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Abstract. In the present paper, the fuzzy Schwarz inequality in inner product spaces
is derived. It is an extension of the Schwarz inequality, and is described by using a
fuzzy norm and a fuzzy inner product defined by Zadeh’s extension principle. The
fuzzy norm of a fuzzy set is the image of the fuzzy set under the crisp norm, and it is
also a fuzzy set. The fuzzy inner product between two fuzzy sets is the image of the
two fuzzy sets under the crisp inner product, and it is also a fuzzy set. The Schwarz
inequality evaluates the inner product between two vectors in an inner product space
by norms of the two vectors. On the other hand, the fuzzy Schwarz inequality evaluates
the fuzzy inner product between two fuzzy sets on an inner product space by fuzzy
norms of the two fuzzy sets.

1 Introduction The concept of fuzzy sets has been primarily introduced for representing
sets containing uncertainty or vagueness by Zadeh [18]. Then, fuzzy set theory has been
applied in various areas such as economics, management science, engineering, optimization
theory, operations research, etc. [6, 10, 14, 15, 16, 17]. Zadeh’s extension principle [4, 18]
provides a natural way for extending the domain of a mapping. It is an important tool in
the development of fuzzy arithmetic and other areas. Let f : X×Y → Z be a mapping, and
let ã and b̃ be fuzzy sets on X and Y , respectively. In addition, let f(ã, b̃) be the fuzzy set

on Z obtained from ã and b̃ by Zadeh’s extension principle. In [12], relationships between

f([ã]α, [̃b]α) and [f(ã, b̃)]α are investigated, where [ã]α, [̃b]α, and [f(ã, b̃)]α are the α-level

sets of ã, b̃, and f(ã, b̃), respectively. A fuzzy norm and a fuzzy inner product defined by
Zadeh’s extension principle are proposed, and their properties are investigated in [9] and
[8], respectively. We adopt them. The fuzzy norm of a fuzzy set is the image of the fuzzy
set under the crisp norm, and it is also a fuzzy set. The fuzzy inner product between two
fuzzy sets is the image of the two fuzzy sets under the crisp inner product, and it is also a
fuzzy set.

Fuzzy normed spaces and fuzzy inner product spaces have been discussed in several
papers; see, for example [13] and references therein. Fuzzy norms and fuzzy inner products
in most of papers are based on axioms rather than Zadeh’s extension principle, and their
values are fuzzy sets for norms and inner products of crisp vectors rather than of fuzzy
sets. The Schwarz inequality evaluates the inner product between two vectors in an inner
product space by norms of the two vectors, and it has a long history; see, for example [3].
We consider the Schwarz inequality in fuzzy settings by using our adopted fuzzy norm and
fuzzy inner product. The Schwarz inequality is derived for fuzzy matrices by using a fuzzy
norm and a fuzzy inner product based on axioms rather than Zadeh’s extension principle
in [5], and the Schwarz inequality is derived for fuzzy integrals in [2]. Our settings such as
the fuzzy norm and the fuzzy inner product are different from the previous works on the
Schwarz inequality in fuzzy settings.
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In the present paper, the fuzzy Schwarz inequality in inner product spaces is derived.
It is an extension of the Schwarz inequality, and is described by using the fuzzy norm and
the fuzzy inner product. The fuzzy Schwarz inequality evaluates the fuzzy inner product
between two fuzzy sets on an inner product space by fuzzy norms of the two fuzzy sets.

The remainder of the present paper is organized as follows. In Section 2, some notations
are presented. In Section 3, we investigate relationships between level sets of fuzzy sets
and level sets of another fuzzy set obtained by Zadeh’s extension principle, and the fuzzy
norm and the fuzzy inner product defined by Zadeh’s extension principle are presented. In
Section 4, the fuzzy Schwarz inequality is derived by using the fuzzy norm and the fuzzy
inner product as an extension of the Schwarz inequality in inner product spaces. Finally,
conclusions are presented in Section 5.

2 Preliminaries In this section, some notations are presented.
Let R and C be the set of all real numbers and the set of all complex numbers, respec-

tively. We set R+ = {x ∈ R : x ≥ 0} and R− = {x ∈ R : x ≤ 0}. For A ⊂ R, we denote
the interior of A by int(A). For a, b ∈ R, we set [a, b] = {x ∈ R : a ≤ x ≤ b}, [a, b[ =
{x ∈ R : a ≤ x < b}, ]a, b] = {x ∈ R : a < x ≤ b}, and ]a, b[ = {x ∈ R : a < x < b}.

