L^p -boundedness of a Hausdorff operator associated with change of variables and weights

Radouan Daher * Takeshi Kawazoe [†] Faouaz Saadi *

Recieved October 1, 2020; Revised February 12, 2021

Keywords Hausdorff operator, Dunkl hypergroup, Jacobi hypergroup. 2010 Mathematics Subject Classification 47G10; 43A32

Abstract

Multivariate Hausdorff operators associated with linear transformations on $L^p(\mathbb{R}^n)$ are investigated by Brown and Moricz. We replace the linear transformation with a general change of variables and introduce modified Hausdorff operators \mathcal{H}_{ψ} associated with a change of variables and weights. We obtain a condition of ψ under which the operator is bounded from L^p to L^p . The modified Hausdorff operators cover the Hausdorff operators defined on the Euclidean space, the Dunkl hypergroup and the Jacobi hypergroup. In each case, we give conditions of ψ under which the operators are bounded from L^p to L^p .

1 The modified Hausdorff operator

Let $\mu(t)$ be a Borel measure on \mathbb{R}^n and A(t) a $n \times n$ matrix whose entries $a_{ij}(t)$ are functions on \mathbb{R}^n . Brown and Moricz [2] introduce the multivariate Hausdorff operator H_{ψ} acting on functions on \mathbb{R}^n as

$$H_{\psi}(f)(x) = \int_{\mathbb{R}^n} \psi(t) f(A(t)x) d\mu(t)$$

provided that the integral on the right-hand side exists. For $1 \leq p \leq \infty$ they obtain a condition of ψ under which H_{ψ} is bounded from L^p to L^p (see §3.1). Moreover, the boundedness on H^p , *BMO*, Herz-type spaces, Morrey-type spaces, and so on are investigated by many authors (see [1])

^{*}Department of Mathematics, Faculty of Sciences, Ain Chock University Hassan II, Casablanca, Morocco.

[†]Department of Mathematics, Keio University at Fujisawa, Endo, Fujisawa, Kanagawa, 252-8520, Japan.

and references therein). The Hausdorff operators are generalized on abstract groups. For example, on the Heisenberg groups, Guo, Sun and Zhao [4] obtain the sharp L^p estimates of high-dimensional and multilinear Hausdorff operators. Then the operators on other function spaces are investigated (see [7] and references therein). In this paper we introduce a modified Hausdorff operator \mathcal{H}_{ψ} by replacing A(t)x with a general change of variable $F_t(x)$ and $d\mu(t)$ with a weight function $\omega(t)dt$. In particular, treating the cases that the weight functions $\omega(t)$ corresponds to the Dunkl and the Jacobi hypergroups respectively, we can obtain some conditions of ψ under which \mathcal{H}_{ψ} for the Dunkl and the Jacobi hypergroups are bounded from L^p to L^p (see §3.2 and §3.3).

Let $U \subset \mathbb{R}^n$ be an open subset and let $F : U \to \mathbb{R}^n$ be a C^1 function. We suppose that F is one-to-one and that, for all $x \in U$, the derivative DF(x) is invertible. Hence $V = F(U) \subset \mathbb{R}^n$ is open and $F : U \to V$ is a diffeomorphism. Then for a suitable function f on V,

$$\int_{V} f(v)dv = \int_{U} f(F(u)) |\det DF(u)| du,$$

where dv and du are Lebesgue measures on \mathbb{R}^n . Let ω_U and ω_V are positive functions on U and V respectively. We denote by $L^p(U, \omega_U)$ (resp. $L^p(V, \omega_V)$) the space of L^p functions on U with respect to $\omega_U(u)du$ (resp. on V with respect to $\omega_V(v)dv$). For $g \in L^p(U, \omega_U)$, we put

$$g_F^*(v) = g(F^{-1}(v)) \frac{\omega_U(F^{-1}(v))}{\omega_V(v)} |\det DF(F^{-1}(v))|^{-1}.$$

