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ABSTRACT. We discuss the power monotonicity of the family {Fpq|p,7 € R} of
parametrized representing functions of Kubo-Ando operator means, which is intro-
duced in our preceding paper. It includes several important representing functions, for
example, arithmetic, geometric, harmonic, logarithmic, power and Stolarsky means.
We shall discuss conditions of power monotonicity of functions.

1 Introduction. The theory of operator means is established by Kubo and Ando [4]:
An operator mean Am B for positive invertible operators A, B is defined by a positive
normalized operator monotone function f on (0, 00) by

AmB = Ai f (A*%BA*%) A%

Here the normalization corresponds to f(1) = 1. Omne of the result of the Kubo-Ando
theory is to give a bijection between an operator mean and a positive normalized operator
monotone function on (0,00) as above. In this bijection, f is often called the representing
function of an operator mean m; f(z) = lmua.

Recently Wada [7] introduced the power monotonicity of the representing function f,
and showed the relation to the Ando-Hiai inequality [8, 1]: f is called PMI (power monotone
increasing) (resp. PMD (power monotone decreasing)) if f satisfies

flz)" < f(z") (resp. f(z)" > f(z")) for all » > 1 and z > 0.

It has not been known any characterization of a function satisfying PMI or PMD. But we
know some examples of PMI or PMD functions: For each p > 0 and A € (0,1)

(1= A+ AaP)»
is PMI, and it is PMD for the case p < 0. Moreover,
lm (1 — A+ AzP)? = 2
p—0

is both PMI and PMD.
Especially,

1
f) =T = [ 2
0

~ logx
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the representing function of the logarithmic mean is PMI. The above functions can be
unified into the following function Fj, 4:

1 a p+q _ q i
a P X
F = 1— pP = —_— .
p.a(@) (/O[ A+ Az?] d/\) (p+q 1 >

This extension is discussed in [6]. It is known that for p,q € [-1,1], F,, is operator
monotone on (0,00) and monotone increasing on p,q € [—1,1] [6]. More precisely, it is
increasing on p,q € R, but it is not operator monotone if p,¢ ¢ [—1,1]. Moreover F, , is
symmetric:

1
Amp, B =Bmpg, A, that is, Fpq(z) =2F,, () .
: ’ x
It includes several famous functions as in the following table.
(p;Q) (*1371) (7170) (030) (071) (171) (p,p)
1
2x xlogx r—1 | 1+z 1+aP\?
F
b 1+ z—1 Ve log z 2 ( 2 >

Here we consider the limit in the cases of (p,q) = (—1,0),(0,0),(0,1). We can also get
important functions from F}, ,, too.

p+1 _
(1) (Power difference mean, [3]) F,1(z) = ppﬁxﬂ)ifl

3p+1

_3p—la 2z -1
3+l 1

(2) (Normalized power difference mean, [2, 5]) Ffipzi—ll(l')

In this note, we shall show power monotonicity of Fj, 4, firstly. Then we give another
proof of power monotonicity of F), , via a lower bound of F), ,(z") — F, 4(x)™ in a restricted
case. Lastly, we shall discuss conditions of power monotonicity of each differentiable func-
tion.

2 Main result. In this section, we shall show power monotonicity of Fj, 4.
Theorem 1. F), , is PMI for 2p+ q > 0 and is PMD for 2p+q <0

It is easy that F,, ,(z) = v/, the representing function of the geometric mean, if 2p+¢q =
0. Hence by the monotonicity of p, q, we can rewrite Theorem 1 into the following form.

Theorem 1°. F, , is PMI (resp. PMD) if and only if /x < F, 4(x) (resp. /x> F, 4(x))
for all x > 0.

To show Theorem 1, we note the following lemma. It follows from the definition of F}, 4,
easily.

Lemma 2. F, ,(z7Y) ™' = F_, _,(x) holds for all p,q € R and z > 0.
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Proof of Theorem 1. We shall divide 8 cases to prove Theorem 1 (see Figure 1, below).

p+q=0
(5) PMD\ (4) PMI

(1) PMI
(6) PMD

(3) PMI

(2) PMD

(8) PMD \ (7) PMI

2p+q =0

Figure 1: We divided 8 cases to prove Theorem 1.

