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Abstract. In the theory of real hypersurfaces in a nonflat complex space form,
the behavior of the structure tensor ϕ is significant. In this paper, we investigate
generalizations of the parallelism of the structure tensor ϕ.

1 Introduction Contact Riemannian geometry is one of the active field in Riemannian
geometry. In particular, it is known that cosymplectic manifolds, Sasakian manifolds and
Kenmotsu manifolds are characterized by using a behavior of the structure tensor ϕ on
contact Riemannian manifolds (see [1]).

In a nonflat complex space form M̃n(c) (namely, a complex projective space CPn(c)
of constant holomorphic sectional curvature c > 0 or a complex hyperbolic space CHn(c)
of constant holomorphic sectional curvature c < 0), real hypersurfaces admit the almost
contact metric structure (ϕ, ξ, η, g) induced from the ambient space. The structure tensor ϕ
plays an important role not only contact Riemannian geometry but also the theory of real
hypersurfaces in M̃n(c). In this paper, we focus on the parallelism of the structure tensor ϕ

of real hypersurfaces in M̃n(c). It is known that there exists no real hypersurface in M̃n(c)
whose the structure tensor ϕ is parallel (see [4]).

The purpose of this paper is to generalize this fact and to investigate such real hyper-
surfaces. We first study the following three conditions:

∇ξϕ = 0 (ξ-parallelism),(1.1)

∇Xϕ = 0 for ∀X ∈ T 0M (T 0M -parallelism),(1.2)

(∇Xϕ)Y − (∇Y ϕ)X = 0 for ∀X,Y ∈ TM (the Codazzi tensor),(1.3)

where TM is the tangent bundle ofM2n−1 and T 0M is the holomorphic distribution, that is,
T 0M = {X ∈ TM : X ⊥ ξ}. These conditions are simple generalizations of the parallelism
of the structure tensor ϕ. In particular, Conditions (1.1) and (1.2) give characterizations of

Hopf hypersurfaces and ruled real hypersurfaces in M̃n(c), respectively. These classes of real
hypersurfaces are significant examples. On the other hand, there exists no real hypersurface
satisfying Condition (1.3). So, it is natural to consider generalizations of Condition (1.3).

Secondly, we study the following condition which is a certain generalization of (1.3):

(1.4) div ϕ = 0.

This condition is inspired by Sharma’s work (see [6]). By Condition (1.4), we obtain a
characterization of Hopf hypersurfaces with constant mean curvature given by α/(2n− 1),
where α = g(Aξ, ξ) (Theorem 1).

Finally, we give applications of the discussion of Theorem 1. To do this, we focus on the
following two classes of real hypersurfaces in M̃n(c):
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(1) The class of minimal Hopf hypersurfaces in M̃n(c);

(2) The class of real hypersurfaces in CHn(c) which satisfies the following the condition:

Ric =
1

4
(TraceA)2 +

c

2
(n− 1),

where Ric is the maximal Ricci curvature of real hypersurfaces in CHn(c). The latter class
was investigated by B. Y. Chen (see [2]). He showed that every real hypersurface in CHn(c)
satisfies the following inequality:

Ric ≦ 1

4
(TraceA)2 +

c

2
(n− 1).

Moreover he also investigated the equality case of the above inequality.
In the latter of this paper, we characterize the above classes of real hypersurfaces by

using the modification of Condition (1.4).

2 Preliminaries Let M2n−1 be a real hypersurface with a unit local vector field N of a
complex n-dimensional nonflat complex space form M̃n. The Riemannian connections ∇̃ of
M̃n(c) and ∇ of M2n−1 are related by

∇̃XY = ∇XY + g(AX, Y )N and ∇̃XN = −AX

for vector fields X and Y tangent to M2n−1, where g denotes the induced metric from the
standard Riemannian metric of M̃n(c) and A is the shape operator of M2n−1 in M̃n(c). The
former is called Gauss’s formula, and the latter is called Weingarten’s formula. Eigenvalues
and eigenvectors of the shape operator A are called principal curvatures and principal vectors
of M2n−1 in M̃n(c), respectively.

