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Abstract

In this paper, we clarify mainly some aspects concerning the quantum MV (QMV) algebras as
non-lattice generalizations of MV algebras. We redefine the QMV algebras as involutive m-BE al-
gebras and we introduce three generalizations: the pre-MV (PreMV), the metha-MV (MMV) and
the orthomodular (OM) algebras. We prove that the antisymmetric QMV algebras - but also the
antisymmetric PreMV and antisymmetric MMV algebras - coincide with the MV algebras, while the
antisymmetric OM algebras are generalizations of the MV algebras. We introduce also the transitive
QMV, PreMV, MMV, OM algebras and finally we put the QMV and the transitive QMV algebras on
the same “map” with the MV algebras. The transitive antisymmetric orthomodular algebra, a proper
generalization of MV algebra inside the class of m-BCK algebras, is pointed out. Many examples are
provided.
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1 Introduction

The algebraists work usually with the commutative additive groups and with the positive (right) cone of
a partially-ordered commutative group (G,≤,+,−, 0) , where there are essentially a sum ⊕ = + and an
element 0. Sometimes, the negative (left) cone is needed also, where there are essentially a product � = +
and an element 1 = 0. They work with algebras that have associated an (pre-order) order relation, which
usually does not appear explicitely in the definitions. The presence of the (pre-order) order relation implies
the presence of the (generalized) duality principle. Thus, each algebra has a dual one, the (pre-order)
order relation has a dual one. We have given names to the dual algebras [15], [17], [19]: “left” algebra and
“right” algebra, names connected with the left-continuity of a t-norm and with the right-continuity of a
t-conorm, respectively. Hence, the algebraists usually work with the commutative right-unital magmas.

By contrary, the logicians work with the logic of truth, where the truth is represented by 1, and there is
essentially one implication; we could name this logic “left-logic”. One can imagine also a “right-logic”, as a
logic of false, where the false is represented by 0. Hence, the logicians usually work with the commutative
left-algebras of logic (or the algebras of left-logic).
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Summarizing, for algebraists, the appropriate algebras are the unital magmas, not the algebras of logic,
and among the unital magmas, the appropriate algebras are the right-algebras. For logicians, by contrary,
the appropriate algebras are the algebras of logic, not the unital magmas, and among the algebras of
logic, the appropriate algebras are the left-algebras. This explains why, for examples, the MV algebras
were initially introduced as right-unital magmas, while the Wajsberg algebras were initially introduced as
left-algebras of logic.

In this paper, regarding from (algebras of) logic side, we shall work with left-algebras (left-unital mag-
mas), in principal, therefore, the unital magmas will be defined multiplicatively, in principal.

Thus, the commutative algebraic structures connected directly or indirectly with classical/non-classical
logics belong to two parallel “worlds”:

1. the “world” of left-algebras of logic, where there are essentially one implication,→ (two, in the non-
commutative case), and an element 1 (that can be the last element); the algebras (A,→, 1), verifying the
basic property (M): 1→ x = x, are called left-M algebras [17], [19]; among the M algebras with additional
operations, there are the algebras (A,→, 0, 1) (where a negation can be defined by: x− = x → 0), or
(A,→,−, 1), with 1− = 0, where 1 is the last element, verifying (or not) (Ex) (Exchange): x → (y →
z) = y → (x → z); an internal binary relation can be defined by: x ≤ y

def.⇐⇒ x → y = 1 (≤ can be a
pre-order, an order, or even a lattice order); algebras belonging to this “world” are [17], [19]: the bounded
MEL, BE and aBE, pre-BCK algebras, BCK algebras, bounded BCK algebras, BCK(P) algebras, Hilbert
algebras, Wajsberg algebras, implicative-Boolean algebras, etc. A “Big map” (hierarchy of algebras of
logic) is presented in ([19], Figure 1).

2. the “world” of left-algebras, where there are essentially a product, �, and an element 1 (that can be
the last element); the algebras (A,�, 1), verifying the corresponding basic properties (PU): 1�x = x and
(Pcomm): x� y = y � x, are called commutative left-unital magmas; among the commutative left-unital
magmas with additional operations, there are the algebras [19] (A,�,−, 1), with 1− = 0, where 1 is the
last element, verifying (or not) (Pass) (associativity of product): x � (y � z) = (x � y) � z; an internal
binary relation can be defined by: x ≤m y ⇐⇒ x � y− = 0 (≤m can be a pre-order, an order, or even a
lattice order), where ‘m’ comes from ‘magma’; algebras belonging to this “world” are [17], [19]: the m-
MEL, m-BE and m-aBE, m-pre-BCK algebras, m-BCK algebras, pocrims, (bounded) lattices, residuated
lattices, BL algebras, MTL algebras, NM algebras, MV algebras, Boolean algebras, etc. A corresponding
“Big map” (hierarchy of algebras) is presented in ([19], Figure 10) - see Figure 1.

MV algebras were introduced in 1958 by C.C. Chang [4], as a model of ℵ0-valued  Lukasiewicz logic.
Chang’s definition of MV algebras has 17 axioms. There is a huge literature concerning the MV algebras;
we mention only a reference book, [3].

Between the two parallel “ worlds” there are some connections, as for examples: the equivalence
between BCK(P) algebras and pocrims, in the non-involutive case, and the definitional equivalence between
Wajsberg algebras and MV algebras, in the involutive case ((x−)− = x). In [19], the two general Theorems

9.1 and 9.3 connect the two ’worlds’ in the involutive case, by the inverse maps Φ (x� y
def.
= (x→ y−)−)

and Ψ (x → y
def.
= (x � y−)−) (Theorem 9.1 is for algebras with last element, while Theorem 9.3 is for

algebras without last element); recall, for examples, that ≤⇐⇒≤m, that (M)⇐⇒ (PU) + (Pcomm), (Ex)
⇐⇒ (Pass) etc. These theorems can be used to prove the definitionally equivalence (d.e.) between the
analogous involutive (left-) algebras from the two “worlds” simply by choosing appropriate definitions of
these algebras; for examples, one can prove the d.e. between implicative-Boolean algebras and Boolean
algebras, between involutive BCK algebras and (involutive) m-BCK algebras etc..

Beside the classical and non-classical logics, there exist the quantum logics. Examples of algebraic
structures connected with quantum logics (= quantum structures/algebras) are the bounded implicative
(implication) lattices, the De Morgan algebras, the ortholattices, the orthomodular lattices, the quantum
MV algebras (a better name is perhaps quantum-MV algebras, because they are generalizations of MV
algebras, and not particular cases of MV algebras, i.e. they are not MV algebras that are ‘quantum’), etc.

Quantum-MV algebras (or QMV algebras) were introduced by Roberto Giuntini in [7] (see also [8], [9],
[10], [11], [12], [13], [6]), as non-lattice theoretic generalizations of MV algebras and as non-idempotent
generalizations of orthomodular lattices. Cf. [6], from an algebraic point of view, MV algebras and QMV
algebras share a common set of axioms, which S. Gudder [14] has called supplement algebra (S algebra).
An MV algebra is an S-algebra verifying the axiom (MV), while an QMV algebra is an S algebra verifying
the axiom (QMV), which is weaker than (MV).
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Orthomodular lattices (particular ortholattices) generalize the Boolean algebras. They have arisen,
cf. [28], “in the study of quantum logic, that is, the logic which supports quantum mechanics and which
does not conform to classical logic. As noted by Birkhoff and von Neumann in 1936 [2], the calculus of
propositions in quantum logic “is formally indistinguishable from the calculus of linear subspaces [of a
Hilbert space] with respect to set products, linear sums and orthogonal complements” in the role of and,
or and not, respectively. This has led to the study of the closed subspaces of a Hilbert space, which form
an orthomodular lattice in contemporary terminology. As often happens in algebraic logic, the study of
orthomodular lattices has tremendously developed, both for their interest in logic and for their own sake,
see Kalmbach [26]”.

The connections between algebras of logic/algebras and quantum algebras were not very clear. But, in
papers [19], [23], we established important connections, by redefining equivalently the bounded involutive
lattices and De Morgan algebras as involutive m-MEL algebras and the ortholattices, the MV and the
Boolean algebras as involutive m-BE algebras, verifying some properties, and then putting all of them on
the involutive “Big map”; thus, we have proved that the quantum algebras: bounded involutive lattices,
De Morgan algebras and the ortholattices belong, in fact, to the “world” of left-algebras (involutive unital
magmas).

In this paper, we clarify, mainly, some aspects concerning the quantum-MV algebras as non-lattice
generalizations of MV algebras. We put MV algebras and quantum-MV algebras on the involutive “Big
map”, thus proving that quantum-MV algebras also belong, in fact, to the “world” of left-algebras (invo-
lutive left-unital magmas). We continue here the research from [23], [24], based on [19], in the “world”
of involutive left-algebras of the form (A,�,−, 1) verifying (Pass), with 1− = 0, 1 being the last element.
This paper, like [19], [23], [24], presents the facts in the same unifying way, which consists in fixing unique
names for the defining properties, making lists of these properties and then using them for defining the
different algebras and for obtaining results.

The paper is organized as follows. In Section 2 (Preliminaries), we recall the original definitions
of quantum MV (QMV) algebras and of orthomodular lattices and also the definitions of MV algebras,
m-MEL, m-BE, m-pre-BCK, m-BCK algebras and some results from [19]. In Section 3 (Redefining the
QMV algebras), we introduce the operation ∧Bm (beside ∧Mm ) and the binary relation ≤B

m (beside ≤M
m )

and prove that ≤m⇐⇒≤B
m. We redefine the QMV algebras as involutive m-BE algebras verifying the

property (Pqmv), just as we have redefined in [19] the MV algebras as involutive m-BE algebras verifying
the property (∧m-comm). We prove that (Pqmv) is equivalent with only two properties, (Pmv) and (Pq)
(Theorem 3.19); we prove that (Pq) is equivalent with (Pom), the property characterizing the orthomod-
ular lattices among the ortholattices - this being the core of the paper (Theorem 3.26), by its difficulty.
We also prove that, if (Pom) holds, then (Pmv) is equivalent with (∆m), the largest non-antisymmetric
generalization of (∧m-comm) (Theorem 3.32); thus, finally, (Pqmv) is equivalent with (∆m) and (Pom).
In Section 4 (Three generalizations of QMV algebras), we introduce three generalizations of QMV
algebras: the pre-MV (PreMV) algebras, the metha-MV (MMV) algebras and the orthomodular (OM)
algebras, and study their transitive and/or antisymmetric members. We clarify the connection between
QMV and MV algebras, by proving that MV algebras coincide with the antisymmetric QMV algebras -
but also with the antisymmetric preMV and with the antisymmetric MMV algebras - (Corollary 4.10),
result enabling us to put QMV algebras and MV algebras on the same “map”. We point out the transitive
QMV (tQMV) algebra, a particular QMV algebra, and the transitive antisymmetric orthomodular (taOM)
algebra, a proper generalization of MV algebra inside the class of m-BCK algebras. Finally, we put MV
algebras and QMV, tQMV algebras on the same “map” (the involutive “Big map”); there is one open
problem. In Section 5 (Concluding remarks and future work), we present conclusions and future
work. In Section 6 (Examples), we present nine examples of the involved algebras.