If $g \in L^1(U, \omega_U)$, then it follows from the change of variables formula that

$$\int_{V} g_F^*(v)\omega_V(v)dv = \int_{U} g(u)\omega_U(u)du.$$
(1)

We now suppose that F depends on a parameter $t \in U$, and write $F = F_t$. Let ψ be a positive function on U. We define the Hausdorff operator \mathcal{H}_{ψ} acting on functions on V and its dual \mathcal{H}_{ψ}^* acting on functions on U as follows.

$$(\mathcal{H}_{\psi}f)(u) = \int_{U} \psi(t)f(F_t(u))\omega_U(t)dt,$$

$$(\mathcal{H}_{\psi}^*g)(v) = \int_{U} \psi(t)g_{F_t}^*(v)\omega_U(t)dt.$$

Actually, they satisfy the following relation.

$$\int_{U} (\mathcal{H}_{\psi}f)(u)\overline{g(u)}\omega_{U}(u)du$$

$$= \int_{U} \psi(t)\omega_{U}(t)(\int_{U} f(F_{t}(u))\overline{g(u)}\omega_{U}(u)du)dt$$

$$= \int_{U} \psi(t)\omega_{U}(t)(\int_{V} f(v)\overline{g(F_{t}^{-1}(v))}\omega_{U}(F_{t}^{-1}(v))|\det DF_{t}(F_{t}^{-1}(v))|^{-1}dv)dt$$

$$= \int_{V} f(v)(\int_{U} \psi(t)\overline{g_{F_{t}}^{*}(v)}\omega_{U}(t)dt)\omega_{V}(v)dv$$

$$= \int_{V} f(v)\overline{(\mathcal{H}_{\psi}^{*}g)(v)}\omega_{V}(v)dv.$$
(2)

Lemma 1.1. We suppose that $\psi \in L^1(U, \omega_U)$. Then for all f in $L^{\infty}(V, \omega_V)$,

$$\|\mathcal{H}_{\psi}f\|_{L^{\infty}(U,\omega_U)} \leq \|\psi\|_{L^1(U,\omega_U)} \|f\|_{L^{\infty}(V,\omega_V)}.$$

Proof. This is obvious from the definition of \mathcal{H}_{ψ} .

Lemma 1.2. We suppose that

$$d_{\psi} = \sup_{v \in V} \int_{U} \psi(t) \frac{\omega_U(F_t^{-1}(v))}{\omega_V(v)} |\det DF_t(F_t^{-1}(v))|^{-1} \omega_U(t) dt < \infty.$$
(3)

Then for all f in $L^1(V, \omega_V)$,

$$\|\mathcal{H}_{\psi}f\|_{L^{1}(U,\omega_{U})} \leq d_{\psi}\|f\|_{L^{1}(V,\omega_{V})}.$$

Proof. By letting g = 1, the inequality follows from (2).

Therefore, by using the interpolation and the duality, we can deduce the following.

Theorem 1.3. Let $1 \le p \le \infty$ and $\frac{1}{p} + \frac{1}{p^*} = 1$. Then for all f in $L^p(V, \omega_V)$ and all g in $L^p(U, \omega_U)$,

$$\begin{aligned} \|\mathcal{H}_{\psi}f\|_{L^{p}(U,\omega_{U})} &\leq (d_{\psi})^{\frac{1}{p}} \|\psi\|_{L^{1}(U,\omega_{U})}^{\frac{1}{p^{*}}} \|f\|_{L^{p}(V,\omega_{V})}, \\ \|\mathcal{H}_{\psi}^{*}g\|_{L^{p}(V,\omega_{V})} &\leq (d_{\psi})^{\frac{1}{p^{*}}} \|\psi\|_{L^{1}(U,\omega_{U})}^{\frac{1}{p}} \|g\|_{L^{p}(U,\omega_{U})}. \end{aligned}$$

