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Abstract. The aim of the present paper is devoted to discussing some more properties
of β-irresolute mappings, contra β-irresolute mappings and two weak homeomorphisms
such as βc-homeomorphisms and contra βc-homeomorphisms. Further, we investigate
some new groups related to the mappings above and some examples of them on the
digital plane and we construct the concept of β(2)-open sets of the digital plane.

1 Introduction and preliminaries Abd El Monsef el al. [1] and Andrijević [3] intro-
duced independently the concept of β-open sets [1] and semi-preopen sets [3], respectively.
Let (X, τ) be a topological space and A a subset of X. The closure of A and the interior of
A are denoted by Cl(A) and Int(A), respectively.

Definition 1.1 A subset A of a topological space (X, τ) is called a β-open set [1] (or semi-
preopen set [3]) if A ⊆ Cl(Int(Cl(A))) holds in (X, τ). The complement of a β-open (or
semi-preopen) set is called β-closed (or semi-preclosed).

Throughout the present paper, we use the terminology due to [1] for the naming of the above
set, that is, β-open sets, β-closed sets. The β-closure of a subset E of a topological space
(X, τ) is defined by βCl(E) :=

∩
{F : E ⊆ F, F is β-closed in (X, τ)} and it is the smallest

β-closed set containing E. And βCl(A) = A holds if and only if A is β-closed in (X, τ). We
recall some importance properties of β-open sets in Section 4 (Theorem 4.1).

In the present paper, we use the following notation and other notation (cf. Notation 3.3,
Notation 5.5, Definition 5.12, Remark 5.13, Proposition 5.16(i), Propositon 5.18(i)).

Definition 1.2 Let (X, τ) be a topological space.
βO(X, τ) = SPO(X, τ) := {B : B is β-open in (X, τ)} (cf. [1, Defintion 1.1], [3]),
βC(X, τ) = SPC(X, τ) := {F : F is β-closed in (X, τ), i.e. Int(Cl(Int(F ))) ⊆ F} [1], [3],
SO(X, τ) := {G : G is semi-open in (X, τ), i.e. G ⊆ Cl(Int(G))} [26],
SC(X, τ) := {F : F is semi-closed in (X, τ), i.e. Int(Cl(F )) ⊆ F} [8].

One of the purposes of this paper is to investigate some group structures of the new
families of mappings, i.e., G(X,X \H; τ) := con-βch(X,X \H; τ) ∪ βch(X,X \H; τ) and
G0(X,X \ H; τ):=con-βch0(X,X \ H; τ) ∪ βch0(X,X \ H; τ), where H ⊂ X with H 6= ∅
(cf. Notation 3.3, Theorems 3.5,3.6 and Theorem 4.7). If we assume X = H (resp. con-
βch(X,X \ H; τ) = ∅) in Theorem 3.5(i), then we have the property [4, Theorem 4.4(i)]
due to S.C. Arora et al. (resp. [40, Theorem 2.2] due to Sanjay Tahiliani). And, if con-
βch(X,X \ H; τ) = ∅ = con-βch0(X,X \ H; τ) are assumed in Theorem 4.7(i), then the
properties [40, Theorem 2.7(ii)] etc are obtained.
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In the last Section 5, a characterization (cf. Corollary 5.8) of β-open sets of the dig-
ital plane (Z2, κ2) will be studied and we prove that (∗) con-βch(Z2;κ2) = ∅ (cf. Corol-
lary 5.11(ii)′) and so G(Z2;κ2) = βch(Z2;κ2) (cf. Corollary 5.11(iii)′). Therefore, we de-
fine and construct the new concept, say β(2)-open sets in a set H, where H ⊆ Z2 with
|H| ≥ 2 (cf. Definition 5.15). And, using such β(2)-open sets, we construct new groups,
say β(2)ch(H;κ2|H) ∪ con-β(2)ch(H;κ2|H) and p.β(2)ch(H;κ2|H) ∪ con-p.β(2)ch(H;κ2|H)
etc (cf. Definition 5.21, Theorem 5.25). As examples, it is obtained that some motions, say
ρ45 and (ρ45)

−1, are elements of con-p.β(2)ch(U ;κ2|U) and so con-p.β(2)ch(U ;κ2|U) 6= ∅,
where U is the smallest open set containing the origin (0, 0) in (Z2, κ2) (cf. (∗) above and
Notation 5.26, Example 5.27; Definition 5.20, Definition 5.21).

2 Contra-β-irresolute mappings and β-irresolute mappings. Let (X, τ), (Y, σ)
and (Z, η) be topological spaces.

Definition 2.1 A mapping f : (X, τ)→ (Y, σ) is said to be
(i) β-continuous [1] if f−1(V ) is a β-closed set of (X, τ) for each closed set V of (Y, σ),
(ii) perfectly continuous [37] if f−1(V ) is clopen in (X, τ) for each open set V of (Y, σ),
(iii) contra-continuous [13] if f−1(V ) is closed in (X, τ) for each open set V of (Y, σ),
(iv) contra-β-continuous ([7], [18]) if f−1(V ) ∈ βC(X, τ) for each open set V of (Y, σ),
(v) strongly contra-β-continuous if f is a contra-β-continuous mapping such that the

inverse image of such nonempty open set of (Y, σ) has an interior point,
(vi) B-continuous [43] if f−1(V ) is a B-set of (X, τ) for each nonempty open set V of

(Y, σ), where the B-set is the intersection of an open set and a semi-closed set of (X, τ) (this
is defined by [43]),

(vii) B∗-continuous [12] (cf. (vi)) if f−1(V ) contains a nonempty B-set of (X, τ) for each
nonempty open set V of (Y, σ),

(viii) strongly β-closed [17] if f(G) is β-closed in (Y, σ) for each β-closed set G of (X, τ).

Definition 2.2 A mapping f : (X, τ)→ (Y, σ) is said to be
(i) irresolute [8, Definition 1.1] if f−1(U) ∈ SO(X, τ) for every set U ∈ SO(Y, σ),
(ii) β-irresolute [36] if f−1(U) ∈ βO(X, τ) for every set U ∈ βO(Y, σ),
(iii) contra-β-irresolute [5] if f−1(U) ∈ βC(X, τ) for every set U ∈ βO(Y, σ) (cf. Re-

mark 2.9(ii)),
(iv) perfectly contra-β-irresolute if f−1(V ) is β-clopen in (X, τ) for each set V ∈ βO(Y, σ),
(v) contra-irresolute [5] if f−1(U) ∈ SC(X, τ) for every set U ∈ SO(Y, σ),
(vi) perfectly contra-irresolute [5] if f−1(U) is semi-open and semi-closed in (X, τ) for

each set U ∈ SO(Y, σ).

Theorem 2.3 A mapping f : (X, τ) → (Y, σ) is B∗-continuous if one of the following
conditions (1) and (2) is satisfied,

(1) f is a strongly contra-β-continuous mapping (cf. Definition 2.1(v)).
(2) f is an onto and B-continuous mapping (cf. Definition 2.1(vi)).

Proof. Let V be a nonempty open set of (Y, σ). Under the case of the assumption (1),
we have that f−1(V ) ∈ βC(X, τ) and Int(f−1(V )) 6= ∅, and so ∅ 6= Int(f−1(V )) = X ∩
Int(f−1(V )) ⊆ f−1(V ). Hence f−1(V ) contains a nonempty B-open set U , say U :=
X ∩ Int(f−1(V )). Indeed, X ∈ SC(X, τ), Int(f−1(V )) ∈ τ and U 6= ∅. Thus, f is B∗-
continuous, under the assumption (1). Under the case of the assumption (2), we have
that ∅ 6= f−1(V ) and f−1(V ) is a B-set. And so f−1(V ) contains a nonempty B-set f−1(V ).
Thus, f is B∗-continuous, under the assumption (2). �

Remark 2.4 The following diagram shows implications among several mappings defined
above, where p→ q (resp. p = q) means that p implies q (resp. p and q are independent). The
implications are not reversible and the independence is explained (cf. Remark 2.5 below).
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contra-continuity

↙ ↘
contra-β-continuity 6↔ B-continuity onto and B-continuity

↑ ↓
strongly contra-β-continuity −→ B∗-continuity

Remark 2.5 (i) Let (R, E) be the real line with the Euclidean topology E. The mappings
f, 1R : (R, E)→ (R, E) of (i-1) below are seen in [14].
(i-1) Let f : (R, E)→ (R, E) be a mapping defined by f(x) = [x], where [x] is the Gaussian
symbol. Then f is contra-β-continuous (cf. Definition 2.1(iv)). However, f is not contra-
continuous, because for an open interval (12 ,

3
2 ), f

−1((12 ,
3
2 )) = [1, 2) is not closed in (R, E).

(i-2) The identity mapping 1R : (R, E)→ (R, E) is B-continuous (cf. Definition 2.1(vi)) but
not contra-β-continuous, since the inverse image of each singleton is not β-open. Moreover,
1R is not contra-continuous.

(ii) The mapping f : (X, τ)→ (X, τ) is contra-β-continuous, but f is not B-continuous.
Let X = {a, b, c} and τ = {X, ∅, {a, b}}. Then we have βC(X, τ) = {∅, {a}, {b}, {c}, {b, c},-
{a, c}, X} and SC(X, τ) = {∅, {c}, X}. We define the mapping f : (X, τ) → (Y, σ) by
f(a) = a, f(b) = c and f(c) = b.

(iii) The converse of Theorem 2.3 under the assumption (1) is not reversible. Let X =
{a, b, c} and τ = {X, ∅, {a}, {b}, {a, b}}. Let f : (X, τ) → (X, τ) be a mapping defined by
f(a) = b, f(b) = c and f(c) = a. Then since βC(X, τ) = SC(X, τ) = P (X)\{{a, b}}, we
show f is B-continuous and onto. By Theorem 2.3 under the assumption (2), it is obtained
that f is B∗-continuous. This mapping f is contra-β-continuous, but Int(f−1({a})) =
Int({c}) = φ hold. And so f is not strongly contra-β-continuous.

(iv) The converse of Theorem 2.3 under the assumption (2) is not reversible. The map-
ping f : (X, τ) → (X, τ) defined in (ii) above is not B-continuous (cf. (ii)). But f is
B∗-continuous, because {c} and X are the nonempty B-sets.

(v) The contra-β-continuous mapping f : (X, τ) → (X, τ) of (ii) above is not strongly
contra-β-continuous (cf. Definition 2.1(v), because Int(f−1({a, b})) = ∅.

Remark 2.6 (i) Let X = Y = {a, b} and τ = {X, ∅, {a}} and σ = {Y, ∅, {b}}. Then
the identity mapping 1X : (X, τ) → (Y, σ) is a contra-β-continuous mapping but not β-
continuous.

(ii) The identity mapping 1R : (R, E)→ (R, E) of Remark 2.5(i)(i-2) is β-continuous but
not contra-β-continuous.

Remark 2.7 The following properties are well known.

(i) If f : (X, τ) → (Y, σ) is contra-β-irresolute and g : (Y, σ) → (Z, η) is β-continuous,
then the composition g ◦ f : (X, τ)→ (Z, η) is contra-β-continuous (cf. [7, Theorem 2.18]).

(ii) ([4, Theorem 2.3(iv)]) Every homeomorphism is β-irresolute.

Remark 2.8 (i) By the following examples (i-1) and (i-2), it is shown that the contra-
β-irresoluteness and β-irresoluteness are independent. Let X = {a, b, c} and τ = {X, ∅, -
{a}, {a, b}}. Then

(i-1) The identity mapping on (X, τ) above is β-irresolute but not contra-β-irresolute.

(i-2) Let f : (X, τ)→ (X, τ) be a mapping defined by: f(a) = b = f(b), f(c) = a. Then
f is contra-β-irresolute but not β-irresolute.

(ii) In general, for any topological space (X, τ), the identity mapping 1X : (X, τ)→ (X, τ)
is contra-β-irresolute if and only if βO(X, τ) = βC(X, τ) holds. And, 1X on any topological
space (X, τ) is β-irresolute.
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Remark 2.9 (i) Every contra-β-irresolute mapping is contra-β-continuous, but it is shown
that its converse is not true, by the following example. Let X = {a, b, c} and τ = {X, ∅, -
{a}, {b}, {a, b}}. Let f : (X, τ) → (X, τ) be a mapping defined by f(a) = c, f(b) = a ,
f(c) = b. One can deduce that f is contra-β-continuous, but it is not contra-β-irresolute.

(ii) For a mapping f : (X, τ)→ (Y, σ), f is contra-β-irresolute if and only if the inverse
image f−1(F ) of each β-closed set F of (Y, σ) is β-open in (X, τ).

(iii) For a mapping f : (X, τ)→ (Y, σ), f is β-irresolute if and only if the inverse image
f−1(F ) of each β-closed set F of (Y, σ) is β-closed in (X, τ).

Remark 2.10 (i) The following diagram of implications is well known.
Contra-irresolute ← Perfectly contra-irresolute → Irresolute.

We have also the following diagram of implications.
Contra-β-irresolute ← Perfectly contra-β-irresolute → β-irresolute;

and they are not reversible (cf. Remark 2.8(i) above and Remark 2.11 below).
(ii) In the implications above, the irresoluteness (resp. contra-irresoluteness, perfectly

contra-irresoluteness) and the β-irresoluteness (resp. contra-β-irresoluteness, perfectly contra-
β-irresoluteness) are independent (cf. (a), (b), (c) below).

Let X = {a, b, c}. We consider the topologies on X: τ = {X, ∅, {a}, {b}, {a, b}},
τ1 = {X, ∅, {a}, {a, b}}, τ2 = {X, ∅, {c}, {a, b}} and τ3 = {X, ∅}. We have the following:
SO(X, τ) = βO(X, τ) = P (X) \ {{c}}, SO(X, τ1) = βO(X, τ1) = {∅, {a}, {a, b}, {a, c}, X},
SO(X, τ2) = τ2, βO(X, τ2) = P (X), SO(X, τ3) = {∅, X}, βO(X, τ3) = P (X).