It is known that M2n−1 admits an almost contact metric structure (ϕ, ξ, η, g) induced

from the Kähler structure J of M̃n(c). The characteristic vector field ξ of M2n−1 is defined
as ξ = −JN and this structure satisfies

ϕ2 = −I + η ⊗ ξ, η(X) = g(X, ξ), η(ξ) = 1, ϕξ = 0, η(ϕX) = 0,(2.1)

g(ϕX, Y ) = −g(X,ϕY ) and g(ϕX, ϕY ) = g(X ,Y )− η(X)η(Y ),

where I denotes the identity map of the tangent bundle TM of M2n−1. We call ϕ and η
the structure tensor and the contact form of M2n−1, respectively.

The following equation is a fundamental tool in the theory of real hypersurfaces in
M̃n(c):

(2.2) (∇Xϕ)Y = η(Y )AX − g(AX,Y )ξ.

We usually call M2n−1 a Hopf hypersurface if the characteristic vector ξ is a principal
curvature vector at each point of M2n−1. It is known that every tube of sufficiently small
constant radius around each Kähler submanifold of M̃n(c) is a Hopf hypersurface. This fact
tells us that the notion of Hopf hypersurface is natural in the theory of real hypersurfaces
in M̃n(c) (see [5]).

The following lemma clarifies a fundamental property which is a useful tool in the theory
of Hopf hypersurfaces in M̃n(c).

Lemma 1 ([5]). For a Hopf hypersurface M2n−1 with the principal curvature α correspond-

ing to the characteristic vector field ξ in M̃n(c), we have the following:
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(1) α is locally constant on M2n−1;

(2) If X is a tangent vector of M2n−1 perpendicular to ξ with AX = λX, then (2λ −
α)AϕX = (αλ+ (c/2))ϕX.

In CPn(c) (n ≧ 2), a Hopf hypersurface all of whose principal curvatures are constant
is locally congruent to one of the following:

(A1) A geodesic sphere G(r) of radius r, where 0 < r < π/
√
c ;

(A2) A tube of radius r around a totally geodesic CP ℓ(c) (1 ≦ ℓ ≦ n − 2), where 0 < r <
π/

√
c ;

(B) A tube of radius r around a complex hyper quadric CQn−1, where 0 < r < π/(2
√
c );

(C) A tube of radius r around a CP 1(c) × CP (n−1)/2(c), where 0 < r < π/(2
√
c ) and

n(≧ 5) is odd;

(D) A tube of radius r around a complex Grassmann CG2,5, where 0 < r < π/(2
√
c ) and

n = 9;

(E) A tube of radius r around a Hermitian symmetric space SO(10)/U(5), where 0 < r <
π/(2

√
c ) and n = 15.

These real hypersurfaces are said to be of types (A1), (A2), (B), (C), (D) and (E). The
principal curvatures of these real hypersurfaces in CPn(c) are given as follows (cf. [5]):

(A1) (A2) (B) (C), (D), (E)

λ1

√
c
2 cot

(√
c
2 r

) √
c
2 cot

(√
c
2 r

) √
c
2 cot

(√
c
2 r − π

4

) √
c
2 cot

(√
c
2 r − π

4

)
λ2 — −

√
c
2 tan

(√
c
2 r

) √
c
2 cot

(√
c
2 r + π

4

) √
c
2 cot

(√
c
2 r + π

4

)
λ3 — — —

√
c
2 cot

(√
c
2 r

)
λ4 — — — −

√
c
2 tan

(√
c
2 r

)
α

√
c cot(

√
c r)

√
c cot(

√
c r)

√
c cot(

√
c r)

√
c cot(

√
c r)

The multiplicities of these principal curvatures are given as follows (cf. [5]):

(A1) (A2) (B) (C) (D) (E)

m(λ1) 2n− 2 2n− 2ℓ− 2 n− 1 2 4 6
m(λ2) — 2ℓ n− 1 2 4 6
m(λ3) — — — n− 3 4 8
m(λ4) — — — n− 3 4 8
m(α) 1 1 1 1 1 1

In CHn(c) (n ≧ 2), a Hopf hypersurface all of whose principal curvatures are constant
is locally congruent to one of the following:

(A0) A horosphere in CHn(c);

(A1,0) A geodesic sphere G(r) of radius r, where 0 < r < ∞;

(A1,1) A tube of radius r around a totally geodesic CHn−1(c), where 0 < r < ∞;

(A2) A tube of radius r around a totally geodesic CHℓ(c)(1 ≦ ℓ ≦ n−2), where 0 < r < ∞;
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(B) A tube of radius r around a totally real totally geodesic RHn(c/4), where 0 < r < ∞.