2 Another L^p boundedness

To obtain the L^p boundedness of \mathcal{H}_{ψ} in Theorem 1.3 we use the interpolation. Here we shall calculate the L^p norm of \mathcal{H}_{ψ} directly. We put

$$\rho(t) = \inf_{u \in U} \frac{|\det DF_t(u)|\omega_V(F_t(u))|}{\omega_U(u)}$$

and for $1 \leq p \leq \infty$,

$$C^{p}_{\psi,\rho} = \int_{U} \psi(t)\rho(t)^{-\frac{1}{p}}\omega_{U}(t)dt.$$
(4)

Theorem 2.1. Let $1 \le p \le \infty$ and $\frac{1}{p} + \frac{1}{p^*} = 1$. Then for all f in $L^p(V, \omega_V)$ and all g in $L^p(U, \omega_U)$,

$$\begin{aligned} \|\mathcal{H}_{\psi}f\|_{L^{p}(U,\omega_{U})} &\leq C^{p}_{\psi,\rho} \|f\|_{L^{p}(V,\omega_{V})}, \\ \|\mathcal{H}_{\psi}^{*}g\|_{L^{p}(V,\omega_{V})} &\leq C^{p^{*}}_{\psi,\rho} \|g\|_{L^{p}(U,\omega_{U})} \end{aligned}$$

provided that $C^p_{\psi,\rho} < \infty$ and $C^{p^*}_{\psi,\rho} < \infty$ respectively.

Proof. We shall prove the second inequality. Then for $g \in L^p(U, \omega_U)$ and $1 \leq p < \infty$, we see that

$$\|g_{F_{t}}^{*}\|_{L^{p}(V,\omega_{V})}^{p} = \int_{U} |g(u)|^{p} \Big(\frac{|\det DF_{t}(u)|\omega_{V}(F_{t}(u))}{\omega_{U}(u)}\Big)^{1-p} \omega_{U}(u) du$$

$$\leq \rho(t)^{1-p} \|g\|_{L^{p}(U,\omega_{U})}^{p}.$$
(5)

Hence, by the definition of $\mathcal{H}^*_{\psi}g$ and (5), we see that

$$\begin{aligned} \|\mathcal{H}^*_{\psi}g\|_{L^p(V,\omega_V)} &\leq \int_U \psi(t)\omega_U(t)\|g^*_{F_t}\|_{L^p(V,\omega_V)}dt\\ &\leq \int_U \psi(t)\rho(t)^{\frac{1}{p}-1}\omega_U(t)dt \cdot \|g\|_{L^p(U,\omega_U)} \end{aligned}$$

The case $p = \infty$ is obvious. The first inequality follows by the duality. Here we give a direct proof. We suppose $p < \infty$. We see that

$$\begin{aligned} & \|\mathcal{H}_{\psi}f\|_{L^{p}(U,\omega_{U})} \\ & \leq \int_{U} \psi(t)\omega_{U}(t)\|f(F_{t}(\cdot))\|_{L^{p}(U,\omega_{U})}dt \\ & \leq \int_{U} \psi(t)\omega_{U}(t)\Big(\int_{V} |f(v)|^{p}\Big(\frac{|\det DF_{t}(F_{t}^{-1}(v))|\omega_{V}(v)}{\omega_{U}(F_{t}^{-1}(v))}\Big)^{-1}\omega_{V}(v)dv\Big)^{\frac{1}{p}}dt \quad (6) \\ & \leq \int_{U} \psi(t)\rho(t)^{-\frac{1}{p}}\omega_{U}(t)dt \cdot \|f\|_{L^{p}(V,\omega_{V})}. \end{aligned}$$

The case $p = \infty$ is obvious.