Some of the proofs and of the examples were found by the powerful computer program Prover9/Mace4
(version dec. 2007) created by William W. McCune (1953 - 2011). Therefore, we dedicate this paper to
his memory.

2 Preliminaries

2.1 The original definition of quantum-MV algebras. The property (Wom)

Definition 2.1 ([6], Definition 2.1.1) [14]
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A supplement algebra, or an S algebra for short, is an algebra M = (M,⊕,−, 0, 1) consisting of a
nonempty set M , two constant elements 0, 1 in M , a unary operation − and a binary operation ⊕ on M
satisfying the following axioms: for all x, y, z ∈M ,
(S1) x⊕ y = y ⊕ x, (S2) x⊕ (y ⊕ z) = (x⊕ y)⊕ z, (S3) x⊕ x− = 1, (S4) x⊕ 0 = x, (S5) (x−)− = x (or
x= = x), (S6) 0− = 1, (S7) x⊕ 1 = 1.

On every S algebra, the following operations can be introduced: x � y := (x− ⊕ y−)−, x u y := (x ⊕
y−)� y, x t y := (x� y−)⊕ y.

QMV algebras were introduced by Roberto Giuntini [7], as S algebras satisfying additionally five
axioms. The equivalence of the five axioms with the next axiom (QMV) was proved in [12].

Definition 2.2 ([6], Definition 2.3.1) A quantum MV algebra, or a QMV algebra for short, is an S algebra
M = (M,⊕,−, 0, 1) satisfying: for all x, y, z ∈M ,
(QMV) x⊕ ((x− u y) u (z u x−)) = (x⊕ y) u (x⊕ z).

Note that QMV algebras were originally defined as right-algebras (see more on left- and right-
algebras in [15], [17], [19]).

The most used definition of MV algebras is the following:

Definition 2.3 [3] An MV algebra is an algebra A = (A,⊕,−, 0) satisfying: for all x, y, y ∈ A,

(MV1) x⊕0 = x, (MV2) x⊕y = y⊕x, (MV3) x⊕ (y⊕z) = (x⊕y)⊕z, (MV4) x⊕1 = 1, where 1
def.
= 0−,

(MV5) (x−)− = x (or x= = x), (MV6) = (MV) (x− ⊕ y)− ⊕ y = (y− ⊕ x)− ⊕ x.

Note that MV algebras were defined as right-algebras.

Definition 2.4 (See [28], [5]) An ortholattice is an algebra A = (A,∧,∨,−, 0, 1) such that the reduct
(A,∧,∨, 0, 1) is a bounded lattice and the unary operation − satisfies: for all x, y ∈ A,

(DN) (x−)− = x (or x= = x) (Double Negation),
(DeM1) (x ∨ y)− = x− ∧ y− (De Morgan law 1) and, dually,
(DeM2) (x ∧ y)− = x− ∨ y− (De Morgan law 2),

and the complementation laws:
(m-WRe) x ∧ x− = 0 (noncontradiction principle) and, dually,
(m-VRe) x ∨ x− = 1 (excluded middle principle).

Definition 2.5 An orthomodular lattice is an ortholattice (A,∧,∨,−, 0, 1) which satisfies the orthomod-
ular law: for all x, y ∈ A,
(OML) x ≤ y =⇒ x ∨ (x− ∧ y) = y.

Note that property (OML) is not an identity, but there are many identities equivalent to (OML) within
the class of ortholattices [28], as for example:

Proposition 2.6 ([28], Corollary 4.10.3) The following identity characterizes orthomodular lattices among
ortholattices:
(Wom) (x ∧ y) ∨ ((x ∧ y)− ∧ x) = x.

Note that orthomodular lattices were originally defined as left-algebras.
The dual of (Wom) is:

(Vom) (x ∨ y) ∧ ((x ∨ y)− ∨ x) = x,
where ‘W’ comes from ‘wedge’ (the LATEX command for the meet, ∧) and ‘V’ comes from ‘vee’ (the LATEX
command for the join, ∨).

2.2 The “Big map” of algebras. The involutive m-BE algebras

Recall from [19] the following:

Let AL = (AL,�,− = −L

, 1) be an algebra of type (2, 1, 0) and define 0
def.
= 1−. Define an internal

binary relation ≤m on AL by: for all x, y ∈ AL,

(m-dfrelP) x ≤m y
def.⇐⇒ x� y− = 0.

Consider the following list m-A of basic properties that can be satisfied by AL [19]:
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(PU) 1� x = x = x� 1 (unit element of product, the identity),
(Pcomm) x� y = y � x (commutativity of product),
(Pass) x� (y � z) = (x� y)� z (associativity of product);

(Neg1-0) 1− = 0,
(Neg0-1) 0− = 1;

(m-An) (x� y− = 0 and y � x− = 0) =⇒ x = y (antisymmetry),
(m-B) [(x� y−)− � (x� z)]� (y � z)− = 0,
(m-BB) [(z � x)− � (y � x)]� (y � z−)− = 0,
(m-*) x� y− = 0 =⇒ (z � y−)� (z � x−)− = 0,
(m-**) x� y− = 0 =⇒ (x� z)� (y � z)− = 0,

(m-L) x� 0 = 0 (last element),
(m-Re) x� x− = 0 (reflexivity),
(m-Tr) (x� y− = 0 and y � z− = 0) =⇒ x� z− = 0 (transitivity),

etc.,
where ’m’ comes from ’magma’.

Dually, let AR = (AR,⊕,− = −R

, 0) be an algebra of type (2, 1, 0) and define 1
def.
= 0−. Define an

internal binary relation ≥m on AR by: for all x, y ∈ AR,

(m-dfrelS) x ≥m y
def.⇐⇒ x⊕ y− = 1.

The list of dual properties is omitted.
Recall from [19] the definitions of the algebras needed in this paper (the dual ones are omitted):

Let AL = (AL,�,−, 1) be an algebra of type (2, 1, 0) through this paper. Define 0
def.
= 1− (hence

(Neg1-0) holds) and suppose that 0− = 1 (hence (Neg0-1) holds too). We say that AL is a [19]:
- left-m-MEL algebra, if (PU), (Pcomm), (Pass), (m-L) hold;
- left-m-BE algebra, if (PU), (Pcomm), (Pass), (m-L), (m-Re) hold;
- left-m-pre-BCK algebra, if (PU), (Pcomm), (Pass), (m-L), (m-Re) and (m-BB) hold;
- left-m-BCK algebra, if (PU), (Pcomm), (Pass), (m-L), (m-Re), (m-An) and (m-BB) hold.
Denote by m-MEL, m-BE, ..., m-BCK these classes of left-algebras, respectively.
We say that AL is [19] reflexive, if ≤m is reflexive (i.e. (m-Re) holds); transitive, if ≤m is transitive

(i.e. (m-Tr) holds); antisymmetric, if ≤m is antisymmetric (i.e. (m-An) holds). If X is a class of algebras,
we shall denote by tX (aX, atX=taX) the subclass of all transitive (antisymmetric, transitive and
antisymmetric, respectively) algebras of X.

A hierarchy of classes of such algebras will be represented by a kind of Hasse-type diagram, where the
algebras are represented as follows:

- reflexive algebras by ©

- antisymmetric algebras by ◦

- transitive algebras by •

- reflexive and antisymmetric algebras by©◦

- reflexive and transitive algebras by©•

- ordered algebras by z
and a class of algebras which does not verify (m-Re), (m-An), (m-Tr), by 2.

In ([19], Figure 10) - see next Figure 1 - the “Big map”, connecting the commutative left-unital
magmas, including these new algebras, was drawn.

We say that an algebra is involutive, if it verifies (DN). If X is a class of algebras, we shall denote
by X(DN) the subclass of all involutive algebras of X. By ([19], Theorem 6.12), in any involutive m-BE
algebra we have the equivalences: (m-BB) ⇔ (m-B) ⇔ (m-**) ⇔ (m-*) ⇔ (m-Tr).

Note that: m-pre-BCK(DN) = pre-m-BCK(DN) (= m-tBE(DN)).
Any left-m-BCK algebra is involutive, by ([19], Theorem 6.13). We write: m-BCK= m-BCK(DN)

(= m-taBE(DN)). Note that an (involutive) m-BCK algebra satisfies all the properties in the list m-A
of properties and, additionally, (DN) and other properties.
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Note that the binary relation ≤m is only reflexive in m-BE(DN), it is a pre-order in m-pre-
BCK(DN) and it is an order in m-BCK.

2.2.1 Involutive m-MEL algebras

Let AL = (AL,�,−, 1) be an involutive left-m-MEL algebra. Because of the axiom (DN), we have
introduced in [23] the new operation sum, ⊕, the dual of product, �, by: for all x, y ∈ AL,

(1) x⊕ y
def.
= (x− � y−)−.

Hence,

(2) x� y = (x− ⊕ y−)−.

Then, (AL,⊕,−, 0) is an involutive right-m-MEL algebra. We have: x ≤m y ⇐⇒ y ≥m x.
Beside the old, natural binary relation ≤m and its dual ≥m, we have introduced in [23] a new binary

relation:

(m-dfP) x ≤P
m y

def.⇐⇒ x� y = x and, dually,

(m-dfS) x ≥S
m y

def.⇐⇒ x⊕ y = x.
By ([23], Proposition 3.11), ≤P

m is antisymmetric and transitive and 0 ≤P
m x ≤P

m 1, for any x.

With the notations from this subsection, Definition 2.3 of MV algebras becomes [19]:

Definition 2.7
(i) A left-MV algebra is an algebra AL = (AL,�,− = −

L

, 1) of type (2, 1, 0) verifying (PU), (Pcomm),
(Pass), (m-L), (DN) and:
(∧m-comm) (x− � y)− � y = (y− � x)− � x.

(i’) Dually, a right-MV algebra is an algebra AR = (AR,⊕,− = −R

, 0) of type (2, 1, 0) verifying (SU),
(Scomm), (Sass), (m-LR), (DN) and:
(∨m-comm) (x− ⊕ y)− ⊕ y = (y− ⊕ x)− ⊕ x.

We recall the following important remark, which was the motivation of paper [19]:
(i) The left-MV algebra is just the involutive left-m-MEL algebra verifying (∧m-comm).
(i’) Dually, the right-MV algebra is just the involutive right-m-MEL algebra verifying (∨m-comm).

Denote by MV the class of all left-MV algebras and by MVR the class of all right-MV algebras.

Proposition 2.8 Let AL = (AL,�,−, 1) be an involutive left-m-MEL algebra. Then:
(∧m − comm) ⇐⇒ (∨m − comm).

Proof. Routine. 2

2.2.2 Involutive m-BE algebras. The property (Pom)

Let AL = (AL,�,−, 1) be an involutive left-m-BE algebra. Then, (AL,⊕,−, 0) is an involutive right-m-BE
algebra.