These real hypersurfaces are said to be of types (A0), (A1,0), (A1,1), (A2) and (B). Summing
up, real hypersurfaces of types (A1,0) and (A1,1), we call them real hypersurfaces of type
(A1). The principal curvatures of these real hypersurfaces in CHn(c) are given as follows
(cf. [5]):

(A0) (A1,0) (A1,1) (A2) (B)

λ1

√
|c|
2

√
|c|
2 coth

(√|c|
2 r

) √
|c|
2 tanh

(√|c|
2 r

) √
|c|
2 coth

(√|c|
2 r

) √
|c|
2 coth

(√|c|
2 r

)
λ2 — — —

√
|c|
2 tanh

(√|c|
2 r

) √
|c|
2 tanh

(√|c|
2 r

)
α

√
|c|

√
|c| coth(

√
|c| r)

√
|c| coth(

√
|c| r)

√
|c| coth(

√
|c| r)

√
|c| tanh(

√
|c| r)

Finally, we define ruled real hypersurfaces in a nonflat complex space form M̃n(c). A

real hypersurface M2n−1 in M̃n(c) is called a ruled real hypersurface if the holomorphic
distribution T 0M = {X ∈ TM : X ⊥ ξ} is integrable and each of its leaves (the maximal

integrable manifolds) is a totally geodesic submanifold M̃n−1(c) in M̃n(c). The following
lemma is known as the characterization of ruled real hypersurfaces from the viewpoint of
the shape operator A (cf. [5]).

Lemma 2 ([5]). Let M2n−1 be a real hypersurface M2n−1 in a nonflat complex space form

M̃n(c) (n ≧ 2). Then the following three conditions are mutually equivalent:

1. M2n−1 is a ruled real hypersurface;

2. The shape operator A of M2n−1 satisfies the following equalities on the open dense
subset M1 = {x ∈ M2n−1|β(x) ̸= 0} with a unit vector field U orthogonal to ξ :

Aξ = αξ + βU, AU = βξ, AX = 0

for an arbitrary tangent vector X orthogonal to ξ and U , where α, β are differentiable
functions on M1 by α = g(Aξ, ξ) and β = ∥Aξ − αξ∥;

3. The shape operator A of M2n−1 satisfies g(AX,Y ) = 0 for arbitrary tangent vectors
X,Y ∈ T 0M .

3 The parallelism of the structure tensor ϕ and its generalizations In the theory
of real hypersurfaces in a nonflat complex space form M̃n(c), it is well-known that there

exists no real hypersurface whose structure tensor ϕ is parallel in M̃n(c) (see [4]). This

implies that there exists no cosymplectic real hypersurfaces in M̃n(c) from the viewpoint
of almost contact metric geometry (for detail, see [1]). In this section, we consider simple
generalizations of the above fact.

Proposition 1. Let M2n−1 be a real hypersurfaces in a nonflat complex space form M̃n(c)
(n ≧ 2). Then the following statements (1), (2) and (3) hold:

(1) M2n−1 satisfies the condition ∇ξϕ = 0 if and only if M2n−1 is locally congruent to a

Hopf hypersurfaces in M̃n(c);

(2) M2n−1 satisfies the condition ∇Xϕ = 0 for any X ∈ T 0M if and only if M2n−1 is

locally congruent to a ruled real hypersurface in M̃n(c);
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(3) There does not exist a real hypersurface M2n−1 in M̃n(c) satisfying the condition
(∇Xϕ)Y = (∇Y ϕ)X for any vectors X and Y on M2n−1.

