.1 + εX1(t− 1)2 + δX2(t− 1)2}

exp

(
−
[X1(t)− θ1X1(t− 1)− θ2 exp{− 1

2
X1(t− 1)2} − θ3X2(t− 1)− θ4 exp{− 1

2
X1(t− 1)2}X2(t− 1)]2

2× {0.1 + εX1(t− 1)2 + δX2(t− 1)2}

)
,

and

log

[
p1

{
X1(t)− F

1,θ
H

1,θ

}
× 1

H
1,θ

]

= −1

2
log(2π × {0.1 + εX1(t− 1)2 + δX2(t− 1)2})

−
[X1(t)− θ1X1(t− 1)− θ2 exp{− 1

2X1(t− 1)2} − θ3X2(t− 1)− θ4 exp{− 1
2X1(t− 1)2}X2(t− 1)]2

2× {0.1 + εX1(t− 1)2 + δX2(t− 1)2}
,
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Equ. (6) becomes

ℓ1(θ1,θ2) =

n∑
t=2

log

[
p1

{
X1(t)− F

1,θ
H

1,θ

}
× 1

H
1,θ

](9)

= −1

2

n∑
t=2

log(2π × {0.1 + εX1(t− 1)2 + δX2(t− 1)2})

−
n∑

t=2

[X1(t)− θ1X1(t− 1)− θ2 exp{− 1
2X1(t− 1)2} − θ3X2(t− 1)− θ4 exp{− 1

2X1(t− 1)2}X2(t− 1)]2

2× {0.1 + εX1(t− 1)2 + δX2(t− 1)2}
.

Under the null hypothesis H, the log-likelihood function becomes

ℓ1(θ1,0) = −1

2

n∑
t=2

log(2π × {0.1 + εX1(t− 1)2 + δX2(t− 1)2})

−
n∑

t=2

[X1(t)− θ1X1(t− 1)− θ2 exp{− 1
2X1(t− 1)2}]2

2× {0.1 + εX1(t− 1)2 + δX2(t− 1)2}
.

Setting ∂ℓ1/∂θi = 0, i ∈ {1, 2}, with notations Y1(t − 1), Y2(t − 1) and W (t − 1), we see
that (∑n

t=2 {(Y1(t− 1), Y2(t− 1))Y1(t− 1)} /W (t− 1)∑n
t=2 {(Y1(t− 1), Y2(t− 1))Y2(t− 1)} /W (t− 1)

)(
θ1
θ2

)
=

(∑n
t=2 {(Y1(t− 1), Y2(t− 1))Y1(t− 1)} /W (t− 1)∑n
t=2 {(Y1(t− 1), Y2(t− 1))Y2(t− 1)} /W (t− 1)

)
θ1

=

(∑n
t=2 {X1(t)Y1(t− 1)} /W (t− 1)∑n
t=2 {X1(t)Y2(t− 1)} /W (t− 1)

)
and obtain

θ̂1 =

(∑n
t=2 {(Y1(t− 1), Y2(t− 1))Y1(t− 1)} /W (t− 1)∑n
t=2 {(Y1(t− 1), Y2(t− 1))Y2(t− 1)} /W (t− 1)

)−1 (∑n
t=2 {X1(t)Y1(t− 1)} /W (t− 1)∑n
t=2 {X1(t)Y2(t− 1)} /W (t− 1)

)
.

Substitute θ̂1 = (θ̂1, θ̂2)
′ into Equ. (9) and let Y0(t) := X1(t)−θ̂1X1(t−1)−θ̂2 exp{− 1

2X1(t−
1)2}, t = 2, 3, . . ., we maximize

ℓ1(θ̂1,θ2) = −1

2

n∑
t=2

log(2π × {0.1 + εX1(t− 1)2 + δX2(t− 1)2})

−
n∑

t=2

[X1(t)− θ̂1X1(t− 1)− θ̂2 exp{− 1
2X1(t− 1)2} − θ3X2(t− 1)− θ4 exp{− 1

2X1(t− 1)2}X2(t− 1)]2

2× {0.1 + εX1(t− 1)2 + δX2(t− 1)2}

=− 1

2

n∑
t=2

log(2π × {0.1 + εX1(t− 1)2 + δX2(t− 1)2})

−
n∑

t=2

[Y0(t)− θ3X2(t− 1)− θ4 exp{− 1
2X1(t− 1)2}X2(t− 1)]2

2× {0.1 + εX1(t− 1)2 + δX2(t− 1)2}
.