Let X be a set. Then, ã : X → [0, 1] is called a fuzzy set on X, and let F(X) be the set
of all fuzzy sets on X. For ã ∈ F(X) and α ∈ ]0, 1], the α-level set of ã is defined as

[ã]α = {x ∈ X : ã(x) ≥ α}. (1)

For a crisp set S ⊂ X, the indicator function of S is a function cS : X → {0, 1} defined as
cS(x) = 1 if x ∈ S, and cS(x) = 0 if x /∈ S for each x ∈ X. A fuzzy set ã ∈ F(X) can be
represented as

ã = sup
α∈]0,1]

αc[ã]α (2)

which is well-known as the decomposition theorem or the representation theorem; see, for
example [4].

We consider fuzzy sets on a topological space. Let (X,T) be a topological space. Let
C(X) and K(X) be the set of all closed subsets of X and the set of all compact subsets of
X, respectively. Let ã ∈ F(X). The fuzzy set ã is called a closed fuzzy set (on X) if [ã]α
∈ C(X) for any α ∈ ]0, 1]. The fuzzy set ã is a closed fuzzy set on X if and only if ã is an
upper semicontinuous function on X. The fuzzy set ã is called a compact fuzzy set (on X)
if [ã]α ∈ K(X) for any α ∈ ]0, 1]. Let FC(X) and FK(X) be the set of all closed fuzzy sets
on X and the set of all compact fuzzy sets on X, respectively.

In R, we define an order relation for crisp sets, and then define an order relation for
fuzzy sets by using the order relation for crisp sets. Let A,B ⊂ R. We write A ≤ B if
B ⊂ A+R+ and A ⊂ B+R−, and write A < B if B ⊂ A+int(R+) and A ⊂ B + int(R−).
Then, ≤ is a pseudo order on 2R. B ⊂ A + R+ if and only if for any b ∈ B, there exists
a ∈ A such that a ≤ b. A ⊂ B + R− if and only if for any a ∈ A, there exists b ∈ B such
that a ≤ b. B ⊂ A + int(R+) if and only if for any b ∈ B, there exists a ∈ A such that
a < b. A ⊂ B+int(R−) if and only if for any a ∈ A, there exists b ∈ B such that a < b. Let

ã, b̃ ∈ F(R). We write ã ≼ b̃ if [ã]α ≤ [̃b]α for any α ∈ ]0, 1], and write ã ≺ b̃ if [ã]α < [̃b]α
for any α ∈ ]0, 1]. Then, ≼ and ≺ are called the fuzzy max order and the strict fuzzy max
order, respectively, and ≼ is a pseudo order on F(R); see [7, 11].

3 Images of fuzzy sets by Zadeh’s extension principle In this section, we investigate
relationships between level sets of fuzzy sets and level sets of another fuzzy set obtained
by Zadeh’s extension principle, and the fuzzy norm and the fuzzy inner product defined by
Zadeh’s extension principle are presented.
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Definition 1. Let Xi, i = 1, 2, · · · , n be sets, and let ãi ∈ F(Xi), i = 1, 2, · · · , n. Then,∏n
i=1 ãi ∈ F (

∏n
i=1 Xi) is defined as(

n∏
i=1

ãi

)
(x1, x2, · · · , xn) = min

i=1,2,··· ,n
ãi(xi)

for each (x1, x2, · · · , xn) ∈
∏n

i=1 Xi, and is called the fuzzy product set of ãi, i = 1, 2, · · · , n.
The fuzzy product set

∏n
i=1 ãi is also represented as ã1 × ã2 × · · · × ãn or (ã1, ã2, · · · , ãn).

The following definition provides images of fuzzy sets under a crisp mapping by Zadeh’s
extension principle; see [4, 18] for Zadeh’s extension principle.

Definitin 2. Let Xi, i = 1, 2, · · · , n and Y be sets, and let f :
∏n

i=1 Xi → Y . Then, for
ãi ∈ F(Xi), i = 1, 2, · · · , n, f(ã1, ã2, · · · , ãn) ∈ F(Y ) is defined as

f(ã1, ã2, · · · , ãn)(y) = sup
(x1,x2,··· ,xn)∈f−1(y)

min
i=1,2,··· ,n

ãi(xi)

for each y ∈ Y , where sup ∅ = 0.