Proof. (1) Suppose that M2n−1 has condition ∇ξϕ = 0. By (2.2), we have

(3.1) (∇ξϕ)X = η(X)Aξ − g(Aξ,X)ξ = 0.

for any vector X ∈ TM . Putting X = ξ in (3.1), then we get Aξ = g(Aξ, ξ)ξ. Hence M2n−1

is a Hopf hypersurface in M̃n(c). Obviously, the converse holds.
(2) Suppose that M2n−1 has the condition (∇Xϕ)Y = 0 for any vector X ∈ T 0M and

Y ∈ TM . By (2.2), we get g(AX,Y ) = 0 for any vectors X,Y ∈ T 0M . From Lemma 2,

M2n−1 is a ruled real hypersurface in M̃n(c).
(3) Suppose that M2n−1 satisfies the condition (∇Xϕ)Y = (∇Y ϕ)X for any vectors

X,Y ∈ TM . By (2.2), we have

(3.2) η(Y )AX = η(X)AY

for any vectors X,Y ∈ TM .
Now we suppose that M2n−1 is a non-Hopf hypersurface in M̃n(c). Then the shape

operator A forms Aξ = αξ+βU , where the function β ̸= 0 and a unit vector U is orthogonal
to the characteristic vector field ξ. We put X ⊥ ξ and Y = ξ in (3.2). Then we have AX = 0
for any vector X ∈ T 0M . Hence we can see

0 = g(AU, ξ) = g(U,Aξ) = β,

which is a contradiction.
Next we suppose that M2n−1 is a Hopf hypersurface (with Aξ = αξ) in M̃n(c). We take

a unit tangent vector field V (⊥ ξ) such that AV = λV . By using the equation (3.2), we
have η(Y )AV = 0. Putting Y = ξ in this equation, we can see that AV = λV = 0. This
implies that

(3.3) λ = 0.

Setting X = ϕV and Y = ξ in (3.2), we get AϕV = 0. From this equation, (3.3) and Lemma
1, we obtain

0 = (2λ− α)AϕV = (αλ+ (c/2))ϕV = (c/2)ϕV ̸= 0,

which is a contradiction.

Remark 1. J. T. Cho studied the condition of transversally Killing of ϕ namely, (∇Xϕ)Y +
(∇Y ϕ)X = 0 for any X,Y ∈ T 0M (for details, see [3]). This condition give the characteri-

zation of ruled real hypersurfaces in M̃n(c).

4 Statements of results Motivated by (3) of the above proposition, we investigate the
divergence of the structure tensor ϕ. If the structure tensor ϕ is a Codazzi tensor, then we
have

(div ϕ)X =

2n−1∑
i=1

g((∇eiϕ)X, ei) =

2n−1∑
i=1

g((∇Xϕ)ei, ei)

= Trace (∇Xϕ) = ∇X(Trace ϕ)

for any tangent vector field X ∈ TM . Note that Trace ϕ = 0, we obtain the condition
div ϕ = 0. Namely, this condition is a generalization of the condition (1.3).

Next we investigate real hypersurfaces in M̃n(c) satisfying div ϕ = 0.
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Theorem 1. Let M2n−1 be a real hypersurface in a nonflat complex space form M̃n(c)(n ≧
2). Then M2n−1 satisfies the condition divϕ = 0 if and only if M2n−1 is locally congruent to
a Hopf hypersurface with constant mean curvature given by α/(2n−1), where α = g(Aξ, ξ).
If M2n−1 has constant principal curvatures then M2n−1 is locally congruent to one of the
following:

(i) A tube of radius r around a totally geodesic CP ℓ(c) (1 ≦ ℓ ≦ n− 2) in CPn(c), where
0 < r < π/

√
c and cot(

√
c r/2) =

√
ℓ/(n− ℓ− 1) ;

(ii) A tube of radius r around a CP 1(c) × CP (n−1)/2(c) in CPn(c), where 0 < r <
π/(2

√
c ), n(≧ 5) is odd and cot(

√
c r/2) = (

√
n− 1 +

√
2 )/

√
n− 3 ;

(iii) A tube of radius r around a complex Grassmann CG2,5 in CPn(c), where 0 < r <
π/(2

√
c ), n = 9 and cot(

√
c r/2) = 1 +

√
2 ;

(iv) A tube of radius r around a Hermitian symmetric space SO(10)/U(5) in CPn(c),

where 0 < r < π/(2
√
c ), n = 15 and cot(

√
c r/2) =

√
5 +

√
21/

√
2.