Remark 2.9 An S algebra (Definition 2.1) is just an involutive right-m-BE algebra.

Remarks 2.10 (The dual one is omitted)
(i) Since (∧m-comm) implies (m-Re), by ([19], (mB1)), it follows that any left-MV algebra is in

fact an involutive left-m-BE algebra verifying (∧m-comm).
(ii) Since (∧m-comm) implies also (m-An) and (m-BB) (⇔ . . .⇔ (m-Tr)), by ([19], (mB2), (mCBN1)),

respectively, i.e. we have:

(3) (∧m − comm) =⇒ (m−An) + (m− Tr),
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it follows that any left-MV algebra is in fact a left-m-BCK algebra, i.e. we have:

MV ⊂ m−BCK = m−BCK(DN)(= m− taBE(DN)).

(iii) Moreover, by ([19], Theorem 6.21 ), the class of left-MV algebras is d.e. with the class of ∧m-
commutative (involutive) left-m-BCK algebras (i.e. left-m-BCK algebras verifying (∧m-comm)).

In ([19], Figure 8), the connections between m-BE algebras, m-BCK algebras, MV algebras, ortholat-
tices and Boolean algebras were established, thus putting MV algebras, ortholattices and Boolean algebras
on the “map” (the right side of the involutive “Big map”).

We have redefined equivalently the ortholattices (Definition 2.4) in [19], [23] as follows (Definition 2):
(i) A left-ortholattice is a (involutive) left-m-BE algebra AL = (AL,�,−, 1) verifying:

(m-Pimpl) [(x� y−)− � x−]− = x.
(i’) Dually, a right-ortholattice is a (involutive) right-m-BE algebra AR = (AR,⊕,−, 0) verifying:

(m-Simpl) [(x⊕ y−)− ⊕ x−]− = x.
It follows that an orthomodular lattice (Definition 2.5) can be redefined equivalently as follows (Defi-

nition 2):
(i) An orthomodular left-lattice is a (involutive) left-m-BE algebra AL = (AL,�,−, 1) verifying (m-

Pimpl) and (Pom) ((Wom) becomes (Pom)), where:
(Pom) (x� y)⊕ ((x� y)− � x) = x.

(i’) Dually, an orthomodular right-lattice is a (involutive) right-m-BE algebra AR = (AR,⊕,−, 0)
verifying (m-Simpl) and (Som) ((Vom) becomes (Som)), where:
(Som) (x⊕ y)� ((x⊕ y)− ⊕ x) = x.

Thus, (Pom) is the property characterizing the orthomodular left-lattices among the left-
ortholattices (Definitions 2). It will play a major role in QMV algebras.

3 Redefining the QMV algebras

Remark 3.1 Starting from the equality from the property

(∧m − comm) (x− � y)− � y = (y− � x)− � x,

verified by a left-MV algebra, we could introduce two different ’twin’ operations, ∧Mm (’M’ comes from ’MV
algebra’) and ∧Bm (’B’ comes from ’Boolean algebra’), by: for all x, y:
x ∧Mm y = (x− � y)− � y and x ∧Bm y = (y− � x)− � x.
Then, (∧m-comm) would mean: either

(∧Mm -comm) x ∧Mm y = y ∧Mm x or
(∧Bm-comm) x ∧Bm y = y ∧Bm x.

In left-MV algebras, the two operations ∧Mm and ∧Bm are equal, but in general, in an involutive left-m-
MEL algebra, they are different; but note that: x∧Mm y = y ∧Bm x, which means, in the finite case, that the
matrix of ∧Bm is the transposed matrix of that of ∧Mm and vice-versa.

Following the above Remark 3.1, we shall introduce in an involutive left-m-MEL algebra AL =
(AL,�,−, 1) the following operations:

(4) x ∧Mm y
def.
= (x− � y)− � y

(Pcomm)
= y � (y � x−)− and, dually,

(5) x ∨Mm y
def.
= (x− ∧Mm y−)− = [(x� y−)− � y−]− = (x� y−)⊕ y = (x− ⊕ y)− ⊕ y = y ⊕ (y ⊕ x−)−

and

(6) x ∧Bm y
def.
= (y− � x)− � x

(Pcomm)
= x� (x� y−)− = x� (x→ y) = y ∧Mm x and, dually,

(7) x∨Bmy
def.
= (x−∧Bmy−)− = [(y�x−)−�x−]− = (y�x−)⊕x = (y−⊕x)−⊕x = x⊕(x⊕y−)− = y∨Mm x.
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Note that the dual operations ∧Mm , ∨Mm are just u , t, respectively, recalled in subsection 2.1.
In what follows, we shall present only the properties of ∧Mm and ∨Mm .

Beside the old, natural binary relation ≤m, and its dual ≥m, and the binary relation ≤P
m, and its dual

≥S
m, we introduce two binary relations, the old ≤M

m (see [6]) and the new ≤B
m: for all x, y ∈ AL,

(m-dfWM) x ≤M
m y

def.⇐⇒ x ∧Mm y = x and, dually,

(m-dfVM) x ≥M
m y

def.⇐⇒ x ∨Mm y = x,
and

(m-dfWB) x ≤B
m y

def.⇐⇒ x ∧Bm y = x (⇐⇒ y ∧Mm x = x) and, dually,

(m-dfVB) x ≥B
m y

def.⇐⇒ x ∨Bm y = x (⇐⇒ y ∨Mm x = x).

Lemma 3.2 Let AL = (AL,�,−, 1) be an involutive left-m-BE algebra. We have:
(1) x� y− = 0⇐⇒ x� (x� y−)− = x and, dually,
(1’) x⊕ y− = 1⇐⇒ x⊕ (x⊕ y−)− = x.

Proof. (1): Suppose that x� y− = 0; then, (x� y−)− = 1, hence x� (x� y−)− = x� 1 = x.
Conversely, suppose that x� (x� y−)− = x; then,

x� y− = (x� (x� y−)−)� y−
(Pcomm),(Pass)

= (x� y−)� (x� y−)−
(m−Re)

= 0.
(1’): Suppose that x⊕ y− = 1; then, (x⊕ y−)− = 0, hence x⊕ (x⊕ y−)− = x⊕ 0 = x.

Conversely, suppose that x⊕ (x⊕ y−)− = x; then,

x⊕ y− = (x⊕ (x⊕ y−)−)⊕ y−
(Scomm),(Sass)

= (x⊕ y−)⊕ (x⊕ y−)−
(m−ReR)

= 1. 2

Proposition 3.3 Let AL = (AL,�,−, 1) be an involutive left-m-BE algebra. We have:
(1) x ≤m y ⇐⇒ x ≤B

m y and, dually
(1’) x ≥m y ⇐⇒ x ≥B

m y.

(2) If (∧m-comm) holds (i.e. x ∧Mm y = y ∧Mm x), then

x ≤m y (⇐⇒ x ≤B
m y) ⇐⇒ x ≤M

m y.

(2’) If (∧m-comm) holds, then (∨m-comm) holds (i.e. x ∨Mm y = y ∨Mm x) and

x ≥m y (⇐⇒ x ≥B
m y) ⇐⇒ x ≥M

m y.

Proof. (1): By above Lemma 3.2 (1),

x ≤m y
def.⇐⇒ x� y− = 0⇐⇒ x� (x� y−)− = x⇐⇒ x ∧Bm y = x

def.⇐⇒ x ≤B
m y.

(1’): By above Lemma 3.2 (1’),

x ≥m y
def.⇐⇒ x⊕ y− = 1⇐⇒ x⊕ (x⊕ y−)− = x⇐⇒ x ∨Bm y = x

def.⇐⇒ x ≥B
m y.

(2): By above (1),

x ≤M
m y

def.⇐⇒ x ∧Mm y = x
(∧m−comm)⇐⇒ y ∧Mm x = x⇐⇒ x ∧Bm y = x

def.⇐⇒ x ≤B
m y ⇐⇒ x ≤m y.

(2’): By Proposition 2.8 and above (1’). 2

Remark 3.4 The equivalence ≤m ⇐⇒ ≤B
m implies that ≤m is an order relation if and only if ≤B

m is an
order relation. But, it does not imply that if ≤m is a lattice order w.r. to say ∧,∨, then ≤B

m is a lattice
order too with respect to ∧Bm,∨Bm.

Proposition 3.5 Let AL = (AL,�,−, 1) be an involutive left-m-BE algebra. Then,

(x ≤B
m y ⇐⇒) x ≤m y ⇐⇒ y ≥m x (⇐⇒ y ≥B

m x).

Proof. By Proposition 3.3 and ([23], Proposition 3.10). 2

Proposition 3.6 (See ([6], Proposition 2.1.2), in dual case)
Let AL = (AL,�,−, 1) be an involutive left-m-MEL algebra. We have:

(8) x ∧Mm 1 = x = 1 ∧Mm x, x ∧Mm 0 = 0,



10

(9) x ∨Mm 0 = x = 0 ∨Mm x, x ∨Mm 1 = 1,

(10) (x ∨Mm y)− = x− ∧Mm y− (De Morgan law 1),

(11) (x ∧Mm y)− = x− ∨Mm y− (De Morgan law 2) and, hence,

(12) x ∧Mm y = (x− ∨Mm y−)−.

Proposition 3.7 (See ([6], Proposition 2.1.2), in dual case)
Let AL = (AL,�,−, 1) be an involutive left-m-BE algebra. We have:

(13) if x� y = 1, then x = y = 1,

(14) if x ∧Mm y = 1, then x = y = 1,

(15) 0 ∧Mm x = 0,

(16) 1 ∨Mm x = 1,

(17) x ∧Mm x = x, x ∨Mm x = x,

(18) if x ≤M
m y, then y ∧Mm x = x,

(19) if x ≤M
m y, then x ≤m y.

Proposition 3.8 Let AL = (AL,�,−, 1) be an involutive left-m-BE algebra. We have:

(20) x⊕ x− = 1, i.e. (m−ReR) holds;

(21) x� (y ∧Mm x−) = 0,

(22) x� (x− ∧Mm y) = 0,

(23) (y ∨Mm x) ∧Mm x = x,

(24) (y ∧Mm x) ∨Mm x = x,

(25) if x ≤M
m y, then x ∨Mm y = y,

(26) x ∨Mm y = y ⇐⇒ x� y− = 0 (⇐⇒ x ≤m y),

(27) (x� y) ∨Mm x = x,

(28) x ∧Mm (x� y) = x� y,

(29) x ∧Mm (y ∧Mm x) = y ∧Mm x.
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Proof. (20): x⊕ x−
(1)
= (x− � x)−

(Pcomm)
= (x� x−)−

(m−Re)
= 0−

(Neg0−1)
= 1.

(21): x� (y ∧Mm x−) = x� [(y− � x−)− � x−]
(Pcomm)

= x� [x− � (y− � x−)−]
(Pass)

= (x� x−)� (y− � x−)−

(m−Re)
= 0� (y− � x−)−

(Pcomm)
= (y− � x−)− � 0

(m−L)
= 0.