(a)(a-1) Define a mapping f : (X, τ) → (X, τ2) as follows: f(a) = a, f(b) = c and
f(c) = b. Then f is irresolute; f is not β-irresolute.

(a-2) Let f : (X, τ3) → (X, τ) be the identity mapping. Then f is β-irresolute; f is not
irresolute.

(b)(b-1) Let f : (X, τ2)→ (X, τ1) be the identity mapping. Then f is contra-β-irresolute,
f is not contra-irresolute.

(b-2) Define a mapping f : (X, τ1) → (X, τ2) as follows: f(a) = a, f(b) = a , f(c) = b.
Then f is contra-irresolute, f is not contra-β-irresolute.

(c)(c-1) Let f : (X, τ3) → (X, τ2) be the identity mapping. Then f is perfectly contra
β-irresolute, f is not perfectly contra-irresolute.

(c-2) Define a mapping f : (X, τ) → (X, τ2) as follows: f(a) = c, f(b) = a , f(c) = b.
Then f is perfectly contra-irresolute, f is not perfectly contra-β-irresolute.

Remark 2.11 We have a decomposition of perfectly contra-β-irresolute mappings. The
following conditions (1) and (2) are equivalent: (1) f : (X, τ) → (Y, σ) is perfectly contra-
β-irresolute; (2) f : (X, τ)→ (Y, σ) is contra-β-irresolute and β-irresolute.

3 Groups G(X,X \H; τ) and G0(X,X \H; τ). Main purposes of the present Section 3
are to prove Theorems 3.5 and Theorem 3.6 (cf. Notation 3.3).

Definition 3.1 Let (X, τ) and (Y, σ) be topological spaces.
(i) A mapping f : (X, τ)→ (Y, σ) is said to be
(i-1) a βc-homeomorphism ([4, Definition 3.1(ii)]) if f is a β-irresolute bijection and f−1

is β-irresolute,
(i-2) a contra-βc-homeomorphism if f is a contra-β-irresolute ([6], [4, Definition 4.1])

bijection and f−1 is contra-β-irresolute (cf. Definition 2.2(iii)).
(ii) (ii-1) βch(X; τ) := {f | f : (X, τ)→ (X; τ) is a βc-homeomorphism} ([4, notation (3)

after Definiton 3.1],
(ii-2) con-βch(X; τ):={f | f : (X, τ) → (X, τ) is a contra-βc-homeomorphism} ([4, Defi-

nition 4.3(1)]).
(iii) h(X; τ) := {f | f : (X, τ)→ (X, τ) is a homeomorphism} (e.g., [4, notation (3) after

Definiton 3.1]).
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(iv) ([40, Definition 2.1]) Let H be a nonempty subset of X.
(iv-1) βch(X,X \H; τ) := {a| a ∈ βch(X; τ) and a(X \H) = X \H}.
(iv-1)′ con-βch(X,X \ H; τ) := {a| a ∈ con-βch(X; τ) and a(X \ H) = X \ H} (cf.

(ii)(ii-2)).
(iv-2) βch0(X,X \ H; τ):={a| a ∈ βch(X,X \ H; τ) and a(x) = x for every point x ∈

X \H}.
(iv-2)′ con-βch0(X,X \ H; τ) := {a| a ∈ con-βch(X,X \ H; τ) and a(x) = x for every

point x ∈ X \H}, where H 6= X (cf. (ii)(ii-2) above).

Remark 3.2 (i) In 2010, N. Arora et al. [4, Theorem 4.4(i)] proved that βch(X; τ) ∪ con-
βch(X; τ) forms a group under the composition of mappings.

(ii) In 2019, Sanjay Tahiliani [40, Theorem 2.2] proved that βch(X,X \ H; τ) and
βch0(X,X \ H; τ) form groups under the composition of mappings, where H is a subset
of X, and Sanjay Tahiliani proved important propertes [40, Theorem 2.7].

Notation 3.3 Let (X, τ) be a topological space and H ⊆ X with H 6= ∅.
(i) G(X; τ) := βch(X; τ) ∪ con-βch(X; τ).
(ii) G(X,X \H; τ) := con-βch(X,X \H; τ) ∪ βch(X,X \H; τ).
(ii)′ G0(X,X \H; τ) := con-βch0(X,X \H; τ) ∪ βch0(X,X \H; τ).

Remark 3.4 Let us consider especially the case where that H = X in Notation 3.3(ii)
above. Then, we have that G(X,X \X; τ) = G(X; τ) holds. (cf. Definition 3.1(ii),(iv)).

Theorem 3.5 Let H be a nonempty subset of (X, τ) and G(X,X \H; τ), G0(X,X \H; τ)
and G(X; τ) be the families defined in Notation 3.3 above, respectively. Then,

(i) G(X,X \H; τ) forms a group under the composition of mappings.
(i)′G0(X,X \H; τ) forms a subgroup of G(X,X \H; τ), where H 6= X.
(ii) The group βch0(X,X \H; τ) forms a subgroup of G0(X,X \H; τ), where H 6= X.
(iii) The groups G(X,X \ H; τ) and G0(X,X \ H; τ) (where H 6= X) are subgroups of

G(X; τ) (cf. Notation 3.3, [4, Theorem 4.4(i)]).

Proof. Throghout the present proofs of (i),(i)′ and (ii), let us denote: G := G(X,X \H; τ)
and G0 := G0(X,X \ H; τ). (i) A binary operation w : G × G → G is well defined by
w(a, b) := b ◦ a, where b ◦ a is the composite function of the functions a and b. Indeed, it is
shown by the following four cases.
Case 1 (resp. Case 1′) a (resp. b) ∈ βch(X,X \H; τ) and b (resp. a) ∈ con-βch(X,X \
H; τ). For the present case, b ◦ a : (X, τ) → (X, τ) is a contra-β-irresolute bijection such
that (b◦a)−1 is also contra-β-irresolute and (b◦a)(X \H) = X \H (cf. [4, Lemma 4.2(i-2)]).
And so, w(a, b) ∈ con-βch(X,X \H) ⊆ G.
Case 2 (resp. Case 3) a, b ∈ con-βch(X,X\H; τ) (resp. βch(X,X\H; τ)). For the present
case, b ◦ a : (X, τ)→ (X, τ) is a β-irresolute bijection such that (b ◦ a)−1 is also β-irresolute
and (b ◦ a)(X \H)=X \H (cf. [4, Lemma 4.2(i-1)]). And so, w(a, b) ∈ βch(X,X \H) ⊆ G.

Thus, the binary operation w : G × G → G is well defined. For all elements a, b, c ∈
G, w(w(a, b), c) = w(a,w(b, c)) holds. The identity element e ∈ G is well defined by the
identity mapping 1X : (X, τ)→ (X, τ), i.e., e := 1X ∈ G; and so w(e, a) = a = w(a, e) hold
for all element a ∈ G. The inverse element of an element a ∈ G is well defined by the inverse
mapping a−1 of a : (X, τ) → (X, τ) and so w(a, a−1) = e = w(a−1, a) hold for all element
a ∈ G. And hence (G, w) forms a group under the composition of mappings, i.e., G is a
group. (i)′ Since 1X ∈ βch0(X,H; τ), we have the following: G0 6= ∅. For any element
a, b ∈ G0 and the binary operation w : G × G → G, it is seen that w(a, b−1) = b−1 ◦ a ∈ G
and (b−1 ◦ a)(x) = b−1(x) = x for every point x ∈ X \H; and so w(a, b−1) ∈ G0. (ii) By
(i)′, the subgroup G0 has the binary operation w|G0. Let a, b ∈ βch0(X,X \ H; τ). Then,
1X ∈ βch0(X,X \H; τ) 6= ∅ and (w|G0)(a, b−1) = b−1 ◦ a ∈ βch0(X,X \H; τ) ⊆ G0; and so
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βch0(X,X \H; τ) is a subgroup of G0. (iii) The group G(X; τ) (cf. Notation 3.3(i)) forms
a group under the compositon of mappings ([4, Theorem 4.4(i)]). And, G forms a group by
the composition of mappings (cf. (i)) such that G ⊆ G(X; τ) (cf. Notation 3.3). Thus, G is
a subgroup of G(X, τ). And using (i)′, G0 is a subgroup of G(X, τ). �

Theorem 3.6 (i) If f : (X, τ)→ (Y, σ) is a contra-βc-homeomorphism (cf. Definition 3.1(i)(i-
2)), then f induces also an isomorphism f∗ : G(X,X \H; τ)→ G(Y, Y \ f(H);σ), where f∗
is defined by f∗(a) := f ◦ a ◦ f−1.

(ii) If f : (X, τ)→ (Y, σ) is a βc-homeomorphism (cf. Definition 3.1(i)), then f induces
an isomorphism f∗ : G(X,X \H; τ)→ G(Y, Y \ f(H);σ), where f∗ is defined in (i) above.

(iii) Suppose one of the following properties (a), (b) below on mappings f : (X, τ)→ (Y, σ)
and g : (Y, σ) → (Z, η): (a) f and g are contra-βc-homeomorphisms, (b) f and g are βc-
homeomorphisms.
Then, (g ◦ f)∗ = g∗ ◦ f∗ : G(X,X \ H; τ) → G(Z,Z \ g(f(H); η)) holds and (1X)∗ = 1 :
G(X,X \H; τ) → G(X,X \H; τ) is the identity isomorphism, where 1X : (X, τ) → (X, τ)
on the identity and 1 is the identity on G(X,X \H).

Proof. (i) Under the assumption that f is a contra-βc-homeomorphism, it is proved that
f∗ is an isomorphism between the groups. Indeed, we have the following properties: (1)
mapping f∗ : G(X,X \H; τ)→ G(Y, Y \f(H);σ) is well defined; (2) f∗ is a homomorphism;
(3) f∗ is a bijection. Proof of (1) Let a ∈ G(X,X \ H; τ). We first have the following:
f∗(a)(Y \ f(H)) = Y \ f(H) holds. And, we consider the following two cases.
Case 1 a ∈ βch(X,X \ H; τ) (resp. Case 2 a ∈ con-βch(X,X \ H; τ)). Let B ∈
βO(Y, σ). Then, for the Case 1 (resp. Case 2), we have the following: (f∗(a))

−1(B) =
f(a−1(f−1(B))) ∈ βO(Y ;σ) (resp. βC(Y, σ)) and so f∗(a) : (Y, σ) → (Y, σ) is β-irresolute
(resp. contra-β-irresolute) bijection. Moreover, we have the following: f∗(a)(B) ∈ βO(Y, σ)
(resp. βC(Y, σ)). Then, (f∗(a))

−1 : (Y, σ)→ (Y, σ) is β-irresolute (resp. contra-β-irresolute).
Thus, for the Case 1 (resp. Case 2), we prove that f∗(a) : (Y, σ) → (Y, σ) is a βc-
homeomorhism (resp. contra-βc-homeomorphism) such that f∗(a)(Y \ f(H)) = Y \ f(H).
Namely, using Notation 3.3, we have that f∗(a) ∈ G(Y, Y \ f(H);σ).
Proof of (2) Let a and b be elements of G(X,X \ H; τ). Then, we have the following:
f∗(wX(a, b)) = (f ◦ b ◦ f−1) ◦ (f ◦ a ◦ f−1) = wY (f∗(a), f∗(b)).
Proof of (3) Let a, b ∈ G(X,X \H; τ) such that f∗(a) = f∗(b). Then, f ◦a◦f−1 = f ◦b◦f−1

and so a = b. Let d ∈ G(Y, Y \ f(H);σ). Then, it is proved that f−1 ◦d◦ f ∈ G(X,X \H; τ)
and f∗(f

−1 ◦ d ◦ f) = d. (ii) Under the assumption that f is a βc-homeomorphism, it is
proved similarly that of (i) that f∗ is isomorphism between the groups. (iii) By definitions
and (i) (resp. (ii)), the present properties are shown. �

Corollary 3.7 (i) (resp. (ii)) If f : (X, τ) → (Y, σ) is a contra-βc-homeomorphism (resp.
βc-homeomorphism), then f induces an isomorphism f∗ : G(X; τ) → G(Y ;σ), where f∗ is
defined by f∗(a) := f ◦ a ◦ f−1 for any a ∈ G(X; τ).

(iii) Suppose one of the following properties (a), (b) below on mappings f : (X, τ)→ (Y, σ)
and g : (Y, σ) → (Z, η), (a) f and g are contra-βc-homeomorphisms, (b) f and g are βc-
homeomorphisms.
Then, we have the following properties (1), (2) and (3) on f∗, g∗.
(1) (g ◦f)∗ = g∗ ◦f∗ : G(X; τ)→ G(Z; η). (2) (1X)∗ = 1 : G(X; τ)→ G(X; τ) is the identity
isomorphism, where 1X : (X, τ)→ (X, τ) is the identity.
(3) (3-1) f∗(con-βch(X; τ)) = con-βch(Y ;σ) holds. (3-2) f∗(βch(X; τ))=βch(Y ;σ) holds.
(3-3) f∗(h(X; τ)) ⊆ βc-h(Y ;σ) holds (cf. Definition 3.1(iii)).

(iv) (cf. [4, Theorem 4.5(i)]) Especially, if f : (X, τ)→ (Y, σ) and g : (Y, σ)→ (Z, η) are
homeomorphisms, then the induced mappings f∗ : G(X; τ) → G(Y ;σ) and g∗ : G(Y ;σ) →
G(Z; η) are isomorphisms (cf. (i)). Moreover, they have the same property of (1), (2) and
(3)(3-1)(3-2) in (iii). We note that, in (3)(3-3), f∗(h(X; τ)) = h(Y ;σ) holds.
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Proof. (i), (ii), (iii)(1)(2) are obtained respectively, by setting that H = X in Theorem 3.6
above (cf. Remark 3.4). (iii)(3) Proof of (3-1) (resp. (3-2)) By setting the case where
H = X in the proof of Theorem 3.6(i) (resp. (ii)), it is obtained that f∗(con-βch(X; τ)) ⊆
con-βch(Y ;σ) (resp. f∗(βch(X; τ)) ⊆ βch(Y ;σ) ) holds, under the assumption (a) (resp.
(b)) on f . Conversely, for each element d ∈ con-βch(Y, σ) (resp. βch(Y ;σ)), we take a
mapping f−1 ◦ d ◦ f : (X, τ) → (X, τ). Then, it is shown that f−1 ◦ d ◦ f ∈ con-βch(X; τ)
(resp. βch(X; τ)) and f∗(f

−1 ◦ d ◦ f) = d and so d ∈ f∗(con-βch(X; τ)) (resp. βch(X; τ)).
Proof of (3-3) By [4, Theorems 3.2(iii), 3.3(vi)], it is well known that h(X; τ) ⊆ βch(X, τ);
and so f∗(h(X; τ)) ⊆ f∗(βch(X; τ)) = βch(Y ;σ) (cf. (3)(3-1) above).

