
Abstract. Let BS(1, n) = ⟨A,B | AB = BnA⟩ be the Baumslag-Solitar group, where n ≥ 2.

This group has the natural action on the real line. In this paper we explicitly construct Schreier coset

graphs of the group for stabilizers of all points in the real line under the action. As its consequence,

we classify the Schreier coset graphs up to isomorphism, and obtain a relevance to presentations for

the stabilizers.

1. Introduction

Let m and n be non-zero integers. The group which has the presentation

⟨A,B | ABm = BnA⟩ is called the Baumslag-Solitar group and denoted by BS(m,n).

In 1962, G. Baumslag and D. Solitar [1] introduced these groups and showed that

BS(3, 2) is a non-Hopfian group with one defining relation. It is the first example

having such property. Since then these groups have served as a proving ground for

many new ideas in combinatorial and geometric group theory (see [2, 3] for examples).

Schreier coset graphs are generalizations of the Cayley graph of a group G, which

are constructed for each choice of a subgroup of G and a generating set of G. The

detail is given in Section 2. In general, given a group G and its subgroup H, it is

difficult to construct the Cayley graph of G or the Schreier coset graph of all left

cosets of H in G. However once we have the appropriate Cayley or Schreier graphs,

we can use them as discrete models and may learn, from combinatorial and geometric

viewpoints, some properties of the original group or its subgroups. Recently, in [5, 6],

D. Savchuk constructed Schreier graphs of Thompson’s group F from a motivation to

study the amenability of the group.

In this paper we focus on the solvable group BS(1, n) for n ≥ 2. It is known

that BS(1, n) is isomorphic to some subgroup Gn with the generator Sn of the affine

group Aff(R) of the real line R, thus it has the natural action on R (see Section

2 for details). For any x ∈ R, we explicitly construct the Schreier coset graph

(BS(1, n)/StabBS(1,n)(x), {A,B}±) for the stabilizer StabBS(1,n)(x) of x under the
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action. First, we show that for any x ∈ R, the Schreier graphs (OrbGn(x), Sn, x) and

(BS(1, n)/StabBS(1,n)(x), {A,B}±, StabBS(1,n)(x)) is isomorphic as marked labelled

directed graphs, where OrbGn
(x) is the orbit of x under the natural action on R (see

Proposition 1 below). Hence, in most of this paper we consider the Schreier graph

(OrbGn(x), Sn). Let Zω
n be the set of all infinite words over the finite group Zn. The

following theorem allows us to understand the structure of the Schreier graphs.

Theorem 1. Let n ≥ 2 and x be a real number represented by w ∈ Zω
n. Then,

there exists a homomorphism h = (f, ψ, γ) : (OrbGn(x), Sn) → Γw such that for every

v ∈ Vw, the subgraph h−1(v) = (Dv, Dv × {b}±, Sn, α|, β|, l|) is isomorphic to ΓZ,

where h−1(v) = (f−1(v), ψ−1(v), Sn, α|, β|, l|).

See Definition 3 below for Γw and ΓZ. As its consequence, we classify the Schreier

graphs up to isomorphism.

Theorem 2. Let m,n ≥ 2 with m ̸= n.

(1) For any x, y ∈ R, the Schreier graph (OrbGm(x), Sm) is not isomorphic to the

Schreier graph (OrbGn(y), Sn) as labelled directed graphs.

(2) For any α1, α2 ∈ R\Q, the Schreier graph (OrbGn(α1), Sn, α1) is Sn-isomorphic

to the Schreier graph (OrbGn(α2), Sn, α2) as marked labelled directed graphs.

(3) For any q ∈ Q and any α ∈ R \ Q, the Schreier graph (OrbGn(q), Sn) is not

isomorphic to the Schreier graph (OrbGn(α), Sn) as labelled directed graphs.

(4) Let q1, q2 ∈ Q. Then, the following statements are equivalent.

(a) The Schreier graph (OrbGn(q1), Sn) is isomorphic to the Schreier graph

(OrbGn(q2), Sn) as labelled directed graphs.

(b) OrbGn(q1) = OrbGn(q2) or OrbGn(−q1) = OrbGn(q2).

This result leads to a relevance to presentations for the stabilizers which turn out to

be infinite index subgroups in BS(1, n)(Theorem 5). Thus we expect that this idea

may give a way to investigate infinite index subgroups in a suitable group.