(22): x� (x− ∧Mm y) = x� [(x� y)− � y] = x� [y � (x� y)−] = (x� y)� (x� y)−
(m−Re)

= 0.

(23): (y ∨Mm x) ∧Mm x
(5)
= [(y � x−)− � x−]− ∧Mm x

(4),(DN)
= (((y � x−)− � x−)� x)− � x

(Pass),(Pcomm)
= ((y � x−)− � (x� x−))− � x

(m−Re)
= ((y � x−)− � 0)− � x

(m−L)
= 0− � x = 1� x = x.

(24): (y ∧Mm x) ∨Mm x
(4)
= [(y− � x)− � x] ∨Mm x

(5)
= ([(y− � x)− � x]� x−)⊕ x

(Pass)
= ((y− � x)− � (x� x−))⊕ x

(m−Re)
= ((y− � x)− � 0)⊕ x

(m−L)
= 0⊕ x

(SU)
= x.

(25): Suppose x ≤M
m y, i.e. x ∧Mm y = x; then, x ∨Mm y = (x ∧Mm y) ∨Mm y

(24)
= y.

(26): If y = x ∨Mm y
(5)
= (x� y−)⊕ y, then y− = ((x� y−)⊕ y)− = (x� y−)− � y−. Then,

x� y− = x� [(x� y−)− � y−]
(Pcomm),(Pass)

= (x� y−)� (x� y−)−
(m−Re)

= 0.

Conversely, if x� y− = 0, then x ∨Mm y
(5)
= (x� y−)⊕ y = 0⊕ y

(SU)
= y.

(27: (x� y) ∨Mm x = [[(x� y)� x−]−n� x−]−
(m−Re),(m−L)

= [0− � x−]− = (x−)− = x.

(28): x ∧Mm (x� y) = [x− � (x� y)]− � (x� y)
(m−Re),(m−L)

= 0− � (x� y) = 1� (x� y) = x� y.
(29): x ∧Mm (y ∧Mm x) = x ∧Mm (x� (x� y−)−) = (x� (x� y−)−)� (x− � (x� (x� y−)−))−

(Pass)
= (x� (x� y−)−)� ((x− � x)� (x� y−)−)−

(Pcomm),(m−Re),(m−L)
= (x� (x� y−)−)� 0−

(Neg0−1),(PU)
= x� (x� y−)− = y ∧Mm x. 2

Corollary 3.9 (See ([6], Corollary 2.1.3))
Let AL = (AL,�,−, 1) be an involutive left-m-BE algebra. Then, the binary relation ≤M

m is reflexive

and antisymmetric and 0 ≤M
m x ≤M

m 1, for all x ∈ AL, where 0
def.
= 1−.

3.1 Redefining the QMV algebras as involutive m-BE algebras

Following the original definition (Definition 2.2) of QMV algebras, the definition of involutive m-BE alge-
bras and Remark 2.9, we obtain the following redefinition of QMV algebras as involutive m-BE algebras,
which helps us to put them on the “map” (the involutive “Big map”):

Definitions 3.10
(i) A left-quantum-MV algebra, or a left-QMV algebra for short, is an involutive left-m-BE algebra

AL = (AL,�,− = −L , 1) verifying the following axiom: for all x, y, z ∈ AL,
(Pqmv) x� [(x− ∨Mm y) ∨Mm (z ∨Mm x−)] = (x� y) ∨Mm (x� z).

(i’) A right-quantum-MV algebra, or a right-QMV algebra for short, is an involutive right-m-BE algebra
(= S algebra) AR = (AR,⊕,− = −R , 0) verifying the following dual axiom: for all x, y, z ∈ AR,
(Sqmv) = (QMV) x⊕ [(x− ∧Mm y) ∧Mm (z ∧Mm x−)] = (x⊕ y) ∧Mm (x⊕ z).

We shall denote by QMV the class of all left-QMV algebras and by QMVR the class of all right-QMV
algebras.

Proposition 3.11 Let AL = (AL,�,−, 1) be an involutive left-m-BE algebra. Then:

(Pqmv)⇐⇒ (Sqmv).

Proof. Suppose (Pqmv) holds; then, x⊕ [(x− ∧Mm y) ∧Mm (z ∧Mm x−)]
(1)
= (x− � [(x− ∧Mm y) ∧Mm (z ∧Mm x−)])−

(11)
= (x− � [(x− ∧Mm y)− ∨Mm (z ∧Mm x−)−])−

(11)
= (x− � [(x ∨Mm y−) ∨Mm (z− ∨Mm x)])−

(Pqmv)
= ((x− � y−) ∨Mm (x− � z−))−

(10)
= (x− � y−)− ∧Mm (x− � z−)−

(1)
= (x⊕ y) ∧Mm (x⊕ z), i.e. (Sqmv) holds.

Suppose (Sqmv) holds; then, x� [(x− ∨Mm y) ∨Mm (z ∨Mm x−)]
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(2)
= (x− ⊕ [(x− ∨Mm y) ∨Mm (z ∨Mm x−)])−

(10)
= (x− ⊕ [(x− ∨Mm y)− ∧Mm (z ∨Mm x−)−])−

(10)
= (x− ⊕ [(x ∧Mm y−) ∧Mm (z− ∧Mm x)])−

(Sqmv)
= ((x− ⊕ y−) ∧Mm (x− ⊕ z−))−

(11)
= (x− ⊕ y−)− ∨Mm (x− ⊕ z−)−

(2)
= (x� y) ∨Mm (x� z), i.e. (Pqmv) holds. 2

Corollary 3.12 Let AL = (AL,�,−, 1) be a left-QMV algebra. Then, (AL,⊕,−, 0) is a right-QMV
algebra.

Proof. By ([23], Corollary 4.3) and Proposition 3.11. 2

Proposition 3.13 (See ([6], Proposition 2.3.2), in dual case)
Let AL = (AL,�,−, 1) be a left-QMV algebra. We have:

(30) x� (y ∨Mm x−) = x� y,

(Pmv) x� (x− ∨Mm y) = x� y,

(Pq) x� [y ∨Mm (z ∨Mm x−)] = (x� y) ∨Mm (x� z);

(31) x� y ≤M
m x, i.e. (x� y) ∧Mm x = x� y,

(32) x ≤M
m x⊕ y, i.e. x ∧Mm (x⊕ y) = x,

(33) x ∧Mm y ≤M
m y, i.e. (x ∧Mm y) ∧Mm y = x ∧Mm y,

(34) y ≤M
m x ∨Mm y, i.e. y ∧Mm (x ∨Mm y) = y,

(35) x� [y ∨Mm (x� z)−] = (x� y) ∨Mm (x� (x� z)−),

(36) x ∨Mm (y ∧Mm x) = x,

(37) x ≤M
m y =⇒ y ∨Mm x = y,

(38) x ≤M
m y =⇒ y− ≤M

m x− (order − reversibility of −),

(39) x ≤M
m y =⇒ x⊕ z ≤M

m y ⊕ z (monotonicity of ⊕),

(40) x ≤M
m y =⇒ x� z ≤M

m y � z (monotonicity of �),

(41) (x ∧Mm y) ∧Mm z = (x ∧Mm y) ∧Mm (y ∧Mm z),

(42) (x ∨Mm y) ∨Mm z = (x ∨Mm y) ∨Mm (y ∨Mm z),

(43) x� y = x� y � (x⊕ y),

(44) (x− � y) ∧Mm (y− � x) = 0.

Remarks 3.14 (i) Concerning (33), note that x ∧Mm y 6≤M
m x. For example, in the left-QMV algebra

from Example 6.4, a ∧Mm c 6≤M
m a. Indeed, a ∧Mm c = c, while (a ∧Mm c) ∧Mm a = c ∧Mm a = a 6= c.

(ii) Concerning (34), note that x 6≤M
m x ∨Mm y. For example, in the left-QMV algebra from Example

6.4, a 6≤M
m a ∨Mm c. Indeed, a ∨Mm c = c, while a ∧Mm (a ∨Mm c) = a ∧Mm c = c 6= a.
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Recall now the following well known property (prel) (prelinearity) from a bounded residuated lattice
(A,∧,∨,�,→, 0, 1) [15]:
(prel) (x→ y) ∨ (y → x) = 1.

Here, we shall consider that ∨ def.
= ∨Bm, which is no more a lattice operation, therefore the property

will be denoted by (prelm):
(prelm) (x→ y) ∨Bm (y → x) = 1,

where x→ y
def.
= (x� y−)− (see the map Ψ from [19]).

Note that, in MV algebras, (prelm) and (prel) coincide.
Then, we have the following result:

Corollary 3.15 Any left-QMV algebra verifies the property (prelm).

Proof. (x→ y) ∨Bm (y → x) = (x� y−)− ∨Bm (y � x−)−

= (y � x−)− ∨Mm (x� y−)− = ((y � x−) ∧Mm (x� y−))−
(Pcomm),(44)

= 0− = 1. 2

Proposition 3.16 Let AL = (AL,�,−, 1) be a left-QMV algebra. We have:

(45) x ∨Mm y ≤M
m x⊕ y,

(46) x� y ≤M
m x ∧Mm y.

Proof. (45): Since x� y− ≤M
m x, by (31), then x ∨Mm y = (x� y−)⊕ y ≤M

m x⊕ y, by (39).
(46): Since x− � y ≤M

m x−, by (31), then x ≤M
m (x− � y)−, by (38) and (DN); hence, x � y ≤M

m

(x− � y)− � y = x ∧Mm y, by (40). 2

Proposition 3.17 (See ([6], Proposition 2.3.5), in dual case)
Let AL = (AL,�,−, 1) be a left-QMV algebra. We have:

(47) x ∧Mm ((x⊕ y) ∧Mm z) = x ∧Mm z (absorption law 1),

(48) x ∨Mm ((x� y) ∨Mm z) = x ∨Mm z (absorption law 2),

(49) x ≤M
m z−, y ≤M

m z−, x⊕ z = y ⊕ z =⇒ x = y (cancellation law 1),

(50) z− ≤M
m x, z− ≤M

m y, x� z = y � z =⇒ x = y (cancellation law 2),

(51) x ≤M
m y =⇒ x ∧Mm z ≤M

m y ∧Mm z (monotonicity of ∧Mm ),

(52) x ≤M
m y =⇒ x ∨Mm z ≤M

m y ∨Mm z (monotonicity of ∨Mm ),

(53) x ≤M
m y, y ≤M

m z =⇒ x ≤M
m z (transitivity of ≤M

m ).

Corollary 3.18 (See ([6], page 157))
Let AL = (AL,�,−, 1) be a left-QMV algebra. The binary relation ≤M

m is an order relation.

We shall prove next the first very important result of this paper, Theorem 3.19, saying that
axiom (Pqmv) is equivalent to only two properties, the properties (Pmv) and (Pq) from Proposition 3.13:
(Pmv) x� (x− ∨Mm y) = x� y,
(Pq) x� [y ∨Mm (z ∨Mm x−)] = (x� y) ∨Mm (x� z).
Recall that, cf. ([6], Proposition 2.3.4), Giuntini proved that axiom (Pqmv) is equivalent to the properties
(Pmv), (35), (36), (41) and (44).
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Theorem 3.19 Let AL = (AL,�,−, 1) be an involutive left-m-BE algebra. Then,

(Pqmv) ⇐⇒ (Pmv) + (Pq).