(iv) Since any homeomorphism is a βc-homeomorhism ([4, Theorems 3.2(iii), 3.3(vi)]),
then by (ii) it is shown that f∗ and g∗ are isomorphisms. By (1),(2) of (iii), the same
properties (1), (2) and (3)(3-1)(3-2) are obtained;the present property (3-3) is well known.
�

Corollary 3.8 (cf. Notation 3.3, Corollary 3.7(i)(ii) ) (i) If G(X; τ) � G(Y ;σ), then
(i-1) there does not exist any contra-βc-homeomorphism between two topological spaces

(X, τ) and (Y, σ), and (i-2) there is not any βc-homeomorphism between (X, τ) and (Y, σ),
and hence (i-3) (X, τ) � (Y, σ) (i.e., (X, τ) is not homeomorphic to (Y, σ)).

(ii) If βch(X; τ) � βch(Y ;σ), then there does not exist any βc-homeomorphism between
(X, τ) and (Y, σ). �

Example 3.9 Let (X, τ), (Y, σ), (Y (1), σ1) and (Y (2), σ2) be four topological spaces, where
X = Y = Y (1) = Y (2) := {a, b, c}, τ := {∅, {a}, {b, c}, X} , σ := {∅, {a}, {b}, {a, b}, Y },
σ1 := {∅, {a}, {b}, {a, b}, {a, c}, Y (1)} and σ2 := {∅, {a}, Y (2)}. And, let hx : X → X be
a bijection such that hx(x) = x and hx 6= 1X for a given point x ∈ X. Then we have the
following properties.

(i) G(X; τ) � G(Y ;σ) (cf. Corollary 3.8(i) above). Indeed, it is shown that βO(X, τ) =
P (X) = βC(X, τ) hold and so βch(X; τ) = con-βch(X; τ) ∼= S3(=the symmetric group of
degree 3) and hence G(X; τ) ∼= S3. And, it is shown that βO(Y, σ) = P (Y ) \ {{c}} and
βC(Y, σ) = P (Y ) \ {{a, b}} hold; and so con-βch(Y ;σ) = ∅ and G(Y ;σ) = βch(Y ;σ) =
{1Y , hc}.

(ii) G(X; τ) � G(Y (1);σ1). Indeed, it is shown that βO(Y (1), σ1) = σ1 and βch(Y (1);σ1)
={1Y (1)} and con-βch(Y (1);σ1) = {hb}; and so G(Y (1);σ1) = {1Y (1), hb} � S3 (cf. (i)
above).

(iii) G(Y (1);σ1) ∼= G(Y (2);σ2) and βch(Y (1);σ1) � βch(Y (2);σ2). Indeed, it is shown
that βO(Y (2), σ2) = {∅, {a}, {a, b}, {a, c}, Y (2)} and βch(Y (2);σ2) = {1Y (2), ha}, con-
βch(Y (2);σ2) = ∅.

4 Groups G(X,X \ H; τ)/Ker((rH)∗)), G0(X,X \ H; τ)/Ker((rH)∗) and G(H; τ |H).
The purpose of the present section is to prove Theorem 4.7. We first recall the concept of
α-open sets et al. due to [35], i.e., (∗) a subset H of a topological space (X, τ) is said to be
α-open in (X, τ) if H ⊆ Int(Cl(Int(H))) holds in (X, τ) and the compliment of an α-open
set is called α-closed. The family of all α-open sets (resp. α-closed sets) of (X, τ) is denoted
by αO(X, τ) (resp. αC(X, τ)).
And we recall some importante properties on β-open sets as follows.

Theorem 4.1 (i)([1], e.g., [32, Lemma 3.3(b)],[19, Lemma 4.1(2)]) Let A ⊆ H ⊆ X. If
A ∈ βO(H, τ |H) and H ∈ βO(X, τ), then A ∈ βO(X, τ).

(ii)([1, Lemma 2.5 and its Proof], e.g. [32, Lemma 3.2(b)], [19, Lemma 4.1(1)]) Let
H ⊆ X and A1 ⊆ X. If H ∈ αO(X, τ) and A1 ∈ βO(X, τ), then A1 ∩H ∈ βO(H, τ |H).

(ii)′ (cf. (ii),(i) above, [2, Corollary 2.14(a)]) Let H ⊆ X and A1 ⊆ X. If H ∈ αO(X, τ)
and A1 ∈ βO(X, τ), then A1 ∩H ∈ βO(X, τ).

(iii)([1, Remark 1.1]) Arbitrary union of β-open sets of (X, τ) is β-open in (X, τ).
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(iv)([19, Lemma 4.3(2)]) If A ⊆ H ⊆ X and H ∈ αO(X, τ), then βCl(A) ∩ H =
βClH(A), where βClH(A) denotes the β-closure of A in the subspace (H, τ |H).

(iv-1) Let F ⊆ H ⊆ X. If H ∈ αO(X, τ) and F ∈ βC(X, τ), then F ∈ βC(H, τ |H) (i.e.,
βHCl(F ) = F holds).

(iv-2) Let F1 and H be subsets of X. If H ∈ αO(X, τ) and F1 ∈ βC(X, τ), then
F1 ∩H ∈ βC(H, τ |H) (i.e., βHCl(F1 ∩H) = F1 ∩H holds).

(iv-3) Let F ⊆ H ⊆ X. If H ∈ αO(X, τ) ∩ βC(X, τ) and F ∈ βC(H, τ |H), then
F ∈ βC(X, τ).

Proof. (iv-1) (resp. (iv-2)) By the assumptions and (iv), it is shown that βHCl(F ) = F
(resp. βHCl(F1 ∩H) = βCl(F1 ∩H)∩H ⊆ βCl(F1)∩H = F1 ∩H and so βHCl(F1 ∩H) =
F1 ∩H). Therefore, we have the following: F ∈ βC(H, τ |H) (resp. F1 ∩H ∈ βC(H, τ |H) ).
(iv-3) By the assumptions, (iv) and (iii), it is shown that F = βHCl(F ) = H ∩βCl(F ) and
so H ∩ βCl(F ) ∈ βC(X, τ). �
Remark 4.2 It follows from the following example that one of assumptions of Theo-
rem 4.1(ii) above (i.e., H ∈ αO(X, τ)) is not removed. Let X := {a, b, c} and τ :=
{∅, {a}, {b}, {a, b}, X}. Then, a subset H := {b, c} 6∈ αO(X, τ) and H ∈ βO(X, τ). And,
for a set A1 := {a, c} ∈ βO(X, τ), A1 ∩ H = {c} 6∈ βO(H, τ |H). Indeed, we have that
βO(X, τ) = P (X)\{{c}}, βO(H, τ |H) = {∅, {b},H} and αO(X, τ) = τ hold and ClH(IntH -
(ClH(A1 ∩H))) = ClH(IntH({c})) = ∅ 6⊇ A1 ∩H.

Remark 4.3 (i) Let H and K be subsets of X and Y , respectively. For a mapping f :
X → Y satisfying K = f(H), we define the map rH,K(f) : H → K by (rH,K(f))(x) := f(x)
for every x ∈ H. Then, we have the following: jK ◦ (rH,K(f)) = f |H : H → Y , where
jK : K → Y is the inclusion defined by jK(y) := (1Y |K)(y) = y for every y ∈ K and
f |H : H → Y is the restriction of f to H defined by (f |H)(x) := f(x) for every x ∈ H.
Especially, if X = Y = H = K, then rH,H(f) = f holds.

(ii) Especially, we suppose that X = Y,H = K ⊆ X and a(H) = H, b(H) = H for
mappings a, b : X → X. Then, rH,H(b ◦ a) = (rH,H(b)) ◦ (rH,H(a)) holds.
Moreover, if a : X → X is a bijection such that a(H) = H, then rH,H(a) : H → H is
bijective and rH,H(a−1) = (rH,H(a))−1.

Theorem 4.4 (cf. [40, Lemma 2.8]) (i) Let H ∈ αO(X, τ). If f : (X, τ)→ (Y, σ) is contra-
β-irresolute (resp.β-irresolute ), then the restriction of f to H, say f |H : (H, τ |H)→ (Y, σ),
is contra-β-irresolute (resp.β-irresolute ).

(ii) Let k : (X, τ)→ (K,σ|K) be a mapping and jK : (K,σ|K)→ (Y, σ) be the inclusion,
where K ⊆ Y . If K is α-open in (Y, σ), then the following properties (1), (2) are equivalent:

(1) k : (X, τ)→ (K,σ|K) is contra-β-irresolute (resp. β-irresolute );
(2) jK ◦ k : (X, τ)→ (Y, σ) is contra-β-irresolute (resp. β-irresolute).
(iii) Suppose that f : (X, τ) → (Y, σ) is contra-β-irresolute (resp. β-irresolute), H ∈

αO(X, τ) and f(H) ∈ αO(Y, σ). Then, rH,f(H)(f) : (H, τ |H) → (f(H), σ|f(H)) is contra-
β-irresolute (resp.β-irresolute).

Proof. (i) Let A ∈ βO(Y, σ) (resp. βC(Y, σ)). Then, we have the following: f−1(A) ∈
βC(X, τ). By Theorem 4.1(iv-2), it is shown that (f |H)−1(A) = f−1(A)∩H ∈ βC(H, τ |H)
and so f |H : (H, τ |H)→ (Y, σ) is contra-β-irresolute (resp. β-irresolute).
(ii) (1)⇒(2) Let A1 ∈ βO(Y, σ). We have the followng: (∗1) j−1

K (A1) = K ∩ A1 ∈
βO(K,σ|K) (cf. Theorem 4.1(ii)). Then, using (∗1) above and assumption (1), we have
that (jK ◦ k)−1(A1) = k−1(j−1

K (A1)) ∈ βC(X, τ) (resp. βO(X, τ)). (2)⇒(1) Let B ∈
βO(K,σ|K). Then, we have that B ∈ βO(Y, σ) (cf. Theorem 4.1(i)). Then, using (2), we
show that k−1(B) = (jK ◦k)−1(B) ∈ βC(X, τ) (resp. βO(X, τ)). (iii) By assumption and
(i), it is obtained that f |H : (H, τ |H) → (Y, σ) is contra-β-irresolute (resp. β-irresolute).
Since f |H = jf(H) ◦ (rH,f(H)(f)) (cf. Remark 4.3(i)), by (ii) it is shown that the mapping
rH,f(H)(f) is contra-β-irresolute (resp. β-irresolute). �
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Theorem 4.5 (cf. [40, Definition 2.5, Theorem 2.7(i)]) Suppose that H ∈ αO(X, τ).
(i) If f ∈ con-βch(X,X\H; τ) (resp. βch(X,X\H; τ)), then rH,H(f) ∈ con-βch(H; τ |H)

(resp. βch(H; τ |H)).
(ii) The following mapping (rH)∗ : G(X,X \ H; τ) → G(H; τ |H) is well defined by

(rH)∗(f) := rH,H(f) for every f ∈ G(X,X \H; τ).
(iii) The following mapping (rH)∗,0 : G0(X,X \ H; τ) → G(H; τ |H) is well defined by

(rH)∗,0(f) := rH,H(f) for every f ∈ G0(X,X \H; τ).
(iv) (cf. [4, Theorem 4.4(i)]), Notation 3.3, Theorem 3.5(i),(i)′)

(iv-1) (rH)∗ : G(X,X \H; τ)→ G(H; τ |H) is a homomorphism of group.
(iv-2) (rH)∗,0 : G0(X,X \H; τ)→ G(H; τ |H) is a homomorphism of group.
(iv-3) (rH)∗|G0(X,X \H; τ) = (rH)∗,0.

Proof. (i) In Theorem 4.4(iii), let consider the case where Y = X and τ = σ. Since f ∈ con-
βch(X,X \H; τ) (resp. βch(X,X \H; τ)), we have the following property that both f and
f−1 are contra-β-irresolute (resp. β-irresolute) bijections from (X, τ) onto itself such that
f(X \H) = X \H = f−1(X \H) ) (cf. Definition 3.1), and so f(H) = H = f−1(H), f(H)
and f−1(H) are α-open in (X, τ). Then, by Theorem 4.4(iii), it is shown that rH,H(f) and
(rH,H(f))−1 = rH,H(f−1) : (H, τ |H)→ (H, τ |H) are contra-β-irresolure (resp. β-irresolute)
bijections (cf. Remark 4.3(ii)). Namely, we have the followng: rH,H(f) ∈ con-βch(H; τ |H)
(resp. βch(H; τ |H)). (ii) Let a ∈ G(X,X \ H). For the case where that a ∈ con-
βch(X,X \ H; τ) (resp. βch(X,X \ H; τ)), by using (i) it is shown that rH,H(a) ∈ con-
βch(H; τ |H) (resp. βch(H; τ |H)) and so rH,H(a) ∈ G(H; τ |H). Therefore, (rH)∗(a) :=
rH,H(a) ∈ G(H; τ |H) holds for any element a ∈ G(X,X \H; τ) and so (rH)∗ is well defined.

(iii) We recall that G0(X,X \H; τ) ⊆ G(X,X \H; τ). Then, by the definition of (rH)∗,0
and (ii), it is obtaned that (rH)∗,0(a) := rH,H(a) ∈ G(H; τ |H) for every a ∈ G0(X,X \H).