Let X be a real or complex normed space equipped with a norm ∥ ·∥, and set f : X → R
as f(x) = ∥x∥ for each x ∈ X. For ã ∈ F(X), it follows that

f(ã)(y) = ∥ã∥(y) = sup
x∈f−1(y)

ã(x), y ∈ R (3)

from Definition 2. Then, ∥ã∥ ∈ F(R) is called the fuzzy norm of ã, and some properties of
fuzzy norms are investigated in [9].

Let X be a real or complex inner product space equipped with an inner product ⟨·, ·⟩,
and set f : X × X → K as f(x, y) = ⟨x, y⟩ for each x, y ∈ X, where K = R or C. For

ã, b̃ ∈ F(X), it follows that

f(ã, b̃)(z) = ⟨ã, b̃⟩(z) = sup
(x,y)∈f−1(z)

min{ã(x), b̃(y)}, z ∈ K (4)

from Definition 2. Then, ⟨ã, b̃⟩ ∈ F(K) is called the fuzzy inner product between ã and b̃,
and some properties of fuzzy inner products are investigated in [8].

The following theorem provides a relationship between level sets of fuzzy sets and level
sets of another fuzzy set obtained by Zadeh’s extension principle.

Theorem 1. [12] Let Xi, i = 1, 2, · · · , n and Y be sets, and let f :
∏m

i=1 Xi → Y . In
addition, let ãi ∈ F(Xi), i = 1, 2, · · · , n. Then,

[f(ã1, ã2, · · · , ãn)]α = f([ã1]α, [ã2]α, · · · , [ãn]α) (5)

for any α ∈ ]0, 1] if and only if y ∈ Y and f−1(y) ̸= ∅ imply the existence of (x∗
1, x

∗
2, · · · , x∗

n)
∈ f−1(y) such that

min
i=1,2,··· ,n

ãi(x
∗
i ) = sup

(x1,x2,··· ,xn)∈f−1(y)

min
i=1,2,··· ,m

ãi(xi).

The following theorem gives sufficient conditions for (5) in Theorem 1 to hold.
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Theorem 2. Let (Xi,Ti), i = 1, 2, · · · , n be Hausdorff spaces, and let Y be a T1-space.
Assume that f :

∏n
i=1 Xi → Y is continuous. In addition, let ãi ∈ FK(Xi), i = 1, 2, · · · , n.

Then,
[f(ã1, ã2, · · · , ãn)]α = f([ã1]α, [ã2]α, · · · , [ãn]α)

for any α ∈ ]0, 1].

Proof. Fix any y ∈ Y , and suppose that f−1(y) ̸= ∅. Then, it is sufficient to show the
existence of (x∗

1, x
∗
2, · · · , x∗

n) ∈ f−1(y) such that

min
i=1,2,··· ,n

ãi(x
∗
i ) = sup

(x1,x2,··· ,xn)∈f−1(y)

(
n∏

i=1

ãi

)
(x1, x2, · · · , xn)

from Theorem 1. For any α ∈ ]0, 1], since [ãi]α ∈ K(Xi), i = 1, 2, · · · , n, it follows that[
n∏

i=1

ãi

]
α

=
n∏

i=1

[ãi]α ∈ K

(
n∏

i=1

Xi

)

from Tychonoff’s theorem; see [1] for Tychonoff’s theorem. Thus, it follows that

n∏
i=1

ãi ∈ FK

(
n∏

i=1

Xi

)
⊂ FC

(
n∏

i=1

Xi

)
,

and that
∏n

i=1 ãi is an upper semicontinuous function on
∏n

i=1 Xi. If

sup
(x1,x2,··· ,xn)∈f−1(y)

(
n∏

i=1

ãi

)
(x1, x2, · · · , xn) = 0,

then (
n∏

i=1

ãi

)
(x′

1, x
′
2, · · · , x′

n) = 0 = sup
(x1,x2,··· ,xn)∈f−1(y)

(
n∏

i=1

ãi

)
(x1, x2, · · · , xn)

for any (x′
1, x

′
2, · · · , x′

n) ∈ f−1(y). Suppose that

sup
(x1,x2,··· ,xn)∈f−1(y)

(
n∏

i=1

ãi

)
(x1, x2, · · · , xn) > 0.