Proof. By Proposition 3.13, the axioms of AL and (Pqmv) imply (Pmv) and (Pq). To prove the
converse, assume that (Pmv) and (Pq) are satisfied by AL. Then:
x� [(x− ∨Mm y) ∨Mm (z ∨Mm x−)]
(5)
= x� [((x− ∨Mm y)� (z ∨Mm x−)−)⊕ (z ∨Mm x−)]
(10),(DN)

= x� [((x− ∨Mm y)� (z− ∧Mm x))⊕ (z ∨Mm x−)]
(4),(DN)

= x� [((x− ∨Mm y)� ((z � x)− � x))⊕ (z ∨Mm x−)]
(Pass),(Pcomm)

= x� [((x� (x− ∨ y))� (z � x)−)⊕ (z ∨Mm x−)]
(Pmv)

= x� [((x� y)� (z � x)−)⊕ (z ∨Mm x−)]
(Pcomm),(Pass)

= x� [(y � ((z � x)− � x))⊕ (z ∨Mm x−)]
(4),(DN)

= x� [(y � (z− ∧Mm x))⊕ (z ∨Mm x−)]
(10),(DN)

= x� [(y � (z ∨Mm x−)−)⊕ (z ∨Mm x−)]
(5)
= x� [y ∨Mm (z ∨Mm x−)]
(Pq)
= (x� y) ∨Mm (x� z); thus, (Pqmv) holds. 2

Proposition 3.20 Let AL = (AL,�,−, 1) be a left-QMV algebra. Then, (Pom) holds.

Proof. Take y = 1 in (Pqmv). 2

Proposition 3.21 Let AL = (AL,�,−, 1) be a left-QMV algebra verifying (G) (x� x = x). Then:
(1) ≤P

m is reflexive also, hence it is an order relation.
(2) We have the equivalence:

(x� y = x⇐⇒) x ≤P
m y ⇐⇒ x ≤M

m y (⇐⇒ x ∧Mm y = x).

Proof. (1): x ≤P
m x⇐⇒ x� x = x, that is true by (G).

(2): Suppose x ≤P
m y, i.e. x � y = x. Then, by (31), x = x � y ≤M

m y. Conversely, suppose x ≤M
m y.

Then, by (40), we have: x
(G)
= x � x ≤M

m y � x
(Pcomm)

= x � y, and since we also have, by (31), that
x� y ≤M

m x, we obtain, by antisymmetry of ≤M
m (by Corollary 3.9), that x� y = x, i.e. x ≤P

m y. 2

Remarks 3.22 In a left-QMV algebra AL = (AL,�,−, 1):
- the initial binary relation, ≤m (x ≤m y ⇐⇒ x � y− = 0) (≤m⇐⇒≤B

m), is only reflexive ((m-Re)
holds, by definition of m-BE algebra);
- the binary relation ≤M

m (x ≤M
m y ⇐⇒ x ∧Mm y = x) is an order, by Corollary 3.18, but not a lattice

order with respect to ∧Mm , ∨Mm , since x ∧Mm y 6= y ∧Mm x;
- the binary relation ≤P

m (x ≤P
m y ⇐⇒ x� y = x) is only antisymmetric and transitive, by ([23],

Proposition 3.11).
In a left-QMV algebra verifying (G), ≤M

m and ≤P
m are order relations and ≤M

m⇐⇒≤P
m.

3.2 The equivalence between (Pq) and (Pom)

Consider now the properties:
(Pq) x� [y ∨Mm (z ∨Mm x−)] = (x� y) ∨Mm (x� z) and
(Pom) (x�y)⊕((x�y)−�x) = x or, equivalently, x∨Mm (x�y) = x, which characterizes the orthomodular
lattices among ortholattices.

Proposition 3.23 Let AL = (AL,�,−, 1) be an involutive left-m-BE algebra. Then,

(Pq) =⇒ (Pom).
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Proof. In (Pq) take y := 1 to obtain: x = x ∨Mm (x� z), i.e. (Pom). 2

The converse result, the next Proposition 3.25 (saying that (Pom) implies (Pq)), was
proved by Prover9 in about an hour, only after changing the basic Prover9 options order
from ‘lpo’ to ‘kbo’ and eq-defs from ‘unfold’ to ‘fold’ and after removing those axioms of the
algebra containing 0, 1. The proof by Prover9 had the length 54 (i.e. there were 54 steps);
after proving the 54 steps from the chain of length 54, we have gouped the steps into the
following Lemma 3.24 and Proposition 3.25.

Lemma 3.24 Let AL = (AL,�,−, 1) be an involutive left-m-MEL algebra. We have:

(54) x− ⊕ (y � x) = y ∨Mm x−,

(55) x⊕ (y � (z � x−)) = (y � z) ∨Mm x,

(56) x− ⊕ ((y � x) ∨Mm z) = y ∨Mm (x− ⊕ z),

(57) (x� y)⊕ (z � (x− ∧Mm y)) = (z � y) ∨Mm (x� y),

Proof. (54): y ∨Mm x− = x− ⊕ (y � x), by definition and (DN).

(55): x⊕ (y � (z � x−))
(Pass)

= x⊕ ((y � z)� x−) = (y � z) ∨Mm x.

(56): The left side: x− ⊕ ((y� x)∨Mm z)
(55)
= x− ⊕ (z ⊕ (y� (x� z−)))

(Pass)
= x− ⊕ [z ⊕ ((y� x)� z−)].

The right side: y ∨Mm (x− ⊕ z) = (x− ⊕ z) ⊕ (y � (x− ⊕ z)−) = (x− ⊕ z) ⊕ (y � (x � z−))
(Pass),(Sass)

=
x− ⊕ [z ⊕ ((y � x)� z−)]. Hence, (56) holds.

(57): (x� y)⊕ (z� (x− ∧Mm y)) = (x� y)⊕ (z� (y� (x� y)−))
(55)
= (z� y)∨Mm (x� y), for X := x� y,

Y := z, Z := y in (55). 2

Proposition 3.25 Let AL = (AL,�,−, 1) be an involutive left-m-BE algebra. Then,

(Pom) =⇒ (Pq).

Proof. The proof has 13 steps:

(58) x ∧Mm (y ⊕ x) = x.

Indeed, x−∨Mm (y⊕x)− = x−∨Mm (y−�x−)
(Pom)

= x−; then, x∧Mm (y⊕x) = (x−∨Mm (y⊕x)−)− = x= (DN)
= x.

(59) x ∨Mm (y ∧Mm x) = x,

(60) x ∧Mm (y ∨Mm x) = x.

Indeed, x ∨Mm (y ∧Mm x) = x ∨Mm (x� (y ⊕ x−))
(Pom)

= x; thus, (59) holds. (60) follows by duality.

(61) (x� y) ∧Mm y = x� y,

(62) (x⊕ y) ∨Mm y = x⊕ y.

Indeed, (x� y) ∧Mm y
(Pom)

= (x� y) ∧Mm (y ∨Mm (x� y))
(60)
= x� y, with X := x� y; thus, (61) holds. (62)

follows by duality.
• Now, we prove

(63) (x ∨Mm y)� (x− ⊕ y) = y,
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(64) (x ∧Mm y)⊕ (x− � y) = y.

Indeed, (x ∨Mm y)� (x− ⊕ y) = ((x− ⊕ y)− ⊕ y)� (x− ⊕ y) = y ∧Mm (x− ⊕ y)
(58)
= y; thus, (63) holds. (64)

follows by duality.

(65) (x� y−)⊕ (z ⊕ (y ∧Mm x)) = z ⊕ x.

Indeed, (x�y−)⊕ (z⊕ (y∧Mm x))
(Scomm)

= (z⊕ (y∧Mm x))⊕ (x�y−)
(Sass)

= z⊕ ((y∧Mm x)⊕ (x�y−))
(Pcomm)

=

z ⊕ ((y ∧Mm x)⊕ (y− � x))
(64)
= z ⊕ x.

(66) (x⊕ y) ∨Mm (x⊕ (z ∧Mm y)) = x⊕ y.

Indeed, by (65), we have (y � z−)⊕ (x⊕ (z ∧Mm y)) = x⊕ y; put X := y � z−, Y := x⊕ (z ∧Mm y); hence,

we have X ⊕ Y = x⊕ y; then, x⊕ y = X ⊕ Y
(62)
= (X ⊕ Y ) ∨Mm Y = (x⊕ y) ∨Mm (x⊕ (z ∧Mm y)).

(67) (x⊕ y) ∨Mm (x⊕ (z � y)) = x⊕ y.

Indeed, (x⊕ y) ∨Mm (x⊕ (z � y))
(61)
= (x⊕ y) ∨Mm (x⊕ ((z � y) ∧Mm y))

(66)
= x⊕ y, where Z := z � y in (66).

(68) x ∨Mm ((y � x)⊕ (z � (y− ∧Mm x))) = x.

Indeed, first, by (64), we have (y�x)⊕ (y− ∧Mm x) = x; put X := y�x and Y := y− ∧Mm x, hence we have

X ⊕ Y = x; now, x = X ⊕ Y
(67)
= (X ⊕ Y ) ∨Mm (X ⊕ (z � Y )) = x ∨Mm ((y � x)⊕ (z � (y− ∧Mm x))).

• Now, we prove

(69) x ∨Mm ((y � x) ∨Mm (z � x)) = x.

Indeed, x ∨Mm ((y � x) ∨Mm (z � x))
(57)
= x ∨Mm [(z � x)⊕ (y � (z− ∧Mm x))]

(68)
= x, with Y := z and Z := y.

• Finally, we prove (Pq), i.e. x� [y ∨Mm (z ∨Mm x−)] = (y � x) ∨Mm (z � x).
Indeed, x� [y ∨Mm (z ∨Mm x−)]
(54)
= x� [y ∨Mm (x− ⊕ (z � x))]
(56)
= x� [x− ⊕ ((y � x) ∨Mm (z � x))]
(69)
= (x ∨Mm [(y � x) ∨Mm (z � x)])� (x− ⊕ [(y � x) ∨Mm (z � x)])
(63)
= (y � x) ∨Mm (z � x)

(Pcomm)
= (x� y) ∨Mm (x� z). 2

By Propositions 3.23 and 3.25, we obtain the second very important result, the core of this
paper, by its difficulty:

Theorem 3.26 Let AL = (AL,�,−, 1) be an involutive left-m-BE algebra. Then,

(Pq) ⇐⇒ (Pom).

Consequently, by Theorems 3.19 and 3.26, we obtain:

Theorem 3.27 Let AL = (AL,�,−, 1) be an involutive left-m-BE algebra. Then,

(Pqmv) ⇐⇒ (Pmv) + (Pom).