(iv) We denote G := G(X,X \ H; τ) and G0 := G0(X,X \ H; τ), throughout the
present proof of (iv). (iv-1) Let a, b ∈ G and w : G × G → G be the binary opera-
tion of the group G (cf. Proof of Theorem 3.5). Then, by definition, w(a, b) := b ◦ a for
a, b ∈ G and (rH)∗(w(a, b)) = rH,H(b ◦ a) = (rH,H(b)) ◦ (rH,H(a)) hold (cf. (ii) above, Re-
mark 4.3(ii)). Here, we recall that the group G(H; τ |H) := con-βch(H; τ |H) ∪ βch(H; τ |H)
has the binary operation wH : G(H; τ |H) × G(H; τ |H) → G(H; τ |H) defined by the com-
posite mapping: wH(f, g) := g ◦ f , where f, g ∈ G(H; τ |H) (cf. [4, Theorem 4.4(i)]). Thus,
we have the following: (rH)∗(w(a, b)) = (rH,H(b)) ◦ (rH,H(a)) = wH(rH,H(a), rH,H(b)) =
wH((rH)∗(a), (rH)∗)(b)) and hence (rH)∗ : G → G(H; τ |H) is a homomorphism of group.
(iv-2) Since G0 is a subgroup of G (cf. Theorem 3.5(i)′), by an argument similar to that of
(iv-1) it is shown that (rH)∗,0 : G0 → G(H; τ |H) is a homomorphism of group. (iv-3) For
an element a ∈ G0, we have the following: ((rH)∗|G0)(a) = (rH)∗(a) = rH,H(a), on the other
hand, (rH)∗,0(a) = rH,H(a) and hence (rH)∗|G0 = (rH)∗,0. �

Lemma 4.6 ([40, Lemma 2.6] for the case where β-irresoluteness ) Let (X, τ) and (Y, σ) be
topological spaces such that X = U1∪U2 with Uj 6= ∅ (j ∈ {1, 2}). Let f1 : (U1, τ |U1)→ (Y, σ)
and f2 : (U2, τ |U2)→ (Y, σ) be the two contra-β-irresolute (resp. β-irresolute) mappings with
f1(x) = f2(x) for every point x ∈ U1 ∩ U2. If U1 and U2 are α-open sets of (X, τ), then
its combination f1∇f2 : (X, τ) → (Y, σ) is contra-β-irresolute (resp. β-irresolute), where
(f1∇f2)(z) = fj(z) for every z ∈ Uj (j ∈ {1, 2}).

Proof. By using Theorem 4.1(i)(iii) and above definitions, this lemma is proved. �

Theorem 4.7 (cf. [40, Theorem 2.7 (ii),(iii)]) (i) Suppose that H ∈ αO(X, τ). Then, we
have the following isomorphisms of groups (cf. Theorem 4.5(ii),(iii),(iv)).
(i-1) G(X,X \H; τ)/Ker((rH)∗) ∼= Im((rH)∗).
(i-2) G0(X,X \H; τ) ∼= Im((rH)∗,0), where Ker((rH)∗) := {a ∈ G(X,X \H; τ)|(rH)∗(a) =
1H} is a normal subgroup of G(X,X \H; τ), and Im((rH)∗):={(rH)∗(a)|a ∈ G(X,X \H; τ)}
and Im((rH)∗,0):= {(rH)∗,0(b)|b ∈ G0(X,X \H; τ)} are subgroups of G(H; τ |H).
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(ii) Suppose that H ∈ αO(X, τ) ∩ αC(X, τ) (cf. Lemma 4.6, the top of the present
Section 4). Then, under the assumption above, we have the following properties on the
homomorphisms (rH)∗ and (rH)∗,0 (cf. Theorem 4.5).
(ii-1) If con-βch(X,X \H; τ) 6= ∅, then (rH)∗ : G(X,X \H; τ)→ G(H; τ |H) is onto.
(ii-2) If con-βch0(X,X \H; τ) 6= ∅, then (rH)∗,0 : G0(X,X \H; τ)→ G(H; τ |H) is onto.

(iii) Suppose that H ∈ αO(X, τ)∩ αC(X, τ). Then, we have the following isomorphisms
of groups.
(iii-1) If con-βch(X,X \H; τ) 6= ∅, then G(X,X \H; τ)/Ker((rH)∗) ∼= G(H; τ |H).
(iii-2) If con-βch0(X,X \H; τ) 6= ∅, then G0(X,X \H; τ) ∼= G(H; τ |H).

Proof. (i) Since H ∈ αO(X, τ), the mappings (rH)∗ and (rH)∗,0 are the well defined
homomorphisms of groups (cf. Theorem 4.5, Remark 4.3(i)). Then, by using the first iso-
morphism theorem of group theory, it is obtained that there are group isomorphisms below,
under the α-openness of H in (X, τ): (i-1) G(X,X \H; τ)/Ker((rH)∗) ∼= Im((rH)∗) and
(i-2)1 G0(X,X \ H; τ)/Ker((rH)∗,0) ∼= Im((rH)∗,0). In (i-2)1 above, it is shown that
(i-2)2 Ker((rH)∗,0) = {1X}. Indeed, let u0 ∈ Ker((rH)∗,0) ⊆ G0(X,X \ H; τ). Then,
(rH)∗,0(u0) = 1H holds,where 1H is the identity element of G(H; τ |H), by definitions (cf.
Theorem 4.5(iii),(ii) and Remark 4.3(i)), it is shown that, for any point x ∈ H, 1H(x) =
((rH)∗,0(u0))(x) = (rH,H(u0))(x) = u0(x) and so u0(x) = x holds for any point x ∈ H.
Moreover, for any point x ∈ X \ H,u0(x) = x holds, because of u0 ∈ G0(X,X \ H; τ) (cf.
Notation 3.3(ii)′, Definition 3.1(iv)) and hence we prove (i-2)2Ker((rH)∗,0) = {1X}. Thus,
by using (i-2)1 and (i-2)2 above, the isomorphism (i-2) is proved.

(ii) (ii-1) Let h ∈ G(H; τ |H). We find a mapping, say h1 ∈ G(X,X \ H; τ) such
that (rH)∗(h1) = h. Indeed, we consider the following two cases (because of G(H; τ |H) :=
βch(H; τ |H) ∪ con-βch(H; τ |H)).
Case 1 h ∈ con-βch(H; τ |H). For the present case, we select an element g belonging to con-
βch(X,X \H; τ) 6= ∅ by one of assumptions. By Theorem 4.4(i), it is obtained that g|(X \
H) : (X \H, τ |X \H)→ (X, τ) is a contra-β-irresolute mapping such that (g|(X \H))(X \
H)=X \ H. Then, since jH ◦ h : (H, τ |H) → (X, τ) is a contra-β-irresolute mapping (cf.
Theorem 4.4(ii)), by Lemma 4.6, it is shown that the combination, say h1 := (jH◦h)∇(g|(X\
H)) : (X, τ)→ (X, τ), is a contra-β-irresolute bijection. And, we have the followng:h1(X \
H) = X\H and h−1

1 = (jH ◦h−1)∇(g−1|g(X\H)). Using Theorem 4.4(ii) and (i) above, it is
shown that jH ◦h−1 : (H, τ |H)→ (X, τ) and g−1|g(X \H) : (X \H, τ |(X \H))→ (X, τ) are
contra-β-irresolute mappings; and so the mapping h−1

1 is contra-β-irresolute (cf. Lemma 4.6).
Thus, we proved that h1 ∈ con-βch(X,X \ H; τ) and (rH)∗(h1)=rH,H(h1)=rH,H((jH ◦
h)∇(g|(X \H)))= rH,H(jH ◦ h) = h (cf. Theorem 4.5(ii), Remark 4.3(i)). Namely, for the
present case, there exists an element h1 ∈ con-βch(X,X \H; τ) ⊆ G(X,X \H; τ) such that
(rH)∗(h1)= h.
Case 2 h ∈ βch(H; τ |H). For the present case, using [40, Theorem 2.7 (i)(i-2)]. there is
an element h′

1 ∈ βr-h(X,X \H; τ) ⊆ G(X,X \H; τ) such that (rH)∗(h
′
1)= h, where h′

1 :=
(jH ◦ h)∇(1X |(X \H)) : (X, τ) → (X, τ). Therefore, using Case 1 and Case 2, we prove
that (rH)∗ is onto.

(ii-2) Let h ∈ G(H; τ |H). We consider the following two cases.
Case 1 h ∈ con-βch(H; τ |H). For the present case, we select an element g0 ∈ con-
βch0(X,X \ H; τ) 6= ∅. By an argument similar to that in the proof of (ii)(ii-1) Case
1, it is proved that h2 := (jH ◦ h)∇(g0|(X \ H)) ∈ con-βch(X,X \ H) ⊆ G0(X,X \ H; τ)
and (rH)∗,0(h2) = h.
Case 2 h ∈ βch(H; τ |H). For the present case, using [40, Theorem 2.7 (i)(i-2)], there exists
an element h′

2 ∈ βch0(X,X \ H; τ) ⊆ G0(X,X \ H; τ) such that (rH)∗,0(h
′
2)= h, where

h′
2 := (jH ◦ h)∇(1X |(X \ H)). Therefore, (rH)∗,0 is onto. (iii) By (i) and (ii), the

isomorphisms (iii-1) and (iii-2) are obtained. �
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5 A characterization of β-open sets of the digital plane (Z2, κ2) and some new
groups on (Z2, κ2). In the present Section 5, we have the following four subsections (I),
(II), (III) and (IV).
(I) Introduction of some related notation. We recall the concept of the digital plane.

Definition 5.1 (E.D.Khalimsky, R.Koppermann,P.R.Meyer,T.Y.Kong, cf. [22, p.175,-
Definition 4], [20, p.905,p.908], [29, Section 2], [30, Example 4 in Section 2]).

(i) The digital line or the Khalimsky line (Z, κ) is the set Z of all integers, equipped with
the topology κ having {{2m− 1, 2m, 2m+ 1}|m ∈ Z} as a subbase (e.g., [27, Section 3 (I)],
[16], [38, Section 6 in p.6]).

(ii) The digital plane or the Khalimsky plane is the Cartessian product (=topological
product) of 2-copies of the digital line (Z, κ). This topological space is denoted by (Z2, κ2),
where Z2 := Z× Z and κ2 := κ× κ (e.g., [16], [9, Section 6], [39, Section 5], [11, Section 7],
[10], [33, Section 6], [27, Section 3(II) in p.322]).

(•) In (Z, κ), for each integer s, {2s} is closed and it is not open, and {2s+ 1} is open and
it is not closed. And so Cl({2s}) = {2s}, Cl({2s+1}) = {2s, 2s+ 1, 2s+ 2}, Int({2s}) = ∅
and Int({2s+ 1}) = {2s+ 1}.
(•) In (Z2, κ2), for each integers s and m, {(2s, 2m)} is closed and it is not open, and
{(2s + 1, 2m + 1)} is open and it is not closed, and {(2s + 1, 2m)} and {(2s, 2m + 1)} are
not open and they are not closed. And so we have the following properties:
· Cl({(2s, 2m)}) = {(2s, 2m)}, Cl({(2s+1, 2m+1)}) = {2s, 2s+1, 2s+2}×{2m, 2m+

1, 2m + 2}, Cl({(2s + 1, 2m)}={2s, 2s + 1, 2s + 2} × {2m}, Cl({(2s, 2m + 1)} = {2s} ×
{2m, 2m+ 1, 2m+ 2}, and
· Int({(2s, 2m)}) = ∅, Int({(2s+1, 2m+1)}) = {(2s+1, 2m+1)}, Int({(2s+1, 2m)}) =

Int({(2s, 2m+ 1)}) = ∅.

Definition 5.2 (cf. Notation 5.5 below) Let A be a subset of (Z2, κ2).
(i) Aκ2 := {x| x ∈ A and {x} ∈ κ2}, (ii) AF2 :={x| x ∈ A and {x} is closed in (Z2, κ2)},
(iii) Amix :={x| x ∈ A, x 6∈ Aκ2 and x 6∈ AF2}, and
(iv) for the set A = ∅, Aκ2 := ∅, AF2 := ∅, Amix := ∅.
(v) Note that, sometimes, the set Aκ2 (resp. AF2 , Amix) above is denoted by (A)κ2 (resp.

(A)F2 , (A)mix (cf. Notation 5.5).

Definition 5.3 (i) For an open set E and a point x ∈ E,E is said to be the smallest open
set containing x, if E ⊆ G holds for every open set G containng x (e.g., [31, Definition 2.5,
Remark 2.6 (ii)], [27, Section 3], [25, p.6 of Section 1]).

(ii) The smallest open set containing a point x in (Z2, κ2) is denoted by U(x) throughout
the present section (cf. Remark 5.4(iv) below).

Remark 5.4 The following properties are well known. Let A be a subset of (Z2, κ2) in (i),
(ii) and (iii).

(i) (Z2)κ2 = {(2s+ 1, 2m+ 1)| s, m ∈ Z}, Aκ2 = A ∩ (Z2)κ2 ,
(ii) (Z2)F2 = {(2s, 2m)| s, m ∈ Z}, AF2 = A ∩ (Z2)F2 ,
(iii) (Z2)mix = {(2s+1, 2m)| s, m ∈ Z}∪{(2s′, 2m′+1)| s′,m′ ∈ Z}, Amix = A∩(Z2)mix.
(iv) Moreover, we have the following properties:
(iv-1) if x ∈ (Z2)κ2 , then x := (2s + 1, 2m + 1) for some s,m ∈ Z and U((2s + 1, 2m +

1))={(2s+ 1, 2m+ 1)} (cf. (i) above and Definition 5.3(ii) for the notation U(•)),
(iv-2) if x ∈ (Z2)F2 , then x := (2s, 2m) for some s,m ∈ Z and U((2s, 2m))={2s −

1, 2s, 2s+ 1} × {2m− 1, 2m, 2m+ 1} (cf. (ii) above),
(iv-3) if x ∈ (Z2)mix, then x = (2s + 1, 2m) or x = (2s, 2m + 1) for some s,m ∈ Z and

U((2s+1, 2m)) = {2s+1}× {2m− 1, 2m, 2m+1}, U((2s, 2m+1)) = {2s− 1, 2s, 2s+1}×
{2m+ 1} (cf. (iii) above).