(1) The case of p,q > 0. We notice that f(x) = 2" is a convex function for r > 1. For r > 1,

F,q(z)" = (/01[1 — A+ )\wp]gd)\)g

1
q

by ¢ >0

1 7
/ [1—>\+>\3:p’”]zq>d>\) by p,q >0
0

Hence Fj 4 is PMI for p,q > 0.
(2) The case of p,q < 0. By Lemma 2 and (1), we have

Fpq(z") = F—p,—q(x_r)_l < F—p,—q(x_l)_r = Fpq(2)"
Hence F), 4 is PMD for p,q < 0.

(3) The case of p+ ¢ > 0 and ¢ < 0.

1
D pPta 1\ ¢
Fpqlz) = ( T

ptq ar—1
1
_ p+gq pprat(=a) _ 1\ =¢ _
- <p+q+(_CI) ’ e — 1 —Fp+q,_q($)

Hence by (1), F 4 is PMI for p+¢ >0 and ¢ < 0.
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(4) The case of p < 0 and 2p 4+ ¢ > 0. We notice that ¢ > 0.

1
—p  aPTe—1\¢
Foate) - (22 21

p+q 1—aP
1
— ptq _ q
= x_g P . 171
p+q xP—1
_p —p p—p+H2r+a _ 1 e
=T 4 .
<—p+2p+q zP—1 >
_p 2p+gqg
=" {F_papiq(t)}
Hence by (1), F) 4 is PMI for p < 0 and 2p+ ¢ > 0.
(5) The case of p+ ¢ > 0 and 2p + g < 0. We notice that g > 0.
pta _ q 3
Fpglz)=af (2 2 "~
’ ptqg x7P—1
_» p+gq L) H(—2p-a) _ 1\ T@ED
=z .
((p+Q)+(—2p—q) aPta — 1 )

_D 2p+gq
=2~ {Fpirq—2p—q(2)} *

Hence by (1), F}, 4 is PMD for p+¢ >0 and 2p+¢ < 0.

(6) The case of p+¢ < 0 and ¢ > 0. By Lemma 2, we have F}, ,(z7')~! = F_, _ (). Since
—p — ¢ > 0 and —¢ < 0, we have that F_, _, is PMI by (3), and therefore F, , is PMD.

(7) The case of p+ ¢ < 0 and 2p + ¢ > 0. By Lemma 2, we have F, ,(z71)~! = F_,, _ ().
Since —p — ¢ > 0 and —2p — ¢ < 0, we have that F_, _, is PMD by (5). Therefore F, 4 is
PMI.

(8) The case of 2p + ¢ < 0 and p > 0. By Lemma 2, we have F, ,(z7')~! = F_, _,(x).
Since —2p —¢ > 0 and —p <0, F_, _, is PMI by (4), therefore F), ; is PMD.
Thus we have the conclusion by combining 8 cases. 0

From Theorem 1, we have the following power monotonicity of well-known functions.

(1) The representing function s, (x) of the Stolarsky mean is defined by

x*—1 o1

o= (o)
Wada [7, Proposition 3.2] showed that s, is PMD for o € [-2,—1] and PMI for
a € [-1,2]. It is obtained by Theorem 1 since Fi o—1(z) = sq(z). More precisely,
Sq(x) is PMI for 2 +a —1 > 0 (i.e,, « > —1) and PMD for 2+ o —1 < 0 (i.e,
a < —1). It is a generalization of Wada’s result. Here we remark that s, is operator
monotone for a € [—2,2]. Namely Wada considered only the case o € [—2,2]. But

Theorem 1 says that we can consider power monotonicity independent to the operator
monotonicity.
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(2) The representing function of the power difference mean

p aPtl—1
Fpa(z) = D4l 2P —1
p+1l x

is PMI for 2p+1 >0 (ie., p > f%), and PMD for 2p+1 <0 (ie.,p < f%) In other
words, the representing function of the normalized power difference mean

3p—1lz% —1
= 3p_1

e e = S

2

is PMI for 222 +1 >0 (i.e., p > 0), and PMD for 2221 +1 < 0 (i.e., p < 0).

(3) The representing function of the identric mean

Fo1(z) = il_)ml sa(z) = gxa:fl

is PMI since 2-0+1 > 0.

(4) The representing function of the logarithmic mean
z—1

F =
10(@) log x

is PMI since 2-1+0 > 0.

(5) The representing function of the power mean

1
14aP\>»
Fpm(x): < D) )

is PMI for p > 0, and PMD for p < 0.

Remark. Suppose 0 < p < r < ¢ for a fixed q. Then the Jensen inequality shows

(1= XA+ AaP)p < (L= A+ A2")7 < (1= A+ Aa?)7.