3.3 The property (∆m)

Consider now the property introduced in ([24] 5.2.1) (the dual one is omitted):
(∆m) (x ∧Mm y)� (y ∧Mm x)− = 0.

Note that (∆m) is the largest non-antisymmetric generalization of (∧m-comm). It is equivalent to:
(y � (x− � y)−)� (x� (y− � x)−)− = 0.
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Proposition 3.28 Let AL = (AL,�,−, 1) be an involutive left-m-BE algebra. Then,

(Pmv) =⇒ (∆m).

Proof. First, note that, by replacing y with y−, (Pmv) becomes, by (DN):
(a) x� ((x− � y)− � y)− = x� y−.

Now, consider (∆m), i.e. (y � (x− � y)−)� (x� (y− � x)−)− = 0, and by interchanging x with y, we
obtain:
(b) (x� (y− � x)−)� (y � (x− � y)−)− = 0. We shall prove (b).
Indeed, (x� (y− � x)−)� (y � (x− � y)−)−

(Pcomm),(Pass)
= (x� ((x− � y)− � y)−)� (x� y−)−

(a)
= (x� y−)� (x� y−)−

(m−Re)
= 0. Thus, (∆m) holds. 2

The converse of Proposition 3.28 does not hold, in general; there are examples of involutive m-BE
algebras verifying (∆m) and not verifying (Pmv), see Example 6.3.

But, in particular, we have the following Proposition 3.31 (saying that if the involutive
m-BE algebra verifies (Pom), then (∆m) implies (Pmv)), proved by Prover9 in 2453 seconds,
the length of the proof being 33; the proof by Prover9 generated the proofs of the following
Lemmas 3.29, 3.30 and Proposition 3.31.

Lemma 3.29 Let AL = (AL,�,−, 1) be an involutive left-m-BE algebra verifying (Pom). Then,

(70) (x� y)− � (x� (x� y)−)− = x−,

(71) (x� (y � z))− � [x� (y � (x� (y � z))−)]− = (x� y)−,

(72) (x� y−)− � [x� ((y � z)− � (x� y−)−)]− = (x� (y � z)−)−.

Proof. (70): From (Pom), by (Pcomm).
(71: In (70), take X := x� y and Y := z to obtain:

((x� y)� z)− � ((x� y)� ((x� y)� z)−)− = (x� y)−; then, by (Pass), we obtain (71).
(72): In (71), take X := x, Y := (y � z)−, Z := (y � (y � z)−)− to obtain:

(a) (X � (Y � Z))− � [X � (Y � (X � (Y � Z))−)]− = (X � Y )−; but,

X � (Y � Z) = x� ((y � z)− � (y � (y � z)−)−)
(70)
= x� y−; hence, (a) becomes:

(x� y−)− � [x� ((y � z)− � (x� y−)−)]− = (x� (y � z)−)−, that is (72). 2

Lemma 3.30 Let AL = (AL,�,−, 1) be an involutive left-m-BE algebra verifying (∆m). Then,

(73) x� ((y− � x)− � (y � (x− � y)−)−) = 0,

(74) x� ((x� y−)− � (y � (y � x−)−)−) = 0,

(75) x− � ((x− � y−)− � (y � (y � x)−)−) = 0.

Proof. (73): Since x ∧m y = y � (x− � y)−, then (∆m) ((x ∧m y)� (y ∧m x)− = 0) becomes:
(a) (y � (x− � y)−)� (x� (y− � x)−)− = 0; then, interchanging x with y in (a), we obtain:
(b) (x� (y− � x)−)� (y � (x− � y)−)− = 0; then, by (Pass), we obtain (73).

(74): From (73), by (Pcomm).
(75): From (74), by taking X := x− and by (DN). 2

Proposition 3.31 Let AL = (AL,�,−, 1) be an involutive left-m-BE algebra. Then,

(Pom) + (∆m) =⇒ (Pmv).
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Proof. First, we prove:

(76) (x− � (y � (y � x)−)−)− = (x− � y−)−.

Indeed, in (72), take X := x−, Y := y and Z := (y � x)− to obtain:
(a) (x− � y−)− � [x− � ((y � (y � x)−)− � (x− � y−)−)]− = (x− � (y � (y � x)−)−)−;

but, x− � ((y � (y � x)−)− � (x− � y−)−)
(75)
= 0; hence, (a) becomes:

(x− � y−)− � [0]− = (x− � (y � (y � x)−)−)−, i.e. (76) holds, by (Neg0-1), (PU).
Next, from (76), it follows, by (DN) and (Pcomm):

(77) x− � ((x� y)− � y)− = x− � y−.

Finally, from (77), by taking X := x− and Y := y−, we obtain, by (DN):
x� ((x− � y−)− � y−)− = x� y, that is (Pmv). 2

Resuming, by Propositions 3.28, 3.31, we obtain the third very important result of this paper:

Theorem 3.32 Let AL = (AL,�,−, 1) be an involutive left-m-BE algebra. Then,

(Pom) =⇒ ((Pmv) ⇔ (∆m)).

Consequently, by Theorems 3.27 and 3.32, we obtain:

Theorem 3.33 Let AL = (AL,�,−, 1) be an involutive left-m-BE algebra. Then,

(Pqmv) ⇐⇒ (∆m) + (Pom).

4 Three generalizations of QMV algebras

Let AL = (AL,�,−, 1) be an involutive left-m-BE algebra throughout this section.

4.1 The three algebras

Consider the properties:
(Pom) (x� y)⊕ ((x� y)− � x) = x or, equivalently, x ∨Mm (x� y) = x and, dually,
(Som) (x⊕ y)� ((x⊕ y)− ⊕ x) = x or, equivalently, x ∧Mm (x⊕ y) = x;
(Pmv) x� (x− ∨Mm y) = x� y and, dually,
(Smv) x⊕ (x− ∧Mm y) = x⊕ y;
(∆m) (x ∧Mm y)� (y ∧Mm x)− = 0 and, dually,
(∇m) (x ∨Mm y)⊕ (y ∨Mm x)− = 1.

We introduce the following notions:

Definitions 4.1
(i) An involutive left-m-BE algebra AL = (AL,�,−, 1) is:

- a left-orthomodular algebra, or a left-OM algebra for short, if it verifies (Pom),
- a left-pre-MV algebra, or a left-PreMV algebra for short, if it verifies (Pmv),
- a left-metha-MV algebra, or a left-MMV algebra for short, if it verifies (∆m).

(i’) Dually, an involutive right-m-BE algebra AR = (AR,⊕,−, 0) is:
- a right-orthomodular algebra, or a right-OM algebra for short, if it verifies (Som),
- a right-pre-MV algebra, or a right-PreMV algebra for short, if it verifies (Smv),
- a right-metha-MV algebra, or a right-MMV algebra for short, if it verifies (∇m).

We shall denote by OM, PreMV, MMV the classes of the corresponding left-algebras and by OMR,
PreMVR, MMVR the classes of the corresponding right-algebras. See Examples 6.1, 6.2, 6.3 of left-OM,
left-PreMV, left-MMV algebras, respectively, and Example 6.4 of left-QMV algebra.

By Propositions 3.20, 3.13, 3.28 and Theorems 3.27, 3.33, we obtain:
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Corollary 4.2 We have:
QMV ⊂ OM, QMV ⊂ PreMV ⊂ MMV
and
QMV = PreMV ∩ OM = MMV ∩ OM.

Note that we can say that QMV algebras are orthomodular PreMV algebras, or orthomodular MMV
algebras.

Hence, we have the situation from the Figure 2.

m-BE(DN)

QMV

(Pqmv)

(q)

(∆m)

MMV

(c)

(Pmv)

PreMV

(b)

(Pom)

OM

(a)

where:
(a): Example 6.1
(b): Example 6.2
(c): Example 6.3

(q): Example 6.4

Figure 2: Resuming connections between OM, PreMV, MMV and QMV

4.2 The transitive and/or antisymmetric algebras

We shall denote by tOM, tPreMV, tMMV, tQMV the classes of the corresponding transitive left-
algebras. Note that these classes of algebras are contained in the class m-pre-BCK(DN) = m-tBE(DN).
See Examples 6.5, 6.6, 6.7, 6.8 of left-tOM, left–tPreMV, left-MMV, left-tQMV algebras, respectively.

By the previous Corollary 4.2, we obtain:

Corollary 4.3 We have:

QMV ⊂ OM QMV ⊂ PreMV ⊂ MMV
∪ ∪ ∪ ∪ ∪

tQMV ⊂ tOM, tQMV ⊂ tPreMV ⊂ tMMV

and
tQMV = tPreMV ∩ tOM = tMMV ∩ tOM.

Hence, we have the situation from the Figure 3.
We shall denote by aOM, aPreMV, aMMV, aQMV the classes of the corresponding antisymmetric

left-algebras. Note that these classes of algebras are contained in the class m-aBE(DN).
By Corollary 4.2 again, we obtain the analogous of Corollary 4.3, which by lack of space is omitted.
We shall denote by taOM, taPreMV, taMMV, taQMV the classes of the corresponding transitive

and antisymmetric left-algebras. Note that these classes of algebras are contained in the class m-BCK
= m-taBE(DN).

By Corollary 4.3 and its analogous, we then obtain:

Corollary 4.4 We have:

QMV ⊂ OM QMV ⊂ PreMV ⊂ MMV
∪ ∪ ∪ ∪ ∪

tQMV ⊂ tOM tQMV ⊂ tPreMV ⊂ tMMV
∪ ∪ ∪ ∪ ∪

taQMV ⊂ taOM, taQMV ⊆ taPreMV ⊆ taMMV



20

m-BE(DN)

m-pre-BCK(DN)

QMV

(Pqmv)

(q)

(∆m)

MMV
(c)

(Pmv)

PreMV
(b)

(Pom)

OM
(a)

(m-Tr) ⇔ . . .⇔ (m-BB)

tQMV
(tq)

tMMV
(tc)

tPreMV
(tb)

tOM
(ta)

where:

(a): Example 6.1
(b): Example 6.2
(c): Example 6.3

(q): Example 6.4

(ta): Example 6.5
(tb): Example 6.6
(tc): Example 6.7

(tq): Example 6.8

Figure 3: Resuming connections between OM, PreMV, MMV, QMV and (m-Tr)

and

QMV ⊂ OM QMV ⊂ PreMV ⊂ MMV
∪ ∪ ∪ ∪ ∪

aQMV ⊂ aOM aQMV ⊆ aPreMV ⊆ aMMV
∪ ∪ ∪ ∪ ∪

taQMV ⊂ taOM, taQMV ⊆ taPreMV ⊆ taMMV

and
aQMV = aPreMV ∩ aOM = aMMV ∩ aOM,
taQMV = taPreMV ∩ taOM = taMMV ∩ taOM.

4.3 The connections with the MV algebras

We know (see ([6], Example 2.3.14)) that any MV algebra is a QMV algebra: MV ⊂ QMV, since:

(78) (∧m − comm) =⇒ (Pqmv).