12 Arafa A.Nasef, H.Maki, Abd El Fattah A.El Atik

(II) A characterization of β-open sets of (Z2, κ2). We prepare the following notation
which are used in Theorem 5.7 and Corollary 5.8 below. And, we note (X)κ2 :={y|y ∈ X
and {y} ∈ κ2} for a subset X of (Z2, κ2).

Notation 5.5 (cf. Definition 5.2) Let A be a nonempty subset of (Z2, κ2).
V (AF2) :=

∪
{{x} ∪ (A ∩ U(x))κ2 | x ∈ AF2 and (A ∩ U(x))κ2 6= ∅},

V (Amix) :=
∪
{{y} ∪ (A ∩ U(y))κ2 | y ∈ Amix and (A ∩ U(y))κ2 6= ∅}. And, for the

case where AF2 = ∅ (resp. Amix = ∅), we set that V (AF2) := ∅ (resp. V (Amix) := ∅).

Example 5.6 Let A := {x, px, y, y−, y′, z} ∪ {a} ⊂ Z2 and B := A \ {a}, where x :=
(0, 0), px := (1, 1), y := (2, 1), y− := (3, 1), y′ := (3, 0), z := (5, 1) and a := (−2, 0). Then,
we have the following properties: (1) the set A is not β-open and B is β-open,

(2) V (AF2) ∪ V (Amix) ∪Aκ2 = {px, y−, z, x, y, y′}=A \ {a} 6= A,
(2)′ V (BF2) ∪ V (Bmix) ∪Bκ2={x, px} ∪ {px, y, y−, y′} ∪ {px, y−, z}=B.

Proof of (1)We see that Cl(Int(Cl(A))) = {0, 1, 2, 3, 4, 5, 6}×{0, 1, 2} 63 (−2, 0) = a and so
Cl(Int(Cl(A))) 6⊇ A holds. For the set B, we see that Cl(Int(Cl(B))) = {0, 1, 2, 3, 4, 5, 6}×
{0, 1, 2} ⊃ B. Proof of (2) Since AF2 = {a, x}, we see that (A ∩ U(a))κ2 = ∅ and (A ∩
U(x))κ2 6= ∅, V (AF2) = {x}∪(A∩U(x))κ2 = {x, px} hold. Since Amix = {y, y′}, we see that
V (Amix) = [{y}∪(A∩U(y))κ2 ]∪[{y′}∪(A∩U(y′))κ2 ] ={y, px, y−}∪{y′, y−}={y, px, y−, y′}.
Since Aκ2 = {px, y−, z}, we prove (2). Proof of (2)′ For this β-open set B, we are
able to see that: BF2 = {x}, Bmix = Amix, Bκ2 = Aκ2 and so we have the following:
V (BF2) ∪ V (Bmix) ∪Bκ2={x, px} ∪ {px, y, y−, y′} ∪ {px, y−, z}=B.

By investigating Example 5.6 above, we find one of the characterization of β-open sets of
(Z2, κ2) (cf. Theorem 5.7(i)(i-2),(ii) and Corollary 5.8 below).

Theorem 5.7 (i) (i-1) If B is a nonempty β-open subset of (Z2, κ2), then
(B ∩ U(x))κ2 6= ∅ holds for each point x ∈ BF2 ∪Bmix (cf. Remark 5.4(i)(ii)).

(i-2) If B is a β-open set of (Z2, κ2), then B is expressible as follows:
B = V (BF2) ∪ V (Bmix) ∪Bκ2 (cf. Notation 5.5, Remark 5.4(i)).

(ii) If a subset B is expressible as B = V (BF2) ∪ V (Bmix) ∪ Bκ2 , then B is β-open in
(Z2, κ2).

Proof. We note that, in general, for a point w ∈ Z2 and a subset B of (Z2, κ2),
(1) (B ∩ U(w))κ2=B ∩ (U(w))κ2 holds, where (U(w))κ2 :={z|z ∈ U(w) and {z} ∈ κ2}.
(i)(i-1) Let x ∈ BF2 ∪ Bmix. Then, since B ⊆ Cl(Int(Cl(B))), we have the following:

U(x) ∩ Int(Cl(B)) 6= ∅ holds and so there exists a point z(x) such that z(x) ∈ U(x) ∩
Int(Cl(B)). Then (2) U(z(x)) ⊆ Cl(B) and ∅ 6= (U(z(x)) ⊆ U(x) (cf. Definition 5.3(ii)).
Then, using (2), we see that ∅ 6= (U(z(x)))κ2 ⊆ (U(x))κ2 and we can take an open singleton
{p(x)} such that p(x) ∈ U(z(x)) and so p(x) ∈ B. Thus, we have the following:p(x) ∈
B∩(U(x))κ2 , i.e., (B∩U(x))κ2 6= ∅ (cf. (1) above). (i-2) First we note that the sets V (BF2)
and V (Bmix) are well defined by (i-1) above, respectively, for a nonempty β-open set B. We
prove that: (3) V (BF2) ∪ V (BF2) ∪Bκ2 ⊆ B holds and (4) B ⊆ V (BF2) ∪ V (Bmix) ∪Bκ2

holds. Proof of (3) We see that V (BF2) ⊆
∪
{{x} ∪ Bκ2 |x ∈ BF2}=BF2 ∪ Bκ2 ⊆ B and

V (Bmix) ⊆
∪
{{y} ∪Bmix|y ∈ Bmix}=Bmix ⊆ B. And so we prove (3).

Proof of (4) Let z ∈ B. And we consider the following two cases.
Case 1 z ∈ BF2 ∪ Bmix. For the present case, by (i-1), it is shown that (B ∩ U(z))κ2 6= ∅
and z ∈ V (BF2) ∪ V (Bmix), and so (5) z ∈ V (BF2) ∪ V (Bmix) ∪Bκ2 .
Case 2 z ∈ Bκ2 . For the present case, it is seen clearly that (5) above holds. Thus, by
Case 1 and Case 2 above, (4) is proved. Therefore, by (3), (4) and Notation 5.5, it is proved
that B = V (BF2) ∪ V (Bmix) ∪Bκ2 holds if B is β-open in (Z2, κ2).

(ii) Let B 6= ∅. By using the assumption of (ii), the definition of V (BF2) and V (Bmix)
(cf. Notation 5.5), it is shown that (B ∩ U(x))κ2 6= ∅ holds for each point x ∈ BF2 ∪ Bmix.
We show firstly that: (6) {x}∪(B∩U(x))κ2 is β-open for each point x ∈ BF2∪Bmix. Indeed,
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since (B∩U(x))κ2 6= ∅, there exists a point, say z(x), such that z(x) ∈ Bκ2∩(U(x))κ2 . Then,
it is shown that x ∈ Cl({z(x)}), because z(x) ∈ (U(x))κ2 ⊂ U(x) ⊆ W hold for every open
set W containing x. And we have the following: Cl(Int(Cl({z(x)}) ⊃ Cl(Int({z(x)})) =
Cl({z(x)}) 3 x, and so Cl(Int(Cl({x} ∪ (B ∩ U(x))κ2))) ⊇ Cl(Int(Cl({z(x)}))) ⊃ {x}.
Then, Cl(Int(Cl({x} ∪ (B ∩ U(x))κ2))) ⊇ {x} ∪ Cl(Int(Cl((B ∩ U(x))κ2))) ⊇ {x} ∪ (B ∩
U(x))κ2 , because (B ∩ U(x))κ2 ∈ βO(Z2, κ2). Thus we prove the property (6), i.e., {x} ∪
(B ∩ U(x))κ2 ∈ βO(Z2, κ2) for each point x ∈ BF2 ∪Bmix.
Therefore, since any union of β-open sets is β-open (cf. Theorem 4.1(iii)), by using (6),
Notation 5.5 and the assumption of (ii), it is proved that the set B is β-open in (Z2, κ2). �

Corollary 5.8 A subset B of (Z2, κ2) is β-open if and only if B is expressible as B =
V (BF2) ∪ V (Bmix) ∪Bκ2 . �

(III) A proof of con-βch(Z2;κ2) = ∅ (cf. Corollary 5.11(ii)′ below). We first pre-
pare the following notation: (III-1) U := {−1, 0, 1} × {−1, 0, 1} (i.e., U := U((0, 0)): the
smallest open set of (Z2;κ2) containing (0, 0)): (III-2) O := (0, 0), p(1) := (1,−1), p(2) :=
(−1,−1), p(3) := (−1, 1), p(4) := (1, 1) and y(1) := (0,−1), y(2) := (−1, 0), y(3) := (0, 1),-
y(4) := (1, 0), and so (III-3) (·) U = {O, p(1), p(2), p(3), p(4), y(1), y(2), y(3), y(4)} and (·)
Uκ2 = {p(1), p(2), p(3), p(4)}, (·) UF2 = {O}, (·) Umix = {y(1), y(2), y(3), y(4)} and so (·)
U = Uκ2 ∪Umix∪UF2 (disjoint union) and (·) the smallest open sets U(y(i)) of (Z2;κ2) con-
taining the point y(i)(1 ≤ i ≤ 4) is defined as follows: U(y(i)) = {p(i+1), y(i), p(i)}(1 ≤ i ≤ 4),
where p(5) = p(1) (cf. (∗∗) in the first part of the subsection (IV) below).

Proposition 5.9 Let U := U((0, 0)) (cf. (III-1) above) and f : (U, κ2|U) → (U, κ2|U) be a
mapping. If f is bijective, then

(i) f−1 is not contra-β-irresolute (cf. Definition 2.2) and
(ii) f−1 and f are not contra-βc-homeomorphisms (cf. Definition 3.1).

Proof. (i) We select three points, say p(1) ∈ Uκ2 , p(2) ∈ Uκ2 and y(1) ∈ Umix with the
smallest open set U(y(1)) = {p(1), y(1), p(2)} (cf. (III-2) above). For the point y(1) there
exists an only one point, say z(y(1)), such that z(y(1)) ∈ U and f(z(y(1))) = y(1). Then, (•)
we take a set B := U \ {z(y(1))}. Then, we claime that:
(1) the set B is β-open in (U, κ2|U) and
(2) f(B) is not β-closed in (U, κ2|U). Proof of (1) We consider the following two cases,
because of z(y(1)) ∈ U = Uκ2 ∪ (Umix ∪ UF2) (cf. (III)-1, (III)-2, (III)-3 above).
Case 1 z(y(1)) ∈ Uκ2 . For the present case, since {z(y(1))} is open in (Z2, κ2) and z(y(1)) ∈
U , we see that z(y(1)) = p(j0) for some j0 with 1 ≤ j0 ≤ 4. And, so we have the followng:
Cl(B) =

∪
{Cl({p(i)}|i 6= j0 with 1 ≤ i ≤ 4} and Int(Cl(B)) ⊇

∪
{Int(Cl({p(i)}))|i 6= j0

with 1 ≤ i ≤ 4}=
∪
{{p(i)}|i 6= j0 with 1 ≤ i ≤ 4} and so Cl(Int(Cl(B))) ⊇

∪
{Cl({p(i)})|i 6=

j0 with 1 ≤ i ≤ 4} = Cl(B) ⊃ B, i.e., for the present Case 1, B is β-open in (Z2, κ2).
Case 2 z(y(1)) ∈ Umix ∪ UF2 . For the present case, since B = U ∩ (Z2 \ {z(y(1))}), we
have the following: Cl(Int(Cl(B))) ⊇ Cl(Int(U ∩ Cl(Z2 \ {z(y(1))))=Cl(Int(U ∩ Z2)) =
Cl(Int(U)) = Cl(U) ⊃ B and so B ∈ βO(Z2, κ2). Thus, for each case, B ∈ βO(Z2, κ2)
and so, by using Theorem 4.1(ii), it is shown that B = B ∩ U is β-open in (U, κ2|U)
(note: U ∈ κ2 ⊂ αO(Z2, κ2)). Proof of (2) For the point z(y(1)) with y(1) = f(z(y(1))),
B := U \ {z(y(1)} and the bijection f : U → U , we see that f(B) = U \ {y(1)}, where U :=
U((0, 0)). Using Theorem 4.1(iv), we have the following: βClU (f(B)) = U ∩ βCl(f(B))=
U ∩ [f(B) ∪ Int(Cl(Int(f(B)))] = U ∩ [(U \ {y(1)}) ∪ U ] = U and so βClU (f(B)) = U 6=
U \ {y(1)} = f(B). Thus, we prove (2). Therefore, by (1), (2) and definitions, it is proved
that f−1 : (U, κ2|U) → (U, κ2|U) is not contra-β-irresolute (cf. Definition 2.2(iii)). (ii)
By (i) above and Definition 3.1(i)(i-2), it is obtained that f−1 and f are not contra-βc-
homeomorphisms. �
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Remark 5.10 Let g : (Z2, κ2) → (Z2, κ2) be a bijective function. Then, the inverse g−1 :
(Z2, κ2)→ (Z2, κ2) is not necessarily contra-β-irresolute and so g and g−1 are not necessarily
a contra-βr-homeomorphism (cf. Definitions 2.2, 3.1). Indeed, we take a mixed point, say
y ∈ (Z2)mix, and a set B := Z2 \ {g−1(y)}. We prove that B ∈ βO(Z2, κ2) and g(B) =
Z2 \ {y} is not β-closed in (Z2, κ2) (cf. Proof of Proposition 5.9(i)).

Corollary 5.11 Let U := U((0, 0)), i.e., U := {−1, 0, 1}×{−1, 0, 1}(⊂ Z2). Then, we have
the following properties.