Then, there exists (x′′
1 , x

′′
2 , · · · , x′′

n) ∈ f−1(y) such that(
n∏

i=1

ãi

)
(x′′

1 , x
′′
2 , · · · , x′′

n) > 0.

We set

β =

(
n∏

i=1

ãi

)
(x′′

1 , x
′′
2 , · · · , x′′

n) > 0.

Then, since x′′
i ∈ [ãi]β , i = 1, 2, · · · , n, it follows that

(x′′
1 , x

′′
2 , · · · , x′′

n) ∈ f−1(y) ∩

(
n∏

i=1

[ãi]β

)
.
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Since
n∏

i=1

[ãi]β ∈ K

(
n∏

i=1

Xi

)
and

f−1(y) ∈ C

(
n∏

i=1

Xi

)
by the continuity of f , it follows that

f−1(y) ∩

(
n∏

i=1

[ãi]β

)
∈ K

(
n∏

i=1

Xi

)
.

Since (
n∏

i=1

ãi

)
(x1, x2, · · · , xn) ≥ β

for any

(x1, x2, · · · , xn) ∈ f−1(y) ∩

(
n∏

i=1

[ãi]β

)
,

and (
n∏

i=1

ãi

)
(x1, x2, · · · , xn) < β

for any

(x1, x2, · · · , xn) ∈ f−1(y) \

(
n∏

i=1

[ãi]β

)
,

we have

sup
(x1,x2,··· ,xn)∈f−1(y)

(
n∏

i=1

ãi

)
(x1, x2, · · · , xn)

= sup
(x1,x2,··· ,xn)∈f−1(y)∩(

∏n
i=1[ãi]β)

(
n∏

i=1

ãi

)
(x1, x2, · · · , xn).

By the compactness of f−1(y) ∩ (
∏n

i=1[ãi]β) ̸= ∅ and the upper semicontinuity of
∏n

i=1 ãi,
there exists (x∗

1, x
∗
2, · · · , x∗

n) ∈ f−1(y) ∩ (
∏n

i=1[ãi]β) such that(
n∏

i=1

ãi

)
(x∗

1, x
∗
2, · · · , x∗

n)

= sup
(x1,x2,··· ,xn)∈f−1(y)∩(

∏n
i=1[ãi]β)

(
n∏

i=1

ãi

)
(x1, x2, · · · , xn).

2

The following theorem gives sufficient conditions for the fuzzy set obtained by Zadeh’s
extension principle from other fuzzy sets to be a compact fuzzy set.
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Theorem 3. Let (Xi,Ti), i = 1, 2, · · · , n be Hausdorff spaces, and let Y be a T1-space.
Assume that f :

∏n
i=1 Xi → Y is continuous. In addition, let ãi ∈ FK(Xi), i = 1, 2, · · · , n.

Then, f(ã1, ã2, · · · , ãn) ∈ FK(Y ).

Proof. Fix any α ∈ ]0, 1]. Since ãi ∈ FK(Xi), i = 1, 2, · · · , n, it follows that [ãi]α ∈ K(Xi),
i = 1, 2, · · · , n, and that

∏n
i=1[ãi]α ∈ K (

∏n
i=1 Xi) from Tychonoff’s theorem. From Theo-

rem 2 and the continuity of f , if follows that [f(ã1, ã2, · · · , ãn)]α = f([ã1]α, [ã2]α, · · · , [ãn]α)
∈ K(Y ). Therefore, we have f(ã1, ã2, · · · , ãn) ∈ FK(Y ). 2

The following theorem shows that order relations of functions imply order relations of
fuzzy sets obtained by Zadeh’s extension principle using the functions.

Theorem 4. Let (Xi,Ti), i = 1, 2, · · · , n be Hausdorff spaces, and let ãi ∈ FK(Xi),
i = 1, 2, · · · , n. Assume that f, g :

∏n
i=1 Xi → R are continuous.

(i) If f ≤ g, then f(ã1, ã2, · · · , ãn) ≼ g(ã1, ã2, · · · , ãn).