Remark 2.2. We note that $d_{\psi} \leq C^1_{\psi,\rho}$. Moreover, by using the Hölder inequality, it follows that $C^p_{\psi,\rho} \leq (C^1_{\psi,\rho})^{\frac{1}{p}} \|\psi\|^{\frac{1}{p_*}}_{L^1(U,\omega_U)}$ and thus, $C^1_{\psi,\rho} \geq (C^p_{\psi,\rho})^p \|\psi\|^{1-p}_{L^1(U,\omega_U)}$. Therefore, if

$$\frac{|\det DF_t(u)|\omega_V(F_t(u))}{\omega_U(u)}$$

does not depend on u (see §3), then it follows that $d_{\psi} = C^{1}_{\psi,\rho}$ and thus,

$$(d_{\psi})^{\frac{1}{p}} \|\psi\|_{L^{1}(U,\omega_{U})}^{\frac{1}{p^{*}}} \ge C_{\psi,\rho}^{p}$$

3 Variants of weights

Our modified Hausdorff operator \mathcal{H}_{ψ} depends on a weight function ω_U . Therefore, by changing the weight, we can treat the Hausdorff operators for the Euclidean space, the Dunkl hypergroup, and the Jacobi hypergroup similarly

3.1 Euclidean space

Let $A(u) = (a_{ij}(u))_{i,j=1}^n$ be an $n \times n$ matrix, where coefficients $a_{ij}(u)$ are measurable functions of u and A(u) may be singular on a set of measure zero. We take $U = V = \mathbb{R}^n$,

and $w_U(x) = w_V(x) = 1$. Here xA(t) is the multiplication of the row vector x and the matrix A(t). Then

$$g_{F_t}^*(x) = g\left(xA^{-1}(t)\right) |\det(A(t))|^{-1}$$

Hence the Hausdorff type operator and its dual are given as follows.

$$(\mathcal{H}_{\psi}f)(u) = \int_{\mathbb{R}^n} \psi(t) f(uA(t)) dt,$$

$$\left(\mathcal{H}_{\psi}^*g\right)(v) = \int_{\mathbb{R}^n} \psi(t) g(vA^{-1}(t)) |\det(A(t))|^{-1} dt.$$

Moreover, it follows that

$$\rho(t) = \inf_{u \in U} \frac{|\det DF_t(u)|\omega_V(F_t(u))|}{\omega_U(u)} = |\det A(t)|.$$

Then the following corollary is obtained (see [2]).

Corollary 3.1. Let $A(t) = (a_{ij}(t))$ be an $n \times n$ matrix and may be singular on a set of measure zero in \mathbb{R}^n . Let $1 \le p \le \infty$ and $\frac{1}{p} + \frac{1}{p^*} = 1$. We put

$$C^p_{\psi,A} = \int_{\mathbb{R}^n} \psi(t) |\det A(t)|^{-\frac{1}{p}} dt.$$

Then for all f in $L^p(\mathbb{R}^n)$,

$$\begin{aligned} \|\mathcal{H}_{\psi}f\|_{L^{p}(\mathbb{R}^{n})} &\leq C_{\psi,A}^{p} \|f\|_{L^{p}(\mathbb{R}^{n})}, \\ \|\mathcal{H}_{\psi}^{*}f\|_{L^{p}(\mathbb{R}^{n})} &\leq C_{\psi,A}^{p^{*}} \|f\|_{L^{p}(\mathbb{R}^{n})} \end{aligned}$$

provided that $C^p_{\psi,A} < \infty$ and $C^{p^*}_{\psi,A} < \infty$ respectively.

Remark 3.2. Let A(t) be a diagonal matrix $\operatorname{diag}(t_1, t_2, \cdots, t_n)$. Then $g_{F_t}^*(x)$ is a kind of dilation of g. Actually, when n = 1, $g_{F_t}^*(x)$ coincides with the dilation of g and \mathcal{H}_{ψ} is the classical one-dimensional Hausdorff operator. However, there are various kinds of extension of the classical Hausforff operators. For example, in [5], the case that $U = V = \mathbb{R}^n$, $\omega_U(x) = \omega_V(x) = \|x\|^{\alpha}$ and $F_t(x) = \frac{x}{\|t\|}$ is investigated.