Thus we have the following monotonicity for PMI functions:

1 a\ 7
Fp7q(z)/Fq,q(x)< J;LIZ) as 0<p.q.

Contrastively we have the monotonicity for PMD functions:

1 a\ 7
Fpq(z) \ Fyqz) = ( —;x ) as 0>p\.q.
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3 Difference between F), ,(z") and F), ,(x)". Restricting ourselves to the case r = n,
integers. Then, based on the above remark, we show the following partial result of Theorem
1 via the power means:

Theorem 3. Let n be a positive integer. For 0 < p < gq,
Fpq(z") — Fpq(z)" = Fpq(2) (Fq7q($)n_1 - Fp,q(x)n_l) >0
holds for all x > 0. For ¢ < p <0,
Fpq(2)" — Fpq(z™) = Fpq(2) (Fp7q(33)n71 - Fq,q(x)nil) >0
holds for all x > 0.
To see this, we give a lemma:

n—1_ £(p+q)
Lemma 4. For a fized ¢ € R and an positive integer n, a function g,(p) = Zip W0

S
Fpq(z™)\? . . o o
——— ) is monotone increasing if ¢ > 0, and monotone decreasing if ¢ < 0.
Fpq(@)
Proof. At first we have
(1)

(oo @) (Cig Cloga - awra)) — (370, a“WH0)) (370 kloga - 2*7)
(Sp_g zhr)?

-1 Ing - 2k - g.x@(p-HJ)) _ ( - xf(p-%q)) ( - k.;ﬁp)}
“wer () (e (B (5

B xz—1 log x
(YChogatr)* o —1

in which G,,4+1(p) becomes

Gni1(p) = (Z :ckp> (ZE xe(pﬂ) - (ﬁ:xl(’”q)) (Zn:kmkp)
=0 k=0
— zn: g( (P+a)+kp _ k(p+q)+lp>

gn+1(p)

Gn+1 (p)7

k,£=0
(2) n n
— Zg (xf(p+q)+kp _ xk(erq)Mp) + Z / ( (p+q)+kp _ k(p+q)+fp)
L>k k>t
= Zg (xf(P+Q)+kp _ xk(p+q)+€p) Zg ( k(p+a)+tp _ K(p+q)+kp) _
>k k>t

Here let ¢ > 0 and « > 1. We note that
k(p+q)+p—{tlp+q) +kp} =(k—0q=>0
for k > £. Then (2) gives that

Gni1(p) = Zg (xf(p+q)+kp p+q)+fp) Zg ( (p+a)+tp _ f(p+q)+kp)
>k k>0

> ZZ (xé(p+Q)+kp _ m1«(1:>+q)+fz;)) _ Z k (xk(p-‘rq)-‘rép _ xfz<p+q)+kp) -0
>k k>t



POWER MONOTONICITY FOR A PATH OF OPERATOR MEANS 7

forg>0and x> 1. If ¢ > 0and 0 < 2 < 1. Then Gy4+1(p) <0 but (z — 1)G,11(p) > 0.
Since f%‘f >0 for all z >0, g;,,1(p) > 0 and g,11(p) is increasing for ¢ > 0.
Next, let ¢ <0 and x > 1. Since

n n
Gryi(p) = Zg (xf(p+q)+kp _ xk(p+q)+2p) _ Zg (xk(p+q)+€p _ xf(p+q)+kp)
>k k>0

_ Z£ ZRt+a)+ip _ xf(p+q)+kp) + Zg (xf(p+q)+kp _ xk(p-irq)-s-fp)

>k k>L

and
k(p+q) +tp—{lp+q)+kp} =(k—0)g>0

for ¢ > k, we have

Guia(p) = -3 ¢ (xk(P+q)+Ep B $e<p+q)+kp) +) ¢ (xe<p+q)+kp B $k<p+q)+zp)
>k k>4
< - Z k (mk(p+Q)+€p _ xé(?+q)+kp) + ZE (mé(p-i-q)-‘rkp _ xk(p+q)+€p) -0
>k k>¢

for ¢ < 0 and x > 1. By the same argument as above, we have g, ;(p) < 0 for ¢ < 0 and
0 <z < 1. Hence g,+1(p) is increasing on p € R if ¢ > 0, and decreasing on p € R if ¢ < 0.
Another formula is:

fﬂﬁi&fﬁl qggr(x"(p+q)"1)/($p+ﬂ 1) E:Z;g—aﬂ(p+q)47
<Fp,q(w)> T @r-D/@r-1) yrlak = gn(p)- O

Proof of Theorem 8. Since Fyo(z) = +/z, Theorem 3 holds for p = ¢ = 0. Then we can
omit the case ¢ = 0. First we see the case 0 < p < ¢q. Noting that

Fpq(z") — Fpq(2)" = Fpq() (Qn(p)% - Fp,q(x)n_l) .