Consequently, we have:

(79) (∧m − comm) =⇒ (Pom) + (Pmv) + (∆m).

The next Theorems 4.6, 4.7 and 4.9 say that (∧m-comm) is equivalent with some properties.

Proposition 4.5 Let AL = (AL,�,−, 1) be an involutive left-m-BE algebra. Then,

(Pmv) + (m−An) =⇒ (∧m − comm).

Proof. Suppose (m-An) holds, i.e. X ≤m Y and Y ≤m X imply X = Y , which mean X � Y − = 0 and
Y �X− = 0 imply X = Y .

Take X
notation

= x ∧Mm y
(4)
= (x− � y)− � y and Y

notation
= y ∧Mm x

(4)
= (y− � x)− � x.
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We have: X � Y − = [(x− � y)− � y]� [y ∧Mm x]−

(11)
= [(x− � y)− � y]� [y− ∨Mm x−]

(Pass)
= (x− � y)− � (y � (y− ∨Mm x−))

(Pmv)
= (x− � y)− � (y � x−)

(Pcomm)
= (y � x−)� (y � x−)−

(m−Re)
= 0.

Similarly, we have: Y �X− = (y− � x)− � x� [x ∧Mm y]−

(y− � x)− � x� (x− ∨Mm y−)
(Pmv)

= (y− � x)− � (x� y−) = 0.
By (m-An), we obtain X = Y , i.e. (∧m-comm) holds. 2

By Proposition 4.5 and (3), (79), we obtain:

Theorem 4.6
(Pmv) + (m−An) ⇐⇒ (∧m − comm).

Recall again ([24] 5.2.1) saying that:

Theorem 4.7
(∆m) + (m−An) ⇐⇒ (∧m − comm).

Proposition 4.8
(Pqmv) + (m−An) =⇒ (∧m − comm).

Proof. By Propositions 3.13, 4.5, we obtain:
(Pqmv) + (m-An) =⇒ (Pmv) + (m-An) =⇒ (∧m-comm). 2

By Proposition 4.8 and by (3), (78), we obtain:

Theorem 4.9
(Pqmv) + (m−An) ⇐⇒ (∧m − comm).

By previous Theorems 4.6, 4.7, 4.9, we obtain the fourth very important result of this paper:

Corollary 4.10 We have:
PreMV + (m-An) = MV, i.e. aPreMV = MV,
MMV + (m-An) = MV, i.e. aMMV = MV,
QMV + (m-An) = MV, i.e. aQMV = MV.

Remark 4.11 By (3), we have:
MV = aMV = tMV = taMV, hence taPreMV = taMMV = taQMV = MV.

By Corollaries 4.4, 4.10 and by Remark 4.11, we obtain:

Corollary 4.12 We have:
QMV ⊂ OM QMV ⊂ PreMV ⊂ MMV
∪ ∪ ∪ ∪ ∪

tQMV ⊂ tOM tQMV ⊂ tPreMV ⊂ tMMV
∪ ∪ ∪ ∪ ∪

MV ⊂ taOM, MV ⊆ MV ⊆ MV

and

QMV ⊂ OM QMV ⊂ PreMV ⊂ MMV
∪ ∪ ∪ ∪ ∪

MV ⊂ aOM MV ⊆ MV ⊆ MV
∪ ∪

MV ⊂ taOM

and
MV = MV ∩ aOM,
MV = MV ∩ taOM.
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Note that taOM algebras are proper generalizations of MV algebras inside the class of m-BCK algebras.
See Example 6.9 of left-taOM algebra.

A problem we have not been able to resolve is the following.

Open problem 4.13 Find an example of antisymmetric orthomodular algebra (aOM) which does not
verify (m-Tr) (⇐⇒ . . . (m-BB)), i.e. a proper element of aOM (using Mace4, we have searched exhaus-
tively for an example up through and including size 20), or prove that an involutive left-m-aBE algebra
satisfying (Pom) satisfies also (m-Tr) (i.e. aOM = taOM) (we have also tried to find a proof using
Prover9, but despite letting it run for several days, it was unable to find one).

Hence, we have the situation from the Figure 4.

m-aBE(DN)

(m-Tr) ⇔ . . .⇔ (m-BB)

m-BCK

MV

(∧m-comm)

taOM

(taa)

(Pom)

aOM
?

where:

(taa): Example 6.9

Figure 4: Resuming connections between MV, taOM and aOM, where ? means that there is an open
problem concerning aOM

Note that, by Theorems 4.6, 4.7, 4.9 again, we obtain:

Theorem 4.14 Let AL = (AL,�,−, 1) be an involutive left-m-aBE algebra. Then,

(∧m − comm)⇐⇒ (Pmv)⇐⇒ (∆m)⇐⇒ (Pqmv).

Remarks 4.15 (See Remarks 3.22) In a left-MV algebra AL = (AL,�,−, 1):
- the initial binary relation, ≤m (⇐⇒≤B

m), is a lattice order relation w.r. to ∧Bm = ∧Mm ,∨Bm = ∨Mm ,
since (m-Re), (m-An), (m-Tr) hold and since ∧Bm is commutative,
- the binary relation ≤M

m is a lattice order relation w.r. to ∧Mm ,∨Mm , by Corollary 3.18 and since ∧Mm
is commutative,
- ≤m and ≤M

m are equivalent: ≤m (⇐⇒ ≤B
m) ⇐⇒ ≤M

m , by Proposition 3.3; the lattice is distributive;
- the binary relation ≤P

m is only antisymmetric and transitive, by ([23], Proposition 3.11).
In a left-MV algebra verifying (G) (x� x = x), i.e. in a left-Boolean algebra,

≤m (⇐⇒ ≤B
m) ⇐⇒ ≤M

m ⇐⇒ ≤P
m .

4.4 Putting QMV and tQMV algebras on the “map”

By the previous results, we are now able to put QMV algebras and tQMV algebras (and MV algebras)
on the involutive “Big map” (and, hence, on the “map”) - see the Figure 5.

5 Concluding remarks and future work

In this paper, we have dug arround the structure of QMV algebras and we have obtained a decomposition
of (Pqmv) into only two properties: (Pmv) and (Pq), at the begining, (∆m) and (Pom), at the end,
where (∆m) is the largest non-antisymmetric generalization of (∧m-comm) and (Pom) is the property
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Figure 5: Putting QMV and tQMV algebras on the “map”

characterizing the orthomodular lattices among the ortholattices (Definitions 2). We have thus introduced
three generalizations of the QMV algebras: two new non-antisymmetric generalizations of MV algebras,
the pre-MV (PreMV) algebras and the metha-MV (MMV) algebras, and the orthomodular (OM) algebras.
The QMV algebra is then just an orthomodular PreMV algebra or an orthomodular MMV algebra; in other
words, the QMV algebra is that non-antisymmetric generalization of MV algebra that is an orthomodular
algebra. We have also introduced and studied the transitive QMV (tQMV) algebras, the transitive PreMV
(tPreMV) algebras, the transitive MMV (tMMV) algebras and the transitive OM (tOM) algebras. It
was known that any MV algebra is a QMV algebra, but the exact connection between MV and QMV
algebras it was not known. We have clarified this problem, by proving that MV algebras coincide with the
antisymmetric QMV (aQMV) algebras - but also with the antisymmetric preMV (aPreMV) and with the
antisymmetric MMV (aMMV) algebras. Consequently, MV algebras and QMV algebras, and also tQMV
algebras, were put on the same “map” (involutive “Big map”). The taOM algebra, a proper generalization
of MV algebra inside the class of m-BCK algebras, is put in evidence.

By putting QMV (and tQMV) algebras on the “map”, we have proved again (see [19], [23]) the deep
connections existing between the algebraic structures connected to the classical and non-classical logics
and the algebraic structures connected to the quantum logics: they exist on the same “map”, but at
different levels (parallels), i.e. the QMV (and tQMV) algebras also belong to the “world” of left-algebras
(involutive left-unital magmas).

The ‘story’ of the algebras involved in this paper is connected to the ‘story’ of the three/four binary
relations that can be defined in such algebras:

x ≤m y
def.⇐⇒ x� y− = 0, with x ≤m y ⇐⇒ x ≤B

m y, x ≤B
m y

def⇐⇒ x ∧Bm y = x,

x ≤M
m y

def⇐⇒ x ∧Mm y = x, with x ∧Mm y = y ∧Bm x, and

x ≤P
m y

def⇐⇒ x� y = x.
Note that the central role is played by the binary relation ≤m, that determines the “parallels” and the
“meridians” of the “map”.

By the inverse maps Φ (x � y
def.
= (x → y−)−) and Ψ (x → y

def.
= (x � y−)−) ([19], Theorem 9.1)

that connect the “world” of algebras of logic of the form (A,→,−, 1) and the “world” of algebras of the
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form (A,�,−, 1), in the involutive case, one can obtain simply, by choosing the appropriate definitions
of the algebras, the definitionally equivalent involutive algebras of logic corresponding to the involutive
algebras from this paper and the corresponding examples and results. Note that, in ([19], Definition
3.29), the implicative-ortholattices were already introduced as involutive BE algebras verifying (impl)
((x → y) → x = x) and their d.e. with the ortholattices was proved in Theorem 9.2. Similarly, one can
introduce now the quantum-Wajsberg algebras, as algebras of logic (involutive BE algebras verifying, say,
(qw)) d. e. with the quantum-MV algebras, etc. Note that the BE algebras were introduced in 2006 by
H.S. Kim and Y.H. Kim [25] and are intensively studied.

This research is continued by the first author: in [20], we clarify some more aspects concerning the
QMV algebras as non-lattice generalizations of MV algebras by studying more deeply the OM algebras; we
prove that all the properties of QMV algebras, excepting (43) and (44), are verified by the OM algebras;
we study in some details the taOM algebras. In [21], we clarify some aspects concerning the QMV algebras
as non-idempotent generalizations of orthomodular lattices; we introduce and study two generalizations
of orthomodular lattices, the orthomodular softlattices and the orthomodular widelattices, following [24].
Finally, in [22], we study the properties (m-Pabs-i) and (WNMm), introduced in [24], in MV algebras and
in tQMV algebras.

6 Examples

We introduce the following definition: an X algebra is said to be proper, if it verifies the properties from
its definition and does not verify the other properties from this paper, except (prelm).

Example 6.1 Proper orthomodular algebra: OM
By a PASCAL program, we found that the algebra AL = (A6 = {0, a, b, c, d, 1},�,−, 1), with the

following tables of � and − and of the additional operation ⊕, is an involutive left-m-BE algebra verifying
(Pom) and (prelm) and not verifying (m-B) for (a, b, a), (m-BB) for (a, a, b), (m-*) for (b, d, a), (m-**) for
(a, b, a), (m-Tr) for (a, b, d), (m-An) for (a, b), (Pqmv) for (d, d, 0), (Pmv) for (d, d), (∆m) for (a, d).