(i) Every homeomorphism f : (U, κ2|U)→ (U, κ2|U) is not a contra-βr-homeomorphism.
(i)′ Every homeomorphism g : (Z2, κ2)→ (Z2, κ2) is not a contra-βr-homeomorphism.
(ii) h(U ;κ2|U) 6⊆ con-βch(U ;κ2|U) and con-βch(U ;κ2|U) = ∅.
(ii)′ h(Z2;κ2) 6⊆ con-βch(Z2;κ2) and con-βch(Z2;κ2) = ∅.
(iii) G(U ;κ2|U)=βch(U ;κ2|U) (cf. Notation 3.3, Definition 3.1(ii)).
(iii)′ G(Z2;κ2)=βch(Z2;κ2) (cf. Notation 3.3, Definition 3.1(ii)). �

(IV) New groups β(2)ch(H;κ2|H), β(2)ch(H;κ2|H) ∪ con-β(2)ch(H;κ2|H), -
p.β(2)ch(H;κ2|H) and p.β(2)ch(H;κ2|H) ∪ con-p.β(2)ch(H;κ2|H).

Our main results of (IV) are Theorems 5.23, 5.25 and Example 5.27 (cf. Definition 5.15).
We introduce some new concepts β(2)-open sets (cf. Definition 5.12, Definiton 5.15). We
first recall the following notation (∗) et al. and we prepare new definitions (Definition 5.12,
Remark 5.13).

(∗) Let x = (x1, x2) ∈ (Z2)F2 (i.e., x1 and x2 are even). For this point x, we denote the
points belonging to the smallest open set U(x) containg the point x as follows:

U(x) := {x1−1, x1, x1+1}×{x2−1, x2, x2+1}= {x, p(1)x , p
(2)
x , p

(3)
x , p

(4)
x , y

(1)
x , y

(2)
x , y

(3)
x , y

(4)
x },

where p
(1)
x := (x1 + 1, x2 − 1), p

(2)
x := (x1 − 1, x2 − 1), p

(3)
x := (x1 − 1, x2 + 1), p

(4)
x :=

(x1+1, x2+1), y
(1)
x := (x1, x2−1), y(2)x := (x1−1, x2), y

(3)
x := (x1, x2+1), y

(4)
x := (x1+1, x2).

(∗∗) The following illustration shows the points belonging in U(x), where {x} = {(x1, x2)}
is closed in (Z2, κ2) (i.e., x ∈ (Z2)F2), (U(x))F2 = {x}, (U(x))κ2 = {p(i)x |i ∈ {1, 2, 3, 4}} and
(U(x))mix = {y(i)x |i ∈ {1, 2, 3, 4}}.

Z
↑
· · · ◦p(3)x ·y(3)x ◦p(4)x · · ·

· · · ·y(2)x • x ·y(4)x · · ·

· · · ◦p(2)x ·y(1)x ◦p(1)x · · ·

• O · · · · · · · · · · · · · · · · · · → Z
When x = (0, 0) (i.e., x =“the origin O” of Z2), we simply denote p

(i)
x and y

(i)
x as p(i) and

y(i), respectively, and so U := U((0, 0))={(0, 0), p(1), p(2), p(3), p(4), y(1), y(2), y(3), y(4)}.

Definition 5.12 Let x ∈ (Z2)F2 and U(x) be the smallest open set containing x. We define
the following two families, β(2)O(U(x)) and β(2)C(U(x)) as follow (cf. Propositions 5.16(i),
5.18(i)):

(i) β(2)O(U(x)) := {B|B ∈ βO(Z2, κ2), B ⊂ U(x) and |B| = 2} (cf. Remark 5.13(i)),
(ii) β(2)C(U(x)):={F |F ∈ βC(Z2, κ2), F ⊂ U(x) and |F | = 2} (cf. the definition of

p.β(2)C(U(x)) ⊂ β(2)C(U(x)) in Remark 5.13(ii) below).

Remark 5.13 For a point x ∈ (Z2)F2 and the smallest open set U(x) containing x, we
have the following precise form of families β(2)O(U(x)) and β(2)C(U(x)) above, respectively
(cf. Propositions 5.16(i), 5.18(i)).



Some topological structures and related groups on digital plane 15

(i) β(2)O(U(x)) = {{x, p(1)x }, {x, p(2)x }, {x, p(3)x }, {x, p(4)x }, {y(1)x , p
(1)
x }, {y(2)x , p

(2)
x },-

{y(3)x , p
(3)
x }, {y(4)x , p

(4)
x }, {p(2)x , y

(1)
x }, {p(3)x , y

(2)
x }, {p(4)x , y

(3)
x }, {p(1)x , y

(4)
x }, {p(2)x , p

(1)
x },-

{p(3)x , p
(2)
x }, {p(4)x , p

(3)
x }, {p(1)x , p

(4)
x }, {p(3)x , p

(1)
x }, {p(4)x , p

(2)
x } }. (We use the following abbrevi-

ated notation: β(2)O(U(x)) := {{x, p(i)x }, {y(i)x , p
(i)
x }, {p(i+1)

x , y
(i)
x }, {p(i+1)

x , p
(i)
x }, {p(3)x , p

(1)
x },

{p(4)x , p
(2)
x }|i ∈ {1, 2, 3, 4}}, where p

(5)
x := p

(1)
x .)

(ii) (ii-1) β(2)C(U(x))={{x, y(i)x }, {y(i+1)
x , y

(i)
x }, {y(1)x , y

(3)
x }, {y(2)x , y

(4)
x }, {y(i)x , p

(i)
x }, -

{p(i+1)
x , y

(i)
x }, {p(3)x , p

(1)
x }, {p(4)x , p

(2)
x }, {x, p(i)x }, {p(i+2)

x , y
(i)
x }, {p(i+3)

x , y
(i)
x }|i ∈ {1, 2, 3, 4}}, and

(ii-2) we introduce the following importante subfamily, say p.β(2)C(U(x)), of β(2)C(U(x))
above and this concept is used in Theorem 5.23, 5.25 and Example 5.27,

p.β(2)C(U(x)):={{x, y(i)x }, {y(i+1)
x , y

(i)
x }, {y(1)x , y

(3)
x }{y(2)x , y

(4)
x }, {y(i)x , p

(i)
x }, {p(i+1)

x , y
(i)
x } -

|i ∈ {1, 2, 3, 4}}), where y
(5)
x := y

(1)
x and p

(5)
x := p

(1)
x , p

(6)
x := p

(2)
x , p

(7)
x := p

(3)
x .

Remark 5.14 (cf. Definition 5.12) We have the following inclusions of families.
(i) β(2)O(U(x)) ⊂ βO(Z2, κ2). (i)′ β(2)O(U(x)) ⊂ βO(U(x), κ2|U(x)) ⊂ βO(Z2, κ2)

(cf. (i) above, Definition 5.12(i), Theorem 4.1(i),(ii)).
(ii) p.β(2)C(U(x)) ⊂ β(2)C(U(x)) ⊂ βC(Z2, κ2). (ii)′ β(2)C(U(x)) ⊂ βC(U(x), κ2|-

U(x)) ⊂ βC(Z2, κ2) (cf. (ii) above, Definition 5.12(ii), Remark 5.13(ii) and, Theorem 4.1(iv-
1),(iv-3)).
(Note) By definition, we say that: (1) ∅ 6∈ β(2)O(U(x)) and ∅ 6∈ β(2)C(U(x)) and

(2) β(2)O(U(x))∩β(2)C(U(x))={{x, p(i)x }, {y(i)x , p
(i)
x }, {p(i+1)

x , y
(i)
x }, {p(3)x , p

(1)
x }, {p(4)x , p

(2)
x }|i ∈

{1, 2, 3, 4}}, where p
(5)
x := p

(1)
x .

Definition 5.15 Let H ⊆ Z2 with |H| ≥ 2. A subset B (resp. F, F1) of (Z2, κ2) is said
to be a β(2)-open (resp. β(2)-closed, p.β(2)-closed) set of H, if B ⊆ H (resp. F ⊆ H, F1 ⊆ H)
and there exists a point x ∈ (Z2)F2 such that B ∈ β(2)O(U(x)) (resp. F ∈ β(2)C(U(x)), F1 ∈
p.β(2)C(U(x)) ) (cf. Definition 5.12(i) and Remark 5.13(i) (resp. Definition 5.12(ii) and
Remark 5.13(ii))). The family of all β(2)-open (resp. β(2)-closed, p.β(2)-closed) sets of H is
denoted by β(2)O(H) (resp. β(2)C(H), p.β(2)C(H) ). (Note: Proposition 5.16 (resp. 5.18(i),
5.18(i)) below.)

Proposition 5.16 Let H ⊆ Z2 with |H| ≥ 2.
(i) β(2)O(H) ⊆ βO(Z2, κ2) holds (cf. Remark 5.17(i) below).
(ii) β(2)O(H) ⊆ βO(H,κ2|H) holds (cf. Remark 5.17(i) below).
(iii) If H is β-open in (Z2, κ2), then βO(H,κ2|H) ⊆ βO(Z2, κ2) (cf. Theorem 4.1(i),

Remark 5.17(ii) below).

Proof (i), (ii) Let B ∈ β(2)O(H). By Definition 5.15 and Remark 5.14(i), it is obtained that
(∗)B ∈ β(2)O(U(x)) and B ⊂ H for some point x ∈ (Z2)F2 .
The proof of (i) By Definition 5.12(i) (or Remark 5.14(i)), it is obtained that B ∈
βO(Z2, κ2) and so (i):β(2)O(H) ⊂ βO(Z2, κ2).
The proof of (ii) is as follows. Let B ∈ β(2)O(H). We show that B ∈ βO(H,κ2|H).
Indeed, by (∗) above in the top of the present proof, B ⊂ H and B ∈ β(2)O(U(x)) for some
point x ∈ (Z2)F2 . We investigate the proof with the following cases: Case 1, Case 2 and
Case 3 (cf. Remark 5.13(i) etc.).

Case 1 B ∈ {{x, p
(i)
x }|i ∈ {1, 2, 3, 4}} (resp. Case 2 B ∈ {{y(i)x , p

(i)
x }, {y(i)x , p

(i+1)
x }|i ∈

{1, 2, 3, 4}}, where p5x := p
(1)
x .) For the present case, we put B = {u, p}, where u ∈ (U(x))F2

(i.e., u = x) and p ∈ (U(x))κ2 (resp. u ∈ (U(x))mix and p ∈ (U(u))κ2). Then, we
have the following: (1) IntH(B) ⊇ {p} and (2) ClH({p}) ⊇ B. Proof of (1) Since
U(p) ∩ H = {p} ∩ H = {p} ∈ κ2|H, the set U(p) ∩ H = {p} is the smallest open set of
(H,κ2|H) containing p such that p ∈ B and so p ∈ IntH(B). Proof of (2) Since U(u) ∩H
is the smallest open set of (H,κ2|H) containing u and (U(u) ∩H) ∩ {p} 6= ∅, we have the
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following: u ∈ ClH({p}) and so ClH({p}) ⊃ {u, p} = B.
Then, using (1) and (2), we see that ClH(IntH(ClH(B))) ⊇ ClH(IntH(B)) ⊇ ClH({p}) ⊇ B
and so B is β-open in (H,κ2|H) for the present Case 1 (resp. Case 2).

Case 3 B ∈ {{p(i)x , p
(i+1)
x }, {p(i)x , p

(i+2)
x }|i ∈ {1, 2, 3, 4}}, where p(5)x := p

(1)
x and p

(6)
x := p

(2)
x .

For the present case, we put B = {p, p′} where p ∈ (U(x))κ2 and p′ ∈ (U(x))κ2 with p 6= p′.
Then, we have (3) IntH(B) = B. Proof of (3) Since B = {p, p′}, where p 6= p′ and
p, p′ ∈ (U(x))κ2 , it is shown that U(p) ∩H = {p} ∩H = {p} ⊂ B and U(p′) ∩H ⊂ B, and
so U(p) ∩H (resp. U(p′) ∩H) is the smallest open set of (H,κ2|H) containing p (resp. p′).
Thus we have the following: p ∈ IntH(B) (resp. p′ ∈ IntH(B)) and so B ⊂ IntH(B), i.e.,
B = IntH(B). Then, the set B is β-open in (H,κ2|H) for the present Case 3. Therefore,
by all cases above, it is shown that β(2)O(H) ⊆ βO(H,κ2|H) (cf. Remark 5.17(i) below).
(iii) Suppose that B ∈ βO(H,κ2|H). Since B ⊆ H ⊆ Z2 and H is β-open in (Z2, κ2) (by
assumptions), using Theorem 4.1(i), we have the followng: B ∈ βO(Z2, κ2). Thus we prove
that βO(H,κ2|H) ⊆ βO(Z2, κ2) if H is β-open in (Z2, κ2). �

Remark 5.17 (i) In Proposition 5.16(i)(ii)), β(2)O(H) is a proper subfamily of
βO(H,κ2|H) and βO(Z2, κ2), respectively. Indeed, let B := {p, p′} and H := B∪{x}, where
p := (−1,−1), p′ := (3,−1) and x := (0, 0). Then, B ∈ βO(H;κ2|H) and B ∈ βO(Z2, κ2).
However, B 6∈ β(2)O(H), because B 6∈ β(2)O(U(x)) for any x ∈ (Z2)F2 .

(ii) It follows from the following example that the assumption of Proposition 5.16(iii)
is not removed. Let H := {p, p′, y, x, y′} and B := {p, p′, y, y′}, where p := (−1,−1), p′ :=
(3,−1), y := (−1, 0), x := (0, 0), y′ := (1, 0). Then, H is not β-open in (Z2, κ2),
because Cl(Int(Cl(H))) = Cl({p, p′}) 63 y′ and y′ ∈ H. And, B is β-open in (H,κ2|H), be-
cause ClH(IntH(ClH(B))) = H ⊃ B; however, B 6∈ βO(Z2, κ2), because Cl(Int(Cl(B))) =
Cl({p, p′}) 63 y′ and y′ ∈ B.