Proof. Suppose M2n−1 satisfies div ϕ = 0. Then we have

(div ϕ)X =

2n−1∑
i=1

g((∇eiϕ)X, ei)(4.1)

=

2n−1∑
i=1

g(η(X)Aei − g(Aei, X)ξ, ei) (from (2.2))

= η(X)(TraceA)− η(AX) = 0

for any vector X ∈ TM . Hence g(Aξ,X) = 0 for any vector X ∈ T 0M . This implies that

M2n−1 is a Hopf hypersurface in M̃n(c). Putting X = ξ in (4.1), then we have

(4.2) TraceA = α.

This, together with Lemma 1, yields TraceA = α = constant.
Conversely, we suppose that M2n−1 is a Hopf hypersurface with TraceA = g(Aξ, ξ) = α.

Then we can easily check that M2n−1 satisfies div ϕ = 0 (see the relation (4.1)).
Next we suppose that M2n−1 has constant principal curvatures. Namely, M2n−1 is a

Hopf hypersurface with constant principal curvatures. Hence we shall check that M2n−1

satisfies the condition (4.2) one by one. Obviously real hypersurfaces of type (A1) in CPn(c),
types (A) and (B) in CHn(c) do not fulfill the condition (4.2) (see the tables of Section 2).

Let M2n−1 be a real hypersurface of type (A2) in CPn(c). We put x = cot(
√
cr/2),

0 < r < π/
√
c . From (4.2), we have (2n− 2ℓ− 2)x− 2ℓ(1/x) = 0. This implies

x2 =
ℓ

n− ℓ− 1
.

Since x > 0, we obtain

x =

√
ℓ

n− ℓ− 1
.

Hence we have the case (i) of our theorem.
Let M2n−1 be a real hypersurface of type (B) in CPn(c). We put x = cot(

√
cr/2),

0 < r < π/(2
√
c). From (4.2), we have

1 + x

1− x
− 1− x

1 + x
= 0.
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This means x = 0. However, since x > 1, M2n−1 does not satisfy (4.2).
Let M2n−1 be a real hypersurface of type (C) in CPn(c). We put x = cot(

√
cr/2),

0 < r < π/(2
√
c). From (4.2), we have

2(1 + x)

1− x
− 2(1− x)

1 + x
+ (n− 3)x− (n− 3)

1

x
= 0.

This implies that (n− 3)x4 − 2(n+ 1)x2 + n− 3 = 0. Hence we obtain

x2 =
n+ 1± 2

√
2n− 2

n− 3
.

Since x > 1, we have

x =

√
n− 1 +

√
2√

n− 3
.

Hence we have the case (ii) of our theorem. Similarly, we also obtain the cases (iii) and (iv)
of our theorem.

Next we consider the case of 3-dimensional real hypersurfaces in M̃2(c).

Theorem 2. There does not exist a real hypersurface M3 in M̃2(c) satisfying the condition

div ϕ = 0 in M̃2(c).

Proof. We suppose that M3 satisfies the condition divϕ = 0. By Theorem 1, M3 is locally
congruent to a Hopf hypersurface (with Aξ = αξ) in M̃2(c) and M3 fulfills Trace A = α.
We take a unit tangent vector field V (⊥ ξ) such that AV = λV . When (2λ− α)(p) ̸= 0 at
some point p ∈ M2n−1, there exists a neighborhood U of p such that 2λ− α ̸= 0 on U . By
using Lemma 1, we have

λ+
αλ+ (c/2)

2λ− α
= 0.

This equation implies that λ is locally constant.
Next we consider the case 2λ − α = 0 at q ∈ M3. Then there exists a neighborhood

V of the point q such that 2λ − α = 0 on V. Indeed, we suppose that there exists no
neighborhood V of q such that 2λ− α = 0 on V. Then there exists a sequence {qn} on M3

such that
lim
n→∞

qn = q and (2λ− α)(qn) ̸= 0 for each n.