Set ∂ℓ1/∂θi = 0, i ∈ {3, 4}, we have(∑n
t=2 [{(Y3(t− 1), Y4(t− 1))Y3(t− 1)} /W (t− 1)]∑n
t=2 [{(Y3(t− 1), Y4(t− 1))Y4(t− 1)} /W (t− 1)]

)(
θ3
θ4

)
=

(∑n
t=2 [Y0(t)Y3(t− 1)/W (t− 1)]∑n
t=2 [Y0(t)Y4(t− 1)/W (t− 1)]

)
,
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then θ2 can be estimated as follows

θ̂2 =

(
θ̂3
θ̂4

)
=

(∑n
t=2 [{(Y3(t− 1), Y4(t− 1))Y3(t− 1)} /W (t− 1)]∑n
t=2 [{(Y3(t− 1), Y4(t− 1))Y4(t− 1)} /W (t− 1)]

)−1 (∑n
t=2 [Y0(t)Y3(t− 1)/W (t− 1)]∑n
t=2 [Y0(t)Y4(t− 1)/W (t− 1)]

)
.

By substituting the obtained estimates θ̂1 and θ̂2 into (7), we then can calculate the

Portmanteau test statistic PT . That is, with Y0(t) = X1(t)− (Y1(t− 1), Y2(t− 1)) θ̂1,

PT = −
n∑

t=2

log(2πW (t− 1))− 2

2

n∑
t=2

{
Y0(t)− (Y3(t− 1), Y4(t− 1)) θ̂2

}2

W (t− 1)

+

n∑
t=2

log(2πW (t− 1)) +
2

2

n∑
t=2

Y 2
0 (t)

W (t− 1)

=

n∑
t=2

Y 2
0 (t)

W (t− 1)
−

n∑
t=2

{
Y0(t)− (Y3(t− 1), Y4(t− 1)) θ̂2

}2

W (t− 1)
.

4 Simulation Study To evaluate the availability of the Portmanteau test for Granger
causality, we carry out the following simulation. We generate data from the two dimensional
stochastic process below in which X2(t) is AR(1) and X1(t) is a CHARN model:

X(t) =

(
X1(t)
X2(t)

)
=

(
Y ′(t− 1)θ +

√
0.1 + εX1(t− 1)2 + δX2(t− 1)2 U1(t)
θ21X2(t− 1) + U2(t)

)
,

where Y (t− 1) is defined in (8), θ = (θ11, θ12, θ13, θ14)
′, and Ui, i = 1, 2 are i.i.d. N(0, 1).

For eight models, the parameters are set as in the table below. We generate data for each
model with three different lengths, n = 50, 300, 1000. For each model and each length, 3000
replications are made. We then test the non-linear causality H0 : θ13 = θ14 = 0, and
calculate the empirical rejection ratios for each situation. The last three columns in Table 1
present the empirical rejection ratios of non-causality X2(t) ↛ X1(t). Nominal significance
level is 0.05.