Proposition 5.18 Let H ⊂ Z2 with |H| ≥ 2.
(i) p.β(2)C(H) ⊆ β(2)C(H) ⊆ βC(Z2, κ2) hold.
(ii) If H is α-open in (Z2, κ2), then β(2)C(H) ⊆ βC(H;κ2|H) (cf. Theorem 4.1(iv-2),

Remark 5.19(i) below).
(iii) If H is α-open and β-closed in (Z2, κ2), then βC(H,κ2|H) ⊆ βC(Z2, κ2) (cf. Theo-

rem 4.1(iv-3), Remark 5.19(ii) below).

Proof. The proof is analogous to the case of β(2)O(H) (cf. Proposition 5.16 above) and so
is omitted. �

Remark 5.19 (i) In Proposition 5.18(i), β(2)C(H) is a proper subfamily of βC(Z2, κ2).
Indeed, let H := U(x) ∪ U(x′), where x := (0, 0) and x′ := (2, 0). Then, a β-closed set
F := {x, x′} of (Z2, κ2) is not β(2)-closed in H, because F 6∈ β(2)C(U(z)) for any point
z ∈ (Z2)F2 (cf. Remark 5.13(ii)).

(ii) It follows from the following example that the assumption of Proposition 5.18(iii) is
not removed. Let F := {p, x, p′} and H := F ∪ {q}, where x := (0, 0), p := (−1,−1), p′ :=
(1,−1), q := (3,−1). Then, Int(Cl(Int(H))) = {−1, 0, 1, 2, 3} × {−1} 6⊃ H and so H is not
α-open in (Z2, κ2). Since IntH(ClH(IntH(F ))) = F holds, we see that F ∈ βC(H,κ2|H).
However, F 6∈ βC(Z2, κ2), because Int(Cl(Int(F ))) = {−1, 0, 1} × {−1} 6⊂ F .

Definition 5.20 Let (H,κ2|H) be a subspace of (Z2, κ2) with |H| ≥ 2 and f : (H,κ2|H)→
(H,κ2|H) be a mapping. And, let AH and BH be collections of subsets of H such that:-
AH ,BH ∈ {β(2)O(H), β(2)C(H), p.β(2)C(H)} (cf. Definition 5.15, Remark 5.13).

Then, f is said to be (AH ,BH)-irresolute, if f−1(E) ∈ BH for every set E ∈ AH , where
(AH ,BH) denotes the ordered pair of the collections AH and BH .

(Note 1) Especially, if AH = BH , then the concept of the (AH ,AH)-irresolute mapping
is simply said to be AH-irresolute.
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(Note 2) In the present definition, we are able to define the concepts of the following
mappings: the β(2)O(H)-irresolute mappings, β(2)C(H)-irresolute mappings, p.β(2)C(H)-
irresolute mappings, (β(2)O(H), β(2)C(H))-irresolute mappings, (β(2)C(H), β(2)O(H))-irresolute
mappings, (β(2)O(H), p.β(2)C(H))-irresolute mappings, (p.β(2)C(H), β(2)O(H))-irresolute
mappings.

Definition 5.21 For a subspace (H,κ2|H) of (Z2, κ2), where |H| ≥ 2, we define the follow-
ing collections of mappings as follows (cf. Definitions 5.20, 5.15).

(i) β(2)ch(H;κ2|H):={f | f : (H,κ2|H) → (H,κ2|H) is a bijection such that f and f−1

are both β(2)O(H)-irresolute and they are β(2)C(H)-irresolute}.
(i)′ p.β(2)ch(H;κ2|H):={f | f : (H,κ2|H) → (H,κ2|H) is a bijection such that f and

f−1 are both β(2)O(H)-irresolute and they are p.β(2)C(H)-irresolute}.
(ii) con-β(2)ch(H;κ2|H):={f | f : (H,κ2|H) → (H,κ2|H) is a bijection such that f and

f−1 are both (β(2)O(H), β(2)C(H))-irresolute and they are (β(2)C(H), β(2)O(H))-irresolute}.
(ii)′ con-p.β(2)ch(H;κ2|H):={f | f : (H,κ2|H) → (H,κ2|H) is a bijection such that f

and f−1 are both (β(2)O(H), p.β(2)C(H))-irresolute and they are
(p.β(2)C(H), β(2)O(H))-irresolute}.

Lemma 5.22 Let (H,κ2|H) be a subspace of (Z2, κ2) such that:
(∗) H =

∪
{U(z)|z ∈ AF2}, where AF2 is a nonempty subset of Z2. If f : (H,κ2|H) →

(H,κ2|H) is a homeomorphism, then for a point x ∈ HF2 ,
(i) f(Hκ2) = Hκ2 , f(HF2) = HF2 and f(Hmix) = Hmix hold in (Z2, κ2),
(ii) f(U(p)) = U(f(p)) holds for each point p ∈ (U(x))κ2 ,
(iii) f(U(y)) = U(f(y)) holds for each point y ∈ (U(x))mix, and
(iv) f(U(x)) = U(f(x)).

Proof. Since f is homeomorphic, we have the property (i) (cf. Definition 5.2, Remark 5.4).
Then, by the standard method, the properties (ii), (iii) and (iv) are proved. �

Let us consider the case H = Z2, i.e., H =
∪
{U(z)|z ∈ (Z2)F2}. Then, we have the

following properties on (Z2, κ2).

Theorem 5.23 Let h(Z2;κ2) be the group of all homeomorphisms from (Z2, κ2) onto itself
(cf. Definition 3.1(iii)).

(i) If f : (Z2, κ2)→ (Z2, κ2) is a homeomorphism, then (cf. Definition 5.20, Note:1)
(1a) f is β(2)C(Z2)-irresolute, (1b) f is β(2)O(Z2)-irresolute, and
(1c) f is p.β(2)C(Z2)-irresolute.

(ii) h(Z2;κ2) ⊆ β(2)ch(Z2;κ2) holds (cf. Theorem 5.25(iv)′ below).
(ii)′ h(Z2;κ2) ⊆ p.β(2)ch(Z2;κ2) holds (cf. Theorem 5.25(iv)′ below).

Proof. (i) (Proof of (1a)) Let F ∈ β(2)C(Z2) (cf. Definition 5.15). We claim that
f−1(F ) ∈ β(2)C(Z2). Indeed, there exists a point x ∈ (Z2)F2 such that F ∈ β(2)C(U(x))
and we note that f−1(x) ∈ (Z2)F2 (cf. Lemma 5.22(i) above). Since F ∈ β(2)C(U(x)),
we have that F ⊂ U(x), |F | = 2 and F ∈ βC(Z2, κ2) (cf. Definition 5.12(ii), or Re-
mark 5.14(ii)). By definitions., Remark 2.7(ii) and Lemma 5.22(i)(iv), it is shown that
f−1(F ) ⊂ U(f−1(x)) ⊂ Z2, |f−1(F )| = 2, f−1(x) ∈ (Z2)F2 and f−1(F ) ∈ βC(Z2, κ2), and
so f−1(F ) ∈ β(2)C(U(f−1(x))) (cf. Definition 5.12(ii)). Then, we conclude that f−1(F ) ∈
β(2)C(Z2) holds (cf. Definition 5.15).
(Proof of (1b)) Let B ∈ β(2)O(Z2). We claim that f−1(B) ∈ β(2)O(Z2). The proof is
analogous to the proof of (1a) above using Definitions 5.15, 5.12(i), Remark 5.13(i) and
Lemma 5.22. And so the proof is omitted.
(Proof of (1c)) Let F1 ∈ p.β(2)C(Z2) (cf. Definition 5.15, Remark 5.13(ii)(ii-2)). Then,
F1 ⊂ Z2, |F1| = 2 and there exists a point x ∈ (Z2)F2 such that F1 ∈ p.β(2)C(U(x)). Then,

we have the following: F1 ∈ {{x, y(i)x }, {y(i)x , y
(i+1)
x }, {y(1)x , y

(3)
x }, {y(2)x , y

(4)
x }, {y(i)x , -
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p
(i)
x }, {p(i+1)

x , y
(i)
x }|i ∈ {1, 2, 3, 4}}, where p

(5)
x := p

(1)
x , y

(5)
x := y

(1)
x . Using Lemma 5.22,

we note that f−1(x) ∈ (U(f−1(x)))F2 , f−1(U(p
(i)
x )) = U(f−1(p

(i)
x )) and f−1(U(y

(i)
x )) =

U(f−1(y
(i)
x )). Put z := f−1(x). Then, f−1(p

(i)
x ) = p

(k(i))
z and f−1(y

(i)
x ) = y

(k′(i))
z are well

defined in U(z) for some integers k(i), k′(i) ∈ {1, 2, 3, 4}, where i ∈ {1, 2, 3, 4}. We show
that (••) f−1(F1) ∈ p.β(2)C(U(z)). Indeed, we show (••) above for the following precise
cases.
Case 1 F1 := {p(i)x , y

(i)
x }. For the present case, we see that: f−1(F1) = {pk(i)z , y

k′(i)
z }.

Since p
(i)
x ∈ U(y

(i)
x ), by Lemma 5.22, it is shown that f−1(p

(i)
x ) = p

(k(i))
z ∈ U(y

(k′(i))
z ),

and |k(i) − k′(i)| ≤ 1 (cf. (∗∗) of the first part of the present (IV)) and so we have
the following: k′(i) = k(i) or k′(i) = k(i) − 1 because of k′(i) ≤ k(i). Thus, we show

that f−1(F1) = {p(k(i))z , y
(k(i))
z } or f−1(F1) = {p(k(i))z , y

(k(i)−1)
z }, where y

(0)
z := y

(4)
z and so

f−1(F1) ∈ pureβ(2)C(U(z)).

Case 1′ F1 := {p(i+1)
x , y

(i)
x }. For the present case, we see that: f−1(F1) = {p(k(i+1))

z , y
(k′(i))
z }.

We claim that f−1(F1) ∈ p.β(2)C(U(z)). The proof is analogous to the proof of Case 1 above,
using Definition 5.12(ii), Remark 5.13(ii)(ii-2) and Lemma 5.22. And so the proof is omitted.

Case 2 F1 := {x, y(i)x }. For the present case, we see that: f−1(F1) = {z, y(k(i))z } ∈
pureβ(2)C(U(z)).

Case 3 F1 = {y(1)x , y
(3)
x }. For the present case, we see that: f−1(F1) = {y(k

′(1))
z , y

(k′(3))
z },

where {k′(1), k′(3)} ⊂ {1, 2, 3, 4}. Since U(y
(k′(1))
z ) ∩ U(y

(k′(3))
z ) = ∅ and U(y

(k′(i))
z ) ⊂ U(z)

for each i ∈ {1, 3}, we have the following: 0 < |k′(1)− k′(3)| ≤ 2. And, if |k′(1)− k′(3)| = 1

then U(y
(k′(1))
z ) ∩ U(y

(k′(3))
z ) 6= ∅ and so |k′(1) − k′(3)| = 2. Thus, we see that f−1(F1) =

{y(k
′(1))

z , y
(k′(3))
z } ∈ p.β(2)C(U(z)).

Case 3′ F1 = {y(2)x , y
(4)
x }. For the present case, we see that: f−1(F1) = {y(k

′(2))
z , y

(k′(4))
z } ∈

p.β(2)C(U(z)), where {k′(2), k′(4)} ⊂ {1, 2, 3, 4}. The proof is analogous to the proof of
Case 3 above and so the proof is omitted.

Case 4 F1 = {y(i)x , y
(i+1)
x }. For the present case, we see that:

f−1(F1) = {y(k
′(i))

z , y
(k′(i+1))
z }, where {k′(i), k′(i+1)} ⊂ {1, 2, 3, 4} and i ∈ {1, 2, 3, 4}. Since

U(y
(i)
x ) ∩ U(y

(i+1)
x ) = {p(i+1)

x }, we have the following that: U(y
(k′(i))
z ) ∩ U(y

(k′(i+1))
z ) =

{p(k(i+1))
z } (cf. Lemma 5.22) and |k′(i) − k′(i + 1)| = 1, i.e., k′(i) − k′(i + 1) = 1 (if

k′(i) > k′(i + 1)) or k′(i + 1) − k′(i) = 1 (if k′(i) < k′(i + 1)). Thus, we prove that

f−1(F1) = {y(k
′(i))

z , y
(k′(i+1))
z } = {y(k

′(i))
z , y

(k′(i)−1))
z } or f−1(F1) = {y(k

′(i))
z , y

(k′(i)+1))
z }, and

so f−1(F1) ∈ p.β(2)C(U(z)) (cf. Remark 5.13(ii)(ii-2), where y
(5)
z := y

(1)
z and y

(0)
z := y

(4)
z .

Thus, by all cases above, the property (••) is proved. And, it is shown that, for each
set F1 ∈ p.β(2)C(Z2), there exists a point z ∈ (Z2)F2 such that f−1(F1) ∈ p.β(2)C(U(z)),
f−1(F1) ⊂ Z2 with |f−1(F1)| = 2, i.e., f−1(F1) ∈ p.β(2)C(Z2) (cf. Definition 5.15). There-
fore, the homeomorphism f : (Z2, κ2)→ (Z2, κ2) is p.β(2)C(Z2)-irresolute.

(ii) (resp. (ii)′) By Definition 5.21(i) (resp. (i)′) and (i)(1a) (1b) (resp. (i)(1b) (1c))
above, the present (ii) (resp. (ii)′) is proved. �

Remark 5.24 The properties (1a), (1b) and (1c) in Theorem 5.23(i) are not hold, in gen-
eral. This can be shown in the following example. Let f : (Z2, κ2)→ (Z2, κ2) be a bijection
defined by f((x1, x2) := (x1 + 1, x2) for each point (x1, x2) ∈ Z2. Then, f−1({(1, 1)}) =
{(0, 1)} 6∈ κ2 for the set {(1, 1)} ∈ κ2 and so f is not a homeomorphsm. For the set V :=
{(1, 1), (1,−1)} ∈ β(2)O(Z2), we have the following: f−1(V ) = {(0, 1), (0,−1)} 6∈ β(2)O(Z2)
and so f is not β(2)O(Z2)-irresolute. And, for a set F := {(0, 1), (0,−1)} ∈ p.β(2)C(Z2), we
have the following: f−1(F ) = {(−1, 1), (−1,−1)} 6∈ p.β(2)C(Z2) and so f is not p.β(2)C(Z2)-
irresolute. Moreover, for the above sets F and f−1(F ), since F ∈ β(2)C(Z2) and f−1(F ) 6∈
β(2)C(Z2), the bijection f is not β(2)C(Z2)-irresolute.