� 0 a b c d 1
0 0 0 0 0 0 0
a 0 a 0 0 0 a
b 0 0 0 0 0 b
c 0 0 0 0 0 c
d 0 0 0 0 0 d
1 0 a b c d 1

and

x x−

0 1
a d
b c
c b
d a
1 0

, with

⊕ 0 a b c d 1
0 0 a b c d 1
a a 1 1 1 1 1
b b 1 1 1 1 1
c c 1 1 1 1 1
d d 1 1 1 d 1
1 1 1 1 1 1 1

.

Note that ≤M
m is transitive, hence ≤M

m is an order relation, by Corollary 3.9, but not a lattice order
w.r. to ∧Mm , ∨Mm , since ∧Mm is not commutative.

Example 6.2 Proper PreMV algebra: PreMV
By a PASCAL program, we found that the algebra AL = (A6 = {0, a, b, c, d, 1},�,−, 1), with the

following tables of � and − and of the additional operation ⊕, is an involutive left-m-BE algebra verifying
(Pmv) (hence (∆m)) and (prelm) and not verifying (m-B) for (a, d, c), (m-BB) for (a, c, a), (m-*) for
(a, d, c), (m-**) for (a, d, c), (m-Tr) for (a, d, b), (m-An) for (a, c), (Pqmv) for (a, 1, c), (Pom) for (a, c).

� 0 a b c d 1
0 0 0 0 0 0 0
a 0 0 0 b 0 a
b 0 0 0 0 0 b
c 0 b 0 b 0 c
d 0 0 0 0 0 d
1 0 a b c d 1

and

x x−

0 1
a d
b c
c b
d a
1 0

, with

⊕ 0 a b c d 1
0 0 a b c d 1
a a 1 1 1 1 1
b b 1 c 1 c 1
c c 1 1 1 1 1
d d 1 c 1 1 1
1 1 1 1 1 1 1

.

Note that ≤M
m is transitive, hence ≤M

m is an order relation, by Corollary 3.9, but not a lattice order
w.r. to ∧Mm , ∨Mm , since ∧Mm is not commutative.

Example 6.3 Proper MMV algebra: MMV



25

By a PASCAL program, we found that the algebra AL = (A6 = {0, a, b, c, d, 1},�,−, 1), with the
following tables of � and − and of the additional operation ⊕, is an involutive left-m-BE algebra verifying
(∆m) and not verifying (m-B) for (a, b, a), (m-BB) for (a, a, b), (m-*) for (a, b, c), (m-**) for (a, b, a),
(m-Tr) for (a, b, d), (m-An) for (a, b), (Pqmv) for (d, 0, d), (Pom) for (d, d), (Pmv) for (d, d), (prelm) for
(a, d).

� 0 a b c d 1
0 0 0 0 0 0 0
a 0 a 0 0 0 a
b 0 0 0 0 0 b
c 0 0 0 b 0 c
d 0 0 0 0 b d
1 0 a b c d 1

and

x x−

0 1
a d
b c
c b
d a
1 0

, with

⊕ 0 a b c d 1
0 0 a b c d 1
a a c 1 1 1 1
b b 1 c 1 1 1
c c 1 1 1 1 1
d d 1 1 1 d 1
1 1 1 1 1 1 1

.

Note that ≤M
m is transitive, hence ≤M

m is an order relation, by Corollary 3.9, but not a lattice order
w.r. to ∧Mm , ∨Mm , since ∧Mm is not commutative.

Example 6.4 Proper QMV algebra: QMV
By a PASCAL program, we found that the algebra AL = (A6 = {0, a, b, c, d, 1},�,−, 1), with the

following tables of � and − and of the additional operation ⊕, is a proper left-QMV algebra, i.e. (PU),
(Pcomm), (Pass), (m-L), (m-Re), (Pqmv) (hence (Pom), (Pmv), (∆m), (prelm)), (DN) hold and it does
not verify (m-B) for (a, d, c), (m-BB) for (a, c, a), (m-*) for (a, d, c), (m-**) for (a, d, c), (m-Tr) for (a, d, b),
(m-An) for (a, c), (∧m-comm) for (a, c).

� 0 a b c d 1
0 0 0 0 0 0 0
a 0 0 0 b 0 a
b 0 0 0 0 0 b
c 0 b 0 d 0 c
d 0 0 0 0 0 d
1 0 a b c d 1

and

x x−

0 1
a d
b c
c b
d a
1 0

, with

⊕ 0 a b c d 1
0 0 a b c d 1
a a 1 1 1 1 1
b b 1 a 1 c 1
c c 1 1 1 1 1
d d 1 c 1 1 1
1 1 1 1 1 1 1

.

Note that ≤M
m is an order relation, by Corollary 3.18, but not a lattice order w.r. to ∧Mm , ∨Mm , since

∧Mm is not commutative.

Example 6.5 Proper transitive OM algebra : tOM
By MACE4 program, we found that the algebra AL = (A8 = {0, a, b, c, d, e, f, 1},�,−, 1), with the

following tables of � and − and of the additional operation ⊕, is an involutive left-m-BE algebra verifying
(Pom) and (m-Tr)⇐⇒ . . .⇐⇒ (m-BB), and also (prelm), and not verifying (m-An) for (c, d), (Pqmv) for
(b, b, 0), (Pmv) for (b, b), (∆m) for (a, b).

� 0 a b c d e f 1
0 0 0 0 0 0 0 0 0
a 0 a 0 c d c d a
b 0 0 0 0 0 0 0 b
c 0 c 0 0 0 0 0 c
d 0 d 0 0 0 0 0 d
e 0 c 0 0 0 b b e
f 0 d 0 0 0 b b f
1 0 a b c d e f 1

and

x x−

0 1
a b
b a
c e
d f
e c
f d
1 0

, with

⊕ 0 a b c d e f 1
0 0 a b c d e f 1
a a 1 1 1 1 1 1 1
b b 1 b e f e f 1
c c 1 e a a 1 1 1
d d 1 f a a 1 1 1
e e 1 e 1 1 1 1 1
f f 1 f 1 1 1 1 1
1 1 1 1 1 1 1 1 1

.

Note that ≤M
m is transitive, hence ≤M

m is an order relation, by Corollary 3.9, but not a lattice order
w.r. to ∧Mm , ∨Mm , since ∧Mm is not commutative.

Example 6.6 Proper transitive pre-MV algebra: tPreMV
By a PASCAL program, we found that the algebra AL = (A6 = {0, a, b, c, d, 1},�,−, 1), with the

following tables of � and − and of the additional operation ⊕, is an involutive left-m-BE algebra verifying
(Pmv) (hence (∆m)) and (m-Tr)⇐⇒ . . .⇐⇒ (m-BB), (prelm) and not verifying (m-An) for (b, c), (Pqmv)
for (b, 1, d), (Pom) for (b, d).
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� 0 a b c d 1
0 0 0 0 0 0 0
a 0 0 0 0 0 a
b 0 0 0 0 a b
c 0 0 0 0 a c
d 0 0 a a b d
1 0 a b c d 1

and

x x−

0 1
a d
b c
c b
d a
1 0

, with

⊕ 0 a b c d 1
0 0 a b c d 1
a a c d d 1 1
b b d 1 1 1 1
c c d 1 1 1 1
d d 1 1 1 1 1
1 1 1 1 1 1 1

.

Note that ≤M
m is transitive, hence ≤M

m is an order relation, by Corollary 3.9, but not a lattice order
w.r. to ∧Mm , ∨Mm , since ∧Mm is not commutative.

Example 6.7 Proper transitive MMV algebra : tMMV
By a PASCAL program, we found that the algebra AL = (A6 = {0, a, b, c, d, 1},�,−, 1), with the

following tables of � and − and of the additional operation ⊕, is an involutive left-m-BE algebra verifying
(∆m) and (m-Tr) ⇐⇒ . . .⇐⇒ (m-BB), and also (prelm), and not verifying (m-An) for (a, b), (Pqmv) for
(b, 0, a), (Pom) for (b, a), (Pmv) for (b, a).

� 0 a b c d 1
0 0 0 0 0 0 0
a 0 a a 0 0 a
b 0 a a 0 0 b
c 0 0 0 c c c
d 0 0 0 c d d
1 0 a b c d 1

and

x x−

0 1
a d
b c
c b
d a
1 0

, with

⊕ 0 a b c d 1
0 0 a b c d 1
a a a b 1 1 1
b b b b 1 1 1
c c 1 1 d d 1
d d 1 1 d d 1
1 1 1 1 1 1 1

.

Note that ≤M
m is transitive, hence ≤M

m is an order relation, by Corollary 3.9, but not a lattice order
w.r. to ∧Mm , ∨Mm , since ∧Mm is not commutative.

Example 6.8 Proper transitive QMV algebra: tQMV
By a PASCAL program, we found that the algebra AL = (A6 = {0, a, b, c, d, 1},�,−, 1), with the

following tables of � and − and of the additional operation ⊕, is a proper left-tQMV algebra, i.e. (PU),
(Pcomm), (Pass), (m-L), (m-Re), (Pqmv) (hence (Pom), (Pmv), (∆m), (prelm)), (DN), (m-Tr) ⇐⇒
. . .⇐⇒ (m-BB) hold and it does not verify (m-An) for (a, b).

� 0 a b c d 1
0 0 0 0 0 0 0
a 0 0 0 0 0 a
b 0 0 0 0 0 b
c 0 0 0 a b c
d 0 0 0 b a d
1 0 a b c d 1

and

x x−

0 1
a d
b c
c b
d a
1 0

, with

⊕ 0 a b c d 1
0 0 a b c d 1
a a d c 1 1 1
b b c d 1 1 1
c c 1 1 1 1 1
d d 1 1 1 1 1
1 1 1 1 1 1 1

.

Note that ≤M
m is an order relation, by Corollary 3.18, but not a lattice order w.r. to ∧Mm , ∨Mm , since

∧Mm is not commutative.

Example 6.9 Transitive, antisymmetric OM algebra: taOM
By a PASCAL program, we found that the algebra AL = (A4 = {0, a, b, 1},�,−, 1), with the following

tables of � and − and of the additional operation ⊕, is a transitive, antisymmetric left-orthomodular
algebra (= m-BCK algebra verifying (Pom)), i.e. (PU), (Pcomm), (Pass), (m-L), (m-Re), (m-An), (DN),
(m-Tr) ⇐⇒ . . . ⇐⇒ (m-BB), (Pom), but also (prelm) hold and it does not verify (∧m-comm) for (a, b),
(Pqmv) for (a, a, 0), (Pmv) for (a, a), (∆m) for (b, a).

� 0 a b 1
0 0 0 0 0
a 0 0 0 a
b 0 0 b b
1 0 a b 1

and

x x−

0 1
a b
b a
1 0

, with

⊕ 0 a b 1
0 0 a b 1
a a a 1 1
b b 1 1 1
1 1 1 1 1

.

Note that ≤M
m is transitive, hence ≤M

m is an order relation, by Corollary 3.9, but not a lattice order
w.r. to ∧Mm , ∨Mm , since ∧Mm is not commutative.
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Note that this algebra is the NM (Nilpotent Minimum) algebra F4 from [15]; it will be reviewed in
[20].
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