Table 1: Empirical rejection ratio of the null hypothesis of non-causality for eight models

Model ε δ θ θ21 n = 50 n = 300 n = 1000

i 0 0 (0.1, 0, 0, 0)′ 0.2 0.035 0.049 0.048
ii 0.01 0 (0.1, 0, 0, 0)′ 0.2 0.036 0.043 0.049
iii 0.01 0.01 (0.1, 0, 0, 0)′ 0.2 0.036 0.045 0.055
iv 0.01 0.05 (0.1, 0, 0, 0)′ 0.2 0.041 0.051 0.055

v 0.01 0 (0.1, 0, 0.1, 0)′ 0.2 0.462 0.999 1.000
vi 0.01 0.01 (0.1, 0, 0.1, 0)′ 0.2 0.362 0.995 1.000
vii 0.01 0.01 (0.1, 0.1, 0.1, 0)′ 0.2 0.376 0.996 1.000
viii 0.01 0.01 (0.1, 0.1, 0.1, 0.1)′ 0.2 0.916 1.000 1.000

From this result, we see that when the sample size is large or moderately large, the
Portmanteau test works well, although there is a need to improve the power when the
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sample size is small. When there is no Granger causality (Models i – iv), the empirical
rejection ratio is close to the significance level; when the Granger causality exists (Models
v – viii), the empirical rejection ratio is close to one.

5 Data Analysis We examine Granger causality between the numbers of infected people
with COVID-19 in Tokyo and its two neighboring prefectures. The data are taken from the
website of NHK https://www3.nhk.or.jp/news/special/coronavirus/data-widget/

#mokuji1. We focus on the data of Kanagawa Prefecture, Yamanashi Prefecture and the
Tokyo metropolitan area, from January 16 to December 17, 2020. The three time series as
well as their cross-autocorrelation functions (CCFs) are plotted in Figure 1. A clear seven
day period can be seen from the original data and the CCFs.

Since the variance increases substantially when the number of infections grows and there
are clear trends in the sequences, we set the zero values in the data set as 0.5, take logarithm
for all the data and take the first difference to remove the trends. The detrended data and
their CCFs are given in Figure 2. We also plot the autocorrelation functions (ACFs) and
the partial autocorrelation functions (PACFs) for Kanagawa and Yamanashi Prefectures in
Figure 3.

For the detrended data, we test whether the number of infections in Tokyo causes the
numbers of infections in Kanagawa and Yamanashi in the Granger sense. We denote the
detrended time series of Kanagawa, Yamanashi and Tokyo in Figure 2 as {X1(t)}, {X2(t)}
and {X3(t)}, respectively. According to the CCFs of Kanagawa and Tokyo in Figure 2
and the ACFs and PACFs of Kanagawa in Figure 3, we try time lags P = 7, 14, . . . , 20.
We also prepare the nine possible terms in Table 2 for model selection for p = 1, . . . , P .
The use of exp{−0.5(Xi(t − p))2} and exp{−0.5(Xi(t − p))2}Xj(t), i, j ∈ {1, 2, 3}, is due
to Assumption (B.1), and the exponential function can moderate sharp fluctuations in the
time series.

Table 2: Possible terms for model selection

X1(t− p) X2(t− p) X3(t− p)

exp{−0.5(X1(t− p))2} exp{−0.5(X2(t− p))2} exp{−0.5(X3(t− p))2}
exp{−0.5(X1(t− p))2}X2(t) exp{−0.5(X1(t− p))2}X3(t− p) exp{−0.5(X2(t− p))2}X3(t− p)

The data analysis below is carried out in a two-step procedure. We first use AIC to select
models for X1(t) and X2(t), respectively; then for the models containing effects from X3(t),
we do the Portmanteau test to examine the Granger causality. Since the Portmanteau test
requires that the distribution of the residuals under H0 be normal, we also take this into
account in the model selection. That is, the selected model should minimize AIC, and if
there are several models having similar small values of AIC, we choose the model whose
residuals under H0 are closest to the normal distribution.

For Kanagawa Prefecture, the following model with P = 18 is selected.

X1(t) =

P∑
p=1

αpX1(t− p) +

P∑
p=1

βp exp{−0.5(X1(t− p))2}+
P∑

p=1

θp exp{−0.5(X3(t− p))2}+ ε1(t),

(10)

where ε1(t) is assumed normal distributed N(0, σ2
1).
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Figure 1: Left: Infection numbers of COVID-19 in Kanagawa, Yamanashi and Tokyo; Right:
CCFs of Kanagawa, Yamanashi and Tokyo.
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Figure 2: The detrended time series and their CCFs.
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Figure 3: The ACFs and PACFs of Kanagawa and Yamanashi Prefectures.