3.2 Dunkl hypergroup

As an extension of one-dimensional Hausdorff operator, we shall consider a modified Hausdorff operator related with the Dunkl hypergroup (see [3]). Let $\kappa = (\kappa_1, \dots, \kappa_n)$ where each κ_j is a nonnegative real number. Let $d\mu_{\kappa}$ denote the associated measure given for $x = (x_1, \dots, x_n) \in \mathbb{R}^n$ by

$$d\mu_{\kappa}(x) = h_{\kappa}^2(x)dx,$$

where h_{κ} is the \mathbb{Z}_2^n -invariant function defined by

$$h_{\kappa}(x) = \prod_{j=1}^{n} |x_j|^{\kappa_j}.$$

Let $A(s) = \text{diag}(a_1(s), \dots, a_n(s))$ be a diagonal matrix, where coefficients $a_j(s)$ are measurable functions of s and A(s) may be singular on a set of measure zero. We take $U = V = \mathbb{R}^n$,

$$\begin{array}{ccccc} F_t: & \mathbb{R}^n & \longrightarrow & \mathbb{R}^n \\ & & & & & & \\ & & & & & & \\ & x & \longmapsto & xA(t), \end{array}$$

and $w_U(x) = w_V(x) = h_{\kappa}^2(x)$. Then

$$g_{F_t}^*(x) = g(xA^{-1}(t))\frac{|\det(A(t))|^{-1}}{\prod_{j=1}^n |a_j(t)|^{2\kappa_j}} = g(xA^{-1}(t))\frac{1}{\prod_{j=1}^n |a_j(t)|^{2\kappa_j+1}}.$$

Hence the modified Hausdorff operator and its dual are given as follows.

$$(\mathcal{H}_{\kappa,\psi}f)(x) = \int_{\mathbb{R}^n} \psi(s)f(xA(s))d\mu_{\kappa}(s),$$

$$(\mathcal{H}^*_{\kappa,\psi}g)(v) = \int_{\mathbb{R}^n} \psi(t)g(vA^{-1}(t))\frac{d\mu_{\kappa}(t)}{\prod_{j=1}^n |a_j(t)|^{2\kappa_j+1}}.$$

Moreover, it follows that

$$\rho(t) = \inf_{u \in U} \frac{|\det DF_t(u)|\omega_V(F_t(u))|}{\omega_U(u)} = \prod_{j=1}^n |a_j(t)|^{2\kappa_j + 1}$$

Corollary 3.3. Let $A(t) = \text{diag}(a_1(t), \dots, a_n(t))$ be a diagonal matrix and may be singular on a set of measure zero in \mathbb{R}^n . Let $1 \leq p \leq \infty$ and $\frac{1}{p} + \frac{1}{p^*} = 1$. We put

$$C^p_{\psi,A,\kappa} = \int_{\mathbb{R}^d} \psi(t) \Big(\prod_{j=1}^n |a_j(t)|^{2\kappa_j+1}\Big)^{-\frac{1}{p}} d\mu_\kappa(t).$$

Then for all f in $L^p(\mathbb{R}^n, d\mu_\kappa)$,

$$\begin{aligned} \|\mathcal{H}_{\kappa,\psi}f\|_{L^p(\mathbb{R}^n,d\mu_\kappa)} &\leq C^p_{\psi,A,\kappa} \|f\|_{L^p(\mathbb{R}^n,d\mu_\kappa)}, \\ \|\mathcal{H}^*_{\kappa,\psi}f\|_{L^p(\mathbb{R}^n,d\mu_\kappa)} &\leq C^{p^*}_{\psi,A,\kappa} \|f\|_{L^p(\mathbb{R}^n,d\mu_\kappa)}. \end{aligned}$$

provided that $C^p_{\psi,A,\kappa} < \infty$ and $C^{p^*}_{\psi,A,\kappa} < \infty$ respectively.