In Section 2, we set up notation and terminology concerning Schreier graphs and

Baumslag-Solitar groups. In Section 3, we start to construct Schreier graphs and give

a complete description of Schreier graphs of BS(1, n) with respect to any real numbers.

In Section 4, we classify them up to isomorphism. In Section 5, by using the Schreier

graphs we determine the group structure of the stabilizers and obtain a relevance to

presentations for the stabilizers of rational numbers.

2. Schreier graphs and Baumslag-Solitar groups

A labelled directed graph denoted by (V,E, L, α, β, l) consists of a nonempty set

V of vertices, a set E of edges, a set L of labels and three mappings α : E → V ,
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β : E → V , and l : E → L. The vertices α(e) and β(e) are called the initial and the

terminal vertices of the edge e, respectively.

A marked labelled directed graph denoted by (V,E,L, α, β, l, v0) is a labelled di-

rected graph with a distinguished vertex v0 called the marked vertex.

For i ∈ {1, 2} let Γi = (Vi, Ei, Li, αi, βi, li) be a labelled directed graph. Let

f : V1 → V2, ψ : E1 → E2 ⊔ V2 and γ : L1 → L2 be maps satisfying the following

statements:

(1) If ψ(e) ∈ E2, then α2(ψ(e)) = f(α1(e)), β2(ψ(e)) = f(β1(e)), and l2(ψ(e)) =

γ(l1(e)) ∈ L2.

(2) If ψ(e) ∈ V2, then ψ(e) = f(α1(e)) = f(β1(e)).

The triple (f, ψ, γ) of maps is called the homomorphism from Γ1 to Γ2. Labelled

directed graphs Γ1 and Γ2 are isomorphic if there exists a homomorphism (f, ψ, γ) :

Γ1 → Γ2, called an isomorphism, such that both f and γ are bijections and ψ is a

injection with ψ(E1) = E2. In particular, if L1 = L2 = L and γ = 1L, Γ1 is said to be

L-isomorphic to Γ2.

For i ∈ {1, 2} let Γi be a marked labelled directed graph. Γ1 is said to be

isomorphic to Γ2 if Γ1 is isomorphic to Γ2 as labelled directed graphs and the mapping

between vertices preserves the marked vertices.

Let S be a generating set of a group G. The generating set S is symmetric if

S = S−1.

Let G be a group with a symmetric finite generating set S, M be a set and φ :

G→ Aut(M) be a homomorphism, where Aut(M) is the set of all bijections ofM onto

itself. The orbit of an element m of M is the set OrbG(m) = {φ(g)(m) | g ∈ G}. The
stabilizer of an element m of M is the subgroup StabG(m) = {g ∈ G |φ(g)(m) = m}.

Definition 1. Let G be a group with a symmetric finite generating set S, M

be a set and φ : G → Aut(M) be a homomorphism. The Schreier graph denoted by

(M,S, φ) is a labelled directed graph (M,M × S, S, α, β, l) such that α(m, s) = m,

l(m, s) = s, and β(m, s) = φ(s)(m). The Schreier graph with a marked vertex denoted

by (M,S, φ,m0) is a Schreier graph with a marked vertex m0 ∈M .

Let G be a group with a symmetric finite generating set S, H be a subgroup of G

and G/H be the set of all left cosets of H in G. The Schreier coset graph denoted by

(G/H,S) is a Schreier graph (G/H,S, φH) where φH : G → Aut(G/H) is the usual

left action on G/H.

Remark 1. For i ∈ {1, 2} let Gi be a group with a symmetric finite generate-

ing set Si. The Schreier graph (M1, S1, φ1) is isomorphic to (M2, S2, φ2) as labelled

directed graphs if and only if there exist bijections f :M1 →M2 and γ : S1 → S2 such

that φ1(s) = f−1φ2(γ(s))f for all s ∈ S1. In particular, if S1 = S2 = S, (M1, S, φ1)

is S-isomorphic to (M2, S, φ2) as labelled directed graphs if and only if there exists a

bijection f :M1 →M2 such that φ1(s) = f−1φ2(s)f for all s ∈ S.



4 TAKAMICHI SATO

The next proposition will help us to describe Schreier graphs explicitly in the

later sections.