Some topological structures and related groups on digital plane 19

Theorem 5.25 Let (H,κ2|H) be a subspace of (Z2, κ2) where |H| ≥ 2.

(i) (resp. (i)′) The collection β(2)ch(H;κ2|H) (resp. p.β(2)ch(H;κ2|H)) forms a group
under the composition of mappings (cf. Definition 5.21(i) (resp. (i)′).

(ii) (resp. (ii)′) The union of two collections: β(2)ch(H;κ2|H)∪con-β(2)ch(H;κ2|H) (resp.
p.β(2)ch(H;κ2|H)∪con-p.β(2)ch(H;κ2|H)) forms a group under the composition of mappings
(cf. Definition 5.21(i),(ii) (resp. (i)′, (ii)′).

(iii) (resp. (iii)′) The group β(2)ch(H;κ2|H) (resp. p.β(2)ch(H;κ2|H)) is a non-empty
subgroup of β(2)ch(H;κ2|H) ∪ con-β(2)ch(H;κ2|H) (resp. p.β(2)ch(H;κ2|H)∪ -
con-p.β(2)ch(H;κ2|H)).

(iv) (resp. (iv)′) The group h(Z2;κ2) is a subgroup of the group β(2)ch(Z2;κ2) (resp.
p.β(2)ch(Z2;κ2)) and so h(Z2;κ2) is a subgroup of the group β(2)ch(Z2;κ2) ∪ con-β(2)ch -
(Z2;κ2) (resp. p.β(2)ch(Z2;κ2) ∪ con-p.β(2)ch(Z2;κ2)).

Proof. (i) (resp. (i)′) A binary operation ηH : β(2)ch(H;κ2|H) × β(2)ch(H;κ2|H) →
β(2)ch(H;κ2|H) (resp. η′H : p.β(2)ch(H;κ2|H)× p.β(2)ch(H;κ2|H)→ p.β(2)ch(H;-
κ2|H)) is well defined by ηH(g1, g2):=g2 ◦ g1 (resp. η′H(g1, g2):=g2 ◦ g1). Indeed, by us-
ing Definitions 5.20(Note:1),5.21(i) (resp. (i)′), it is shown that g2 ◦ g1 and (g2 ◦ g1)−1

are both β2O(H)-irresolute and they are β2C(H)-irresolute (resp. g2 ◦ g1 and (g2 ◦ g1)−1

are both β(2)O(H)-irresolute and they are p.β(2)C(H)-irresolute). Thus, we prove that
ηH(g1, g2) ∈ β(2)ch(H;κ2|H) (resp. η′H(g1, g2) ∈ p.β(2)ch(H;κ2|H)) and the binary opera-
tion ηH (resp. η′H) satisfies the axiom of group. Therefore, the pair (β(2)ch(H;κ2|H), ηH)
(resp. (p.β(2)ch(H;κ2|H), η′H)) forms a group under compositions of mappings.

(ii) (resp. (ii)′)We first note on the following notation that: let GH := β(2)ch(H;κ2|H)∪
con-β(2)ch(H;κ2|H) (resp. pGH := p.β(2)ch(H;κ2|H) ∪ con-p.β(2)ch(H;κ2|H)) throughout
the present proof of (ii) (resp. (ii)′). A binary operation wH : GH × GH → GH (resp.
w′

H : pGH × pGH → pGH) is well defined by wH(f, f ′) := f ′ ◦ f (resp. w′
H(f, f ′) := f ′ ◦ f).

Indeed, let (f, f ′) ∈ GH × GH .
Case 1 f ∈ β(2)ch(H;κ2|H) and f ′ ∈ con-β(2)ch(H;κ2|H) (resp.Case 1′ f ∈ p.β(2)ch(H;κ2|H)
and f ′ ∈ con-p.β(2)ch(H;κ2|H)). For the present case, it is claimed that wH(f, f ′) ∈
con-β(2)ch(H;κ2|H) ⊆ GH (resp. w′

H(f, f ′) ∈ con-p.β(2)ch(H;κ2|H)), because f ′ ◦ f and
(f ′ ◦ f)−1 are both (β(2)O(H), β(2)C(H))-irresolute and they are (β(2)C(H), β(2)O(H))-
irresolute (resp. f ′◦f and (f ′◦f)−1 are both (β(2)O(H), p.β(2)C(H))-irresolute and they are
(p.β(2)C(H), β(2)O(H))-irresolute). And so, we have that wH(f, f ′) ∈ con-β(2)ch(H;κ2|H) ⊆
GH (resp. w′

H(f, f ′) ∈ con-p.β(2)ch -
(H;κ2|H) ⊆ pGH).
Case 2 f ∈ con-β(2)ch(H;κ2|H) and f ′ ∈ β(2)ch(H;κ2|H) (resp. Case 2′ f ∈ con-
p.β(2)ch(H;κ2|H) and f ′ ∈ p.β(2)ch(H;κ2|H)). For the present case, by similar argu-
ment of that of Case 1 (resp. Case 1′) above, it is shown that wH(f, f ′) = f ′ ◦ f ∈ con-
β(2)ch(H;κ2|H) ⊆ GH (resp. w′

H(f, f ′) = f ′ ◦ f ∈ con-p.β(2)ch(H;κ2|H) ⊆ pGH).
Case 3 f ∈ con-β(2)ch(H;κ2|H) and f ′ ∈ con-β(2)ch(H;κ2|H) (resp. Case 3′ f ∈ con-
p.β(2)ch(H;κ2|H) and f ′ ∈ con-p.β(2)ch(H;κ2|H)). For the present case, it is shown that
wH(f, f ′) ∈ β(2)ch(H;κ2|H) ⊆ GH (resp. w′

H(f, f ′) ∈ p.β(2)ch(H;κ2|H) ⊆ pGH), because
f ′ ◦ f and (f ′ ◦ f)−1 are both β(2)O(H)-irresolute and they are β(2)C(H)-irresolute (resp.
f ′ ◦ f and (f ′ ◦ f)−1 are both β(2)O(H)-irresolute and they are p.β(2)C(H)-irresolute).
Case 4 f ∈ β(2)ch(H;κ2|H) and f ′ ∈ β(2)ch(H;κ2|H) (resp. Case 4′ f ∈ p.β(2)ch(H;κ2|H)
and f ′ ∈ p.β(2)ch(H;κ2|H)). For the present case, by definitions, it is shown that wH(f, f ′) ∈
β(2)ch(H;κ2|H) ⊆ GH (resp. wH(f, f ′) ∈ p.β(2)ch(H;κ2|H) ⊆ pGH), because f ′ ◦ f and
(f ′ ◦ f)−1 are both β(2)O(H)-irresolute and they are β(2)C(H)-irresolute (resp. f ′ ◦ f and
(f ′ ◦ f)−1 are both β(2)O(H)-irresolute and they are p.β(2)C(H)-iresolute). Finally, the
binary operation wH : GH × GH → GH (resp. w′

H : pGH × pGH → pGH) satisfies the axiom
of group (cf. the proof of (i)) the identity function on H, 1H ∈ β(2)ch(H;κ2|H) ⊆ GH (resp.
1H ∈ p.β(2)ch(H;κ2|H) ⊆ pGH); and so the pair (GH , wH) (resp. (pGH , w′

H) forms a group



20 Arafa A.Nasef, H.Maki, Abd El Fattah A.El Atik

under compositions of mappings. (iii) We recall that GH := β(2)ch(H;κ2|H) ∪ con-
β(2)ch(H;κ2|H) (cf. Proof of (ii) above). Since 1H ∈ β(2)ch(H;κ2|H), we have the fol-
lowing: (·1) β(2)ch(H;κ2|H) is a nonempty subset of the group (GH , wH), where wH :
GH × GH → GH is the binary operation (cf. (ii) above). Let f, g ∈ β(2)ch(H;κ2|H). Then,
we see that (·2) wH(f, g−1) = g−1 ◦ f ∈ β(2)ch(H;κ2|H). Therefore, by (·1) and (·2), it
is shown that β(2)ch(H;κ2|H) is a subgroup of GH (cf. (ii) above). (iii)′ We recall that
pGH := p.β(2)ch(H;κ2|H) ∪ con-p.β(2)ch(H;κ2|H) (cf. Proof of (ii)′ above). We see that
1H ∈ p.β(2)ch(H;κ2|H). Indeed, for a set B ∈ β(2)O(H) and F1 ∈ p.β(2)C(H), we have
the following: 1H(B) = (1H)−1(B) = B ∈ β(2)O(H) and 1H(F1) = (1H)−1(F1) = F1 ∈
p.β(2)C(H); and so 1H and (1H)−1 are both β(2)O(H)-irresolute and they are p.β(2)C(H)-
irresolute. Thus, by Defintion 5.21(i)′, it is obtained that 1H ∈ p.β(2)ch(H;κ2|H). Then,
we have the following: (·1)′p.β(2)ch(H;κ2|H) is a nonempty subset of the group (pGH , w′

H),
where w′

H : pGH × pGH → pGH is the binary operation (cf. Proof of (ii)′ above). Next,
we claim (·2)′ below. Let f, g ∈ p.β(2)ch(H;κ2|H). Then, since f, f−1, g and g−1 are all
β(2)O(H)-irresolute and they are p.β(2)C(H)-irresolute, g−1 ◦ f and (g−1 ◦ f)−1 = f−1 ◦ g
are both β(2)O(H)-irresolute and they are p.β(2)C(H)-irresolute bijections. Thus, we prove
that: (·2)′w′

H(f, g−1) = g−1 ◦ f ∈ p.β(2)ch(H;κ2|H) (cf. Definition 5.21(i)′). Therefore, by
(·1)′ and (·2)′ above, it is obtained that p.β(2)ch(H;κ2|H) is a subgroup of pGH (cf. (ii)′

above). (iv) (resp. (iv)′) We see that the identity function 1Z2 : (Z2, κ2)→ (Z2, κ2) is
a homeomorphism and so 1Z2 ∈ h(Z2;κ2) 6= ∅. By (i) (resp. (i)′) above and its proof,
it is known that β(2)ch(Z2;κ2) (resp. p.β(2)ch(Z2;κ2) ) forms a group with the binary
operation ηZ2 (resp. η′Z2) defined by ηZ2(a, b) = b ◦ a (resp. η′Z2(a, b) = b ◦ a) for every
a, b ∈ β(2)ch(Z2;κ2) (resp. p.β(2)ch(Z2;κ2)). And, using Theorem 5.23(ii) (resp. (ii)′), we
recall that h(Z2;κ2) ⊆ β(2)ch(Z2;κ2) (resp. h(Z2;κ2) ⊆ p.β(2)ch(Z2;κ2)). Then, we have the
following: ηZ2(f, g−1)=g−1◦f (resp. η′Z2(f, g−1)=g−1◦f) ∈ h(Z2;κ2) for any f, g ∈ h(Z2;κ2).
Therefore, it is proved that h(Z2;κ2) is a subgroup of β(2)ch(Z2;κ2) (resp. p.β(2)ch(Z2;κ2)
). And so, using (iii) (resp. (iii)′) above, it is obtained that h(Z2;κ2) is also a subgroup of
GZ2 (resp. pGZ2) (cf. the proof of (ii) or (iii) (resp. (ii)′ or (iii)′) for the notation). �

Notation 5.26 The present notations are applied to Example 5.27 below. Let H :=
U((0, 0)). And U((0, 0)) is denoted abbreviately by U (i.e., U := U((0, 0))). We define
the following functions and two families of functions, (·1) ρ45 : (U ;κ2|U) → (U ;κ2|U) is
defined by ρ45((0, 0)) := (0, 0), ρ45(p

(i)) := y(i), ρ45(y
(i)) := p(i+1) for each i ∈ {1, 2, 3, 4}

with p(5) := p(1) (cf. (∗) of line 5 from the top of the present subsection (IV), or (III-2) of
the subsection (III)), (·2) ρ0×90 := 1U (the identity function on U) and ρk×90 := ρ(k−1)×90 ◦
(ρ45 ◦ ρ45) for each k ∈ {1, 2, 3}, (·3)ρ1×45 := ρ45, ρm×45 := ρ90 ◦ ρ(m−2)×45 (for m = 3, 5, 7)
and (·4) R45 := {ρm×45, (ρm×45)

−1|m ∈ {1, 3, 5, 7}}, R90 := {1U , ρk×90, (ρk×90)
−1|k ∈

{1, 2, 3}}.

Example 5.27 Let H := U((0, 0)) and U := U((0, 0)). We have the following examples.
(i) {ρ45, (ρ45)−1} ⊆ con-p.β(2)ch(U ;κ2|U) (cf. Corollary 5.11(ii)).
(ii) (1) {ρ90, (ρ90)−1} ⊆ β(2)ch(U ;κ2|U),(2) {ρ90, (ρ90)−1} ⊆ p.β(2)ch(U ;κ2|U).

In general, we have that:
(i)′ R45 ⊆ con-p.β(2)ch(U ;κ2|U) (cf. Corollary 5.11(ii)).
(ii)′ (1)′ R90 ⊆ β(2)ch(U ;κ2|U),
(2)′ R90 ⊆ p.β(2)ch(U ;κ2|U) (cf. Notation 5.26). Hence we have the following:
(iii) (1) R45 ∪R90 ⊆ β(2)ch(U ;κ2|U) ∪ con-p.β(2)ch(U ;κ2|U),
(2) R45∪R90 ⊆ p.β(2)ch(U ;κ2|U)∪ con-p.β(2)ch(U ;κ2|U). The proofs are omitted on

the present paper (cf. the detailed proofs are shown by the following pre-print; The detailed
Example 5.27 [34]).
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