By ¢1(p) = 1, we have only to show the case n > 2. Monotonicity of F}, , on p,q € R and
Lemma 4 show

_ 14294 ... 4 galn=1) a1
B n - n(z7—1)

1 q n—1
> Fl,1(917q)n_1 = ( —|—2$ ) = Fq7q(x)q(n_1)-

gn(p) > Gn (0) — Fl,n—l(xq)n_l

Thus we have

Fp,q(xn) - Fp,q(x)n =Fpq
Fpq() (Fq,q(x)n_l - Fp,q(x)n_l) 20

Y

for ¢ > p > 0 by monotonicity of F}, , on p,q € R. Next we show the case ¢ < p < 0. In
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this case,

> Fpq(x) (Fpq x)"*l — FLl(xq)nTA) (by F) 4 is increasing on p, ¢ € R)
>

= Fpq(2) (Fp,q(m)n_l - Fq,q(m)n_l)

for ¢ < p < 0. It completes the proof. O

4 Conditions to power monotonicity. In this section, we shall discuss some conditions
of a function f to satisfy power monotonicity. In the previous sections, we discussed power
monotonicity of F, ,, and obtain that if F), ,(z) > /z (resp. F, 4(x) < y/x), then it is PMI
(resp. PMD). In other word F}, 4(z) is PMI (resp. PMD) if and only if F), ;(z) > \/z (resp.
F, ¢(xz) < /z). One might expect that power monotonicity of a function is closely related
to comparison of /.

First of all, we shall show the following proposition.

Proposition 5. Let f be a differential function on (O oo), such that, f(1) =1, f'(1) =
A € [0,1]. If f is PMI (resp. PMD) on (0,00), then 2* < f(z) (resp. * > f(x)) holds for
all z € (0,00).

Proof. Suppose that f is PMI on (0,00). Then G(r) = f(2")* is an increasing function on
r > 0, and

log f(x) =log G(1) > hIEo log G(r)
~ i L8 S

r——+0 r
_ o Ji@T)z"logx Hosoital's
= TIBEO @) (by the L'Hospital’s rule)
=log 2.

Hence 2* < f(z) holds for all z € (0,00). If f is PMD, then we can show f(x) < 2* by the
same way. O

However, it has not known whether the converse implication holds or not, yet. Instead
of this discussion, we can get a small contribution.

Proposition 6. Let f be a differential function on (0,00), such that, f(1) =1, f'(1) =
A€ [0,1]. If 2> < f(z) (resp. z* > f(x)) holds for all x € (0,00), then f is PMI (resp.
PMD) on a neighborhood of © = 1.

Proof. Let H(t) :=log f(e!). Then t* < f(t) is equivalent to
(3) At < H(t).

Since H(0) = 0 and H'(0) = A, y = At is a tangent line of H(t) at ¢ = 0. Hence by (3),
H(t) is convex on a neighborhood of ¢t = 0. Hence for r > 1,

@) " Ct) —H <(1 - i) 0+ it) < (1 - i) H(0)+ %H(t) - %H(t)
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holds for all ¢ in a neighborhood of ¢ = 0. Put z = %t. We have
rH(z) < H(rz).

Since H(z) := log f(e"), f(z) is PMI on the neighborhood of 2z = 1. The remained part
can be proven by a similar way. O

By Propositions 5 and 6, the following two statements are equivalent: (i) f is PMI on
a neighborhood of # = 0 and (ii) 2* < f(z) for all > 0. In addition, f is PMI on (0, o0)
if and only if rH(z) < H(rx) holds for all » > 1 and = > 0. It is a weaker condition than
the convexity of H which follows from (4). Moreover as in the proof of Proposition 6, (ii)
is equivalent to the convexity of H at x = 0. Hence we can conclude the following theorem.

Theorem 7. Let f be a differential function on (0,00), such that, f(1) =1, f'(1) =X €
[0,1]. Then the following statements hold:

(i) If H(x) :=log f(e*) is convex (resp. concave) on R, then f is PMI (resp. PMD),
(ii) if f is PMI (resp. PMD), then z* < f(z) (resp. f(z) < a*) holds for all x € (0,00).
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