(ii) If f < g, then f(ã1, ã2, · · · , ãn) ≺ g(ã1, ã2, · · · , ãn).

Proof. We shall show only (i). (ii) can be shown in the similar way to (i).
From Theorem 2, it follows that [f(ã1, ã2, · · · , ãn)]α = f([ã1]α, [ã2]α, · · · , [ãn]α) and

[g(ã1, ã2, · · · , ãn)]α = g([ã1]α, [ã2]α, · · · , [ãn]α) for any α ∈ ]0, 1]. Fix any α ∈ ]0, 1].
First, let z ∈ [g(ã1, ã2, · · · , ãn)]α = g([ã1]α, [ã2]α, · · · , [ãn]α). Then, there exists (x1, x2,

· · · , xn) ∈
∏n

i=1[ãi]α such that z = g(x1, x2, · · · , xn). Set y = f(x1, x2, · · · , xn) ∈ f([ã1]α,
[ã2]α, · · · , [ãn]α) = [f(ã1, ã2, · · · , ãn)]α, then it follows that y = f(x1, x2, · · · , xn) ≤ g(x1,
x2, · · · , xn) = z from the assumption. Thus, for any z ∈ [g(ã1, ã2, · · · , ãn)]α, there exists y
∈ [f(ã1, ã2, · · · , ãn)]α such that y ≤ z.

Next, let y ∈ [f(ã1, ã2, · · · , ãn)]α = f([ã1]α, [ã2]α, · · · , [ãn]α). Then, there exists (x1, x2,
· · · , xn) ∈

∏n
i=1[ãi]α such that y = f(x1, x2, · · · , xn). Set z = g(x1, x2, · · · , xn) ∈ g([ã1]α,

[ã2]α, · · · , [ãn]α) = [g(ã1, ã2, · · · , ãn)]α, then it follows that y = f(x1, x2, · · · , xn) ≤ g(x1, x2,
· · · , xn) = z from the assumption. Thus, for any y ∈ [f(ã1, ã2, · · · , ãn)]α, there exists z ∈
[g(ã1, ã2, · · · , ãn)]α such that y ≤ z.

Therefore, we have f(ã1, ã2, · · · , ãn) ≼ g(ã1, ã2, · · · , ãn) since [f(ã1, ã2, · · · , ãn)]α ≤
[g(ã1, ã2, · · · , ãn)]α for any α ∈ ]0, 1]. 2

4 Fuzzy Schwarz inequality In this section, the fuzzy Schwarz inequality is derived by
using the fuzzy norm and the fuzzy inner product as an extension of the Schwarz inequality
in inner product spaces.

Throughout this section, let X be a real or complex inner product space equipped with
an inner product ⟨·, ·⟩ : X ×X → K, where K = R or C. For each x ∈ X, the norm of x is
defined as

∥x∥ =
√
⟨x, x⟩. (6)

The same notations ⟨·, ·⟩ and ∥ · ∥ are used when some inner product spaces are considered.
The inner product on X ×X is defined as

⟨(x1, y1), (x2, y2)⟩ = ⟨x1, x2⟩+ ⟨y1, y2⟩ (7)

for each (x1, y1), (x2, y2) ∈ X ×X, and the norm on X ×X is defined as

∥(x, y)∥ =
√

⟨(x, y), (x, y)⟩ =
√
∥x∥2 + ∥y∥2 (8)

for each (x, y) ∈ X ×X.
The following theorem provides an inequality which evaluates the inner product between

two vectors in an inner product space by norms of the two vectors; see, for example [3].
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Theorem 5. (Schwarz Inequality) For any x, y ∈ X,

|⟨x, y⟩| ≤ ∥x∥∥y∥.

Moreover, equality holds in this inequality if and only if x and y are linearly dependent.

In order to derive fuzzy Schwarz inequality, we present the following lemma.