Next let us consider the case that $A(s) = (a_{ij}(s))$ is a non-singular upper triangular matrix with $a_{ij}(s) \ge 0$ for all $j \ge i$. Then for $u = (x_1, x_2, \dots, x_n)$,

$$\frac{|\det DF_t(u)|\omega_V(F_t(u))}{\omega_U(u)} = |\det(A(t)|\frac{\prod_{j=1}^n |\sum_{i=1}^j a_{ij}(t)x_i|^{2\kappa_j}}{\prod_{j=1}^d |x_j|^{2\kappa_j}}$$
$$= |\det(A(t)|\prod_{j=1}^n |a_{jj}(t) + \sum_{i< j} a_{ij}(t)\frac{x_i}{x_j}|^{2\kappa_j}.$$

Hence, by taking the infimum of the above over $u \in \mathbb{R}^d_+$, then the infimum $\rho(t)$ is given by $\prod_{j=1}^n |a_{jj}(t)|^{2\kappa_j+1}$. Moreover, $\{xA(t) \mid x \in \mathbb{R}^n_+\} \subset \mathbb{R}^n_+$. Then, noting (5) and (6), we can obtain the following.

Corollary 3.4. Let $A(s) = (a_{ij}(s))$ be a non-singular upper triangular matrix with $a_{ij}(s) \ge 0$ for all $j \ge i$. Let $1 \le p \le \infty$ and $\frac{1}{p} + \frac{1}{p^*} = 1$. Then for all f in $L^p(\mathbb{R}^n_+, d\mu_\kappa)$,

$$\begin{aligned} \|\mathcal{H}_{\kappa,\psi}f\|_{L^p(\mathbb{R}^n,d\mu_\kappa)} &\leq C^p_{\psi,A,\kappa} \|f\|_{L^p(\mathbb{R}^n_+,d\mu_\kappa)}, \\ \|\mathcal{H}^*_{\kappa,\psi}f\|_{L^p(\mathbb{R}^n,d\mu_\kappa)} &\leq C^{p^*}_{\psi,A,\kappa} \|f\|_{L^p(\mathbb{R}^n_+,d\mu_\kappa)}. \end{aligned}$$

provided that $C^p_{\psi,A,\kappa} < \infty$ and $C^{p^*}_{\psi,A,\kappa} < \infty$ respectively.

3.3 Jacobi hypergroup

We shall consider a modified Hausdorff operator related with the Jacobi hypergroup $(\mathbb{R}_+, *, \Delta)$ (see [6]). Let $\alpha \geq \beta \geq -\frac{1}{2}$, $(\alpha, \beta) \neq (\frac{1}{2}, \frac{1}{2})$ and put $\Delta(x) = (\sinh x)^{2\alpha+1} (\cosh x)^{2\beta+1}$ on \mathbb{R}_+ . We define the L^p -norm of a function f on \mathbb{R}_+ by

$$||f||_{L^p(\Delta)} = \left(\int_0^\infty |f(x)|\Delta(x)dx\right)^{\frac{1}{p}}.$$

Let $L^p(\Delta)$ denote the space of functions on \mathbb{R}_+ with finite L^p -norm. For $\phi \in L^1(\Delta)$ we define the dilation $\phi_t, t > 0$ of ϕ as

$$\phi_t(x) = \frac{1}{t} \frac{1}{\Delta(x)} \phi\left(\frac{x}{t}\right) \Delta\left(\frac{x}{t}\right).$$

for $x \in \mathbb{R}_+$. We see that $\|\phi_t\|_{L^1(\Delta)} = \|\phi\|_{L^1(\Delta)}$. We take $U = V = \mathbb{R}_+$,

$$\begin{array}{ccccc} F_t : & \mathbb{R}_+ & \longrightarrow & \mathbb{R}_+ \\ & & & & & \\ & & & & \\ & & & \\ & & & & \\ &$$

and $w_U(x) = w_V(x) = \Delta(x)$. Then $L^1(U, \omega_U) = L^1(V, \omega_V) = L^1(\Delta)$ and

$$g_{F_t}^*(x) = g(F_t^{-1}(x)) \frac{\omega_U(F_t^{-1}(x))}{\omega_V(x)} |\det DF(F_t^{-1}(x))|^{-1} \\ = \frac{1}{t} \frac{1}{\Delta(x)} g\left(\frac{x}{t}\right) \Delta\left(\frac{x}{t}\right) = g_t(x).$$