The above discussion in the case (2λ−α)(p) ̸= 0 implies that the continuous function 2λ−α is
constant on some small neighborhood Vqn of qn for each n. Then we have (2λ− α)(q) ̸= 0,
which is a contradiction. Hence there exists a neighborhood V of the point q such that
2λ−α = 0 on V. Thus the function λ is locally constant. Therefore M3 is locally congruent
to a Hopf hypersurface with constant principal curvatures. We know that M3 is one of the
real hypersurfaces of types (A1), (A2) or (B) in M̃2(c). However these real hypersurfaces
do not satisfy the condition Trace A = α (see the table in Section 2). Therefore we obtain
the non-existence of real hypersurfaces M3 satisfying the condition div ϕ = 0.

5 Applications of the discussion in Theorem 1 As a immediate consequence of
Theorem 1, if both of the divergence of the structure tensor ϕ and the principal curvature
α corresponding to the principal vector ξ vanish identically, then M2n−1 is a minimal
Hopf hypersurface in M̃n(c). However the converse does not hold. Indeed, a minimal real
hypersurface of type (A1) in CPn(c) does not satisfy two conditions div ϕ = 0 and α = 0.
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In this section, we first characterize the class of minimal Hopf hypersurfaces in M̃n(c) by
the modification of the condition (1.4). This is an application of the discussion in Theorem
1.

Proposition 2. Let M2n−1 be a real hypersurface in M̃n(c) (n ≧ 2). Then M2n−1 is

locally congruent to a minimal Hopf hypersurface in M̃n(c) if and only if M2n−1 satisfies
the condition

(5.1) (div ϕ)X = −αη(X)

for any vector X ∈ TM .

Proof. Suppose that M2n−1 satisfies the condition (5.1). By the calculation (4.1), we have

(5.2) η(X)(TraceA)− η(AX) = −αη(X)

for any X ∈ TM . This means that g(Aξ,X) = 0 for any X ∈ T 0M . Hence M2n−1 is a

Hopf hypersurface in M̃n(c). Putting X = ξ in (5.2) we get Trace A = 0. So we can see

that M2n−1 is a minimal Hopf hypersurface in M̃n(c). Clearly, the converse holds by the
calculation (4.1).

Remark 2. By a direct calculation, real hypersurfaces of types (A1), (A2), (B), (C), (D)
and (E) in CPn(c) whose radius r satisfies the following table are known as minimal Hopf

hypersurfaces with constant principal curvatures in M̃n(c).

(A1) (A2) (B) (C) (D) (E)

cot
√
cr
2

1√
2n−1

√
(2ℓ+1)

(2n−2ℓ−1)

√
n+

√
n− 1

√
n+

√
2√

n−2

√
5

√
15+

√
6

3

B. Y. Chen studied the maximal Ricci curvature of real hypersurfaces M2n−1 in CHn(c)
(see [2]). Now we denote by Ric the maximal Ricci curvature function on M2n−1, namely

Ric(p) = Max{S(X,X) : X ∈ TpM
2n−1, ∥X∥ = 1}, p ∈ M2n−1,

where S is the Ricci tensor of M2n−1. In [2], he showed that every real hypersurface in
CHn(c) satisfies the following inequality:

(5.3) Ric ≦ 1

4
(TraceA)2 +

c

2
(n− 1).

In particular, we can characterize real hypersurfaces which satisfy the equality case of (5.3).

Proposition 3. Let M2n−1 be a real hypersurface in CHn(c) (n ≧ 2). Then the following
three conditions are mutually equivalent:

(1) M2n−1 satisfies the condition (div ϕ)X = η(AX) for any tangent vector field X on
M2n−1;

(2) M2n−1 satisfies the condition Ric = (1/4)(TraceA)2 + (c/2)(n− 1);

(3) M2n−1 is locally congruent to a Hopf hypersurface with constant mean curvature is
given 2α/(2n− 1).

Proof. (2) ⇔ (3). See [2].
(1) ⇔ (3). We can prove it by using the same discussion of Theorem 1.
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