Testing the Granger causality for this model is equivalent to test

H0 : θ1 = · · · = θP = 0.

In the calculation of PT , we first compute α̂ = (α̂1, · · · , α̂P )
′ and β̂ = (β̂1, · · · , β̂P )

′ under

H0, then substitute them into model (10) and find θ̂ = (θ̂1, · · · , θ̂P )′ by maximizing the
log-likelihood function.

The residuals from the model under the hypothesis have mean 0.012, standard deviation
0.546; the residuals obtained from the model under the alternative have mean 0.003, and
standard deviation 0.502. The two sequences of residuals are shown in the first row of
Figure 4. The ACFs and PACFs of the sequences of residuals in the second row of the
figure show that there is almost no correlation in the sequences. Corresponding Q-Q plots
of the standardized residuals are shown in the last row of Figure 4. We see that their
distributions are close to the standard normal distribution.

As the value of the test statistic, PT = 14.514, is smaller than the critical point
χ2
0.95(18) = 28.869, we cannot reject the hypothesis H0 at an α = 0.05 significance level,

and cannot conclude that the number of infections in Kanagawa is Granger caused by the
number of infections in Tokyo.

For Yamanashi Prefecture, we try time lags P ∈ {7, . . . , 20} for the model selection.
From the possible terms given in Table 2 and their linear combinations, AIC selects the
simple AR(P ) model

X2(t) =

P∑
p=1

γpX2(t− p) + ε2(t),(11)

with P = 19. According to the ACFs and PACFs of Yamanashi in Figure 3, we see this
model is suitable, because the ACF tails off and the PACF cuts off after lag 19.
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Figure 4: The left and right panels are the sequences of residuals, their ACFs, PACFs, and
their Q-Q plots under H0 and H1, respectively.
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Figure 5: The sequence of residuals of Yamanashi Prefecture and the ACFs and PACFs.
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Figure 6: Q-Q plot of the standardized residuals of Yamanashi Prefecture.

The residuals of Yamanashi Prefecture obtained from model (11) have mean 0.022 and
standard deviation 0.619. The sequence of the residuals, their ACFs and PACFs are plotted
in Figure 5. This model does not contain any information of X3(t) and we cannot perform
the Portmanteau test. However, since AIC can be used in Granger causality detection by
the selection of the orders of bivariate autoregressive models when the sample size is large
([15]), we can conclude that there is no Granger causality of Tokyo to Yamanashi Prefecture.

For a simultaneous test of the Granger causality from Tokyo to both of the prefectures
of Kanagawa and Yamanashi, a possible solution is to take X1(t) = (X1(t), X2(t))

′ together
as Kanagawa and Yamanashi, and investigate the effect of Tokyo X3(t) to X1(t) using the
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Portmanteau test. In the multivariate case, we also need a precondition that the distribution
of the residuals under H0 should be a two-dimensional normal distribution. However, the
Q-Q plot of the standardized residuals of X2(t) obtained from (11) in Figure 6 shows a
significant departure from the standard normal distribution. This means that the selected
models (10) and (11) are not able to make the precondition satisfied and the Portmanteau
test cannot be applied directly to this data set. Besides, in our models (10) and (11),
different time lags P are used: P = 18 for X1(t), and P = 19 for X2(t). This results in
different lengths of residuals of the two time series and makes it difficult to construct a
two-dimensional normal distribution. Additionally, because of the different patterns of the
ACFs and PACFs for Kanagawa and Yamanashi Prefectures in Figure 3, it is unlikely to
obtain the same or similar models for X1(t) and X2(t) even if other model selection methods
are used. For these reasons, we decide to cease the simultaneous Granger causality test for
this data set.
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