Lemma 1. Define f1 : X × X → K as f1(x, y) = ⟨x, y⟩ for each (x, y) ∈ X × X, f2 : K
→ R as f2(z) = |z| for each z ∈ K, and f : X ×X → R as f(x, y) = f2(f1(x, y)) = |⟨x, y⟩|
for each (x, y) ∈ X ×X. In addition, define g1 : X → R as g1(x) = ∥x∥ for each x ∈ X,
g2 : R× R → R as g2(u, v) = uv for each (u, v) ∈ R× R, and g : X ×X → R as g(x, y) =

g2(g1(x), g1(y)) = ∥x∥∥y∥ for each (x, y) ∈ X ×X. Let ã, b̃ ∈ FK(X). Then,

f(ã, b̃) = f2(f1(ã, b̃)) = |⟨ã, b̃⟩|, (9)

g(ã, b̃) = g2(g1(ã), g1(̃b)) = ∥ã∥∥b̃∥ (10)

where the second equalities in (9) and (10) are definitions.

Proof. For A,B ⊂ X, it can be shown easily that

f(A,B) = f2(f1(A,B)) = |⟨A,B⟩|, (11)

g(A,B) = g2(g1(A), g1(B)) = ∥A∥∥B∥ (12)

where the second equalities in (11) and (12) are definitions.

Since f1, f2, and f are continuous, it follows that [f(ã, b̃)]α = f([ã]α, [̃b]α) = f2(f1([ã]α,

[̃b]α)) = f2([f1(ã, b̃)]α) = [f2(f1(ã, b̃))]α for any α ∈ ]0, 1] from Theorems 2, 3, and (11).

Therefore, we have f(ã, b̃) = f2(f1(ã, b̃)) from the decomposition theorem (2).

Since g1, g2, and g are continuous, it follows that [g(ã, b̃)]α = g([ã]α, [̃b]α) = g2(g1([ã]α),

g1([̃b]α)) = g2([g1(ã)]α, [g1(̃b)]α) = [g2(g1(ã), g1(̃b))]α for any α ∈ ]0, 1] from Theorems 2,

3, and (12). Therefore, we have g(ã, b̃) = g2(g1(ã), g1(̃b)) from the decomposition theorem
(2). 2

The following theorem provides an inequality which evaluates the fuzzy inner product
between two fuzzy sets on an inner product space by fuzzy norms of the two fuzzy sets.

Theorem 6. (Fuzzy Schwarz Inequality) For any ã, b̃ ∈ FK(X),

|⟨ã, b̃⟩| ≼ ∥ã∥∥b̃∥.

Proof. Define f, g : X ×X → R as f(x, y) = |⟨x, y⟩| and g(x, y) = ∥x∥∥y∥ for each (x, y)
∈ X ×X. From Theorem 5, it follows that f(x, y) = |⟨x, y⟩| ≤ ∥x∥∥y∥ = g(x, y) for any x,
y ∈ X.

Let ã, b̃ ∈ FK(X). Then, it follows that f(ã, b̃) = |⟨ã, b̃⟩| and g(ã, b̃) = ∥ã∥∥b̃∥ from

Lemma 1. Since f, g are continuous, we have |⟨ã, b̃⟩| = f(ã, b̃) ≼ g(ã, b̃) = ∥ã∥∥b̃∥ from
Theorem 4 (i). 2

5 Conclusions In the present paper, the fuzzy Schwarz inequality in inner product spaces
was derived. It was an extension of the Schwarz inequality, and was described by using a
fuzzy norm and a fuzzy inner product defined by Zadeh’s extension principle. The Schwarz
inequality evaluates the inner product between two vectors in an inner product space by
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norms of the two vectors. On the other hand, the fuzzy Schwarz inequality evaluates the
fuzzy inner product between two fuzzy sets on an inner product space by fuzzy norms of
the two fuzzy sets.

First, the fuzzy norm and the fuzzy inner product were defined by Zadeh’s extension
principle. The fuzzy norm of a fuzzy set is the image of the fuzzy set under the crisp norm,
and it is also a fuzzy set. The fuzzy inner product between two fuzzy sets is the image of
the two fuzzy sets under the crisp inner product, and it is also a fuzzy set. Next, sufficient
conditions for the image of level sets of fuzzy sets to coincide with level sets of another
fuzzy set obtained by Zadeh’s extension principle were given as Theorem 2. Next, sufficient
conditions for the fuzzy set obtained by Zadeh’s extension principle from other fuzzy sets to
be a compact fuzzy set were given as Theorem 3. Next, it was shown that order relations of
functions implied order relations of fuzzy sets obtained by Zadeh’s extension principle using
the functions as Theorem 4. Finally, based on these results, the fuzzy Schwarz inequality
was derived as Theorem 6.
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