Hence the modified Hausdorff operator and its dual are given as follows.

$$(\mathcal{H}_{\psi}f)(u) = \int_{0}^{\infty} f(ut)\psi(t)\Delta(t)dt,$$

$$(\mathcal{H}_{\psi}^{*}g)(v) = \int_{0}^{\infty} g_{t}(v)\psi(t)\Delta(t)dt.$$

Corollary 3.5. We suppose that $\psi \in L^1(\Delta)$. Then for all $f \in L^{\infty}(\Delta)$,

$$\|\mathcal{H}_{\psi}f\|_{L^{\infty}(\Delta)} \leq \|\psi\|_{L^{1}(\Delta)}\|f\|_{L^{\infty}(\Delta)}$$

and for all $g \in L^1(\Delta)$,

$$\|\mathcal{H}_{\psi}^{*}g\|_{L^{1}(\Delta)} \leq \|\psi\|_{L^{1}(\Delta)} \|g\|_{L^{1}(\Delta)}$$

We note that if t < 1, then

$$\rho(t) = \inf_{0 \le u < \infty} \frac{t\Delta(tu)}{\Delta(u)} = 0$$

and if $t \ge 1$, then $\rho(t) = t^{2\alpha+2}$, because $t \sinh u \le \sinh(tu)$. Therefore, if $\psi \in L^1(\Delta)$ is supported on $[1, \infty)$, then $C^p_{\psi,\rho}$ equals

$$C^p_{\psi,\Delta} = \int_1^\infty \psi(t) t^{-\frac{2\alpha+2}{p}} \Delta(t) dt \le \|\psi\|_{L^1(\Delta)}$$

and also, $C_{\psi,\Delta}^{p^*} \leq \|\psi\|_{L^1(\Delta)}$ for $\frac{1}{p} + \frac{1}{p^*} = 1$. Therefore, we can obtain the following.

Corollary 3.6. Let $1 \leq p \leq \infty$. We suppose that $\psi \in L^1(\Delta)$ and is supported on $[1, \infty)$. Then for all f in $L^p(\Delta)$,

$$\begin{aligned} \|\mathcal{H}_{\psi}f\|_{L^{p}(\Delta)} &\leq C^{p}_{\psi,\Delta} \|f\|_{L^{p}(\Delta)}, \\ \|\mathcal{H}^{*}_{\psi}f\|_{L^{p}(\Delta)} &\leq C^{p^{*}}_{\psi,\Delta} \|f\|_{L^{p}(\Delta)}. \end{aligned}$$

Acknowledgment. The authors would like to thank the referee for his valuable comments and suggestions.

References

- V. Burenkov and E. Liflyand, Hausdorff operators on Morrey-type spaces. Kyoto Journal of Mathematics, 60 (2020) pp. 93-106
- [2] G. Brown and F. Moricz, Multivariate Hausdorff operators on the spaces $L^p(\mathbb{R}^n)$. J. Math. Anal. Appl., 271 (2002) pp. 443-454.
- [3] C. F. Dunkl, Differential-difference operators associated to reflection group. Trans. Am. Math. Soc., 311 (1989) pp. 167-183.
- [4] J. Guo, L. Sun and F. Zhao, Hausdorff Operators on the Heisenberg Group. Acta Math. Sin., 31 (2015) pp. 1703-1714.

- [5] G. Gao, X. Wu, A. Hussain, G. Zhao, Some estimates for Hausdorff operators. J. Math. Inequal., 271 (2015) pp. 641-651.
- [6] T. Koornwinder, A new proof of a Paley-Wiener type theorem for the Jacobi transform. Ark. Mat., 13 (1975) pp. 145-159.
- [7] Q. Zhang and J. Zhao, Some estimates of bilinear Hausdorff operators on stratified groups. Anal. Theory Appl., 36 (2020) pp. 200-216.

Communicated by Eiichi Nakai