Proposition 1. Let G be a group with a symmetric finite generating set S, M

be a set, x0 ∈M , and φ : G→ Aut(M) be a homomorphism. Then the Schreier graph

(OrbG(x0), S, φ, x0) with the marked vertex x0 is S-isomorphic to the Schreier coset

graph (G/H,S,H) with the marked vertex H = StabG(x0) as marked labelled directed

graphs.

Proof. Define f : G/H → OrbG(x0) by f(gH) = φ(g)(x0). Since g
−1g ′ ∈ H =

StabG(x0) implies φ(g)(x0) = φ(g ′)(x0), its map is well-defined. Clearly f is a bi-

jection. Since f(φH(s)(gH)) = f(sgH) = φ(sg)(x0) = φ(s)φ(g)(x0) = φ(s)(f(gH)),

we have φH(s) = f−1φ(s)f for all s ∈ S, which is the desired conclusion by Remark

1. □

Letm and n be nonzero integers. The group with the presentation ⟨A,B | ABm =

BnA⟩ is called theBaumslag-Solitar group and it is denoted by BS(m,n). For any

n ≥ 2, BS(1, n) has a geometric representation. That is, we define two affine maps a

and b of the real line R by a(x) = nx and b(x) = x+ 1 respectively. Let n ≥ 2, Sn =

{a, b}± and Gn = ⟨Sn⟩ be the subgroup of the affine group Aff(R). Then there exists

the isomorphism hn : BS(1, n) → Gn with hn(A) = a and hn(B) = b (see [4, p.100]).

Thus, BS(1, n) has the natural left action φn : BS(1, n) → Gn ↪→ Aff(R) ↪→ Aut(R).
By [4, p.102], we note that

(∗)n Gn = {g : R → R | g(x) = nix+ j/nk, i, j, k ∈ Z}.

3. Schreier graphs of all real numbers

Let x ∈ R and ϕx : Gn → Aut(OrbGn
(x)) be the usual left action. By the isomor-

phism hn and Proposition 1, the Schreier graph (OrbGn(x), Sn, ϕx, x) and the Schreier

coset graph (BS(1, n)/StabBS(1,n)(x), {A,B}±,StabBS(1,n)(x)) with the marked ver-

texes are isomorphic, so we will consider the Schreier graph (OrbGn(x), Sn, ϕx) for

each x ∈ R. For simplicity of notation, we write g and (OrbGn(x), Sn) instead of

ϕx(g) and the Schreier graph (OrbGn(x), Sn, ϕx), respectively.

Remark 2. For any x ∈ R and any f ∈ StabGn(x) with f ̸= 1R, bfb
−1 /∈

StabGn(x). Thus StabGn(x) is not a normal subgroup of Gn.

We notice that the Schreier graph (OrbGn(α), Sn) for α ∈ R \Q is Sn-isomorphic

to the Cayley graph of BS(1, n) relative to the generators {A,B}± by the above

since the stabilizer StabBS(1,n)(α) is trivial. However in this section we construct

the Schreier graphs (OrbGn(q), Sn) for rational numbers q and will compare those

descriptions in the later section (see Theorem 4). Therefore we employ the Schreier
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graph (OrbGn(α), Sn). We construct the Schreier graph (OrbGn(α), Sn) by an ar-

rangement of elements in the orbit OrbGn(α). The construction of the Cayley graph

of BS(1, n) ∼= Gn given in [4] depends on the fact that the word problem for BS(1, n)

is solvable.

Let Zn = {0, 1, . . . , n− 1} be the finite group with the additive group structure.

The set of all finite words over Zn and the set of all infinite words over Zn are denoted

by Z∗
n and Zω

n respectively. Let Z̃n = Z∗
n \ {ε}, where ε denotes the empty word. For

every word w = w1w2 . . . wk in Z∗
n, the length of w, denoted by |w|, is the number k.

Note that |ε| is zero.

Definition 2. An element w of Zω
n is called a rational element in Zω

n if there

exist u ∈ Z∗
n and v ∈ Z̃n such that

(1) w = uv∞,

(2) v ̸= tk whenever k ≥ 2 and t ∈ Z̃n, and

(3) u|u| ̸= v|v| whenever u ̸= ε.

Then, we say that the pair (u, v) of words satisfies (A). An element w of Zω
n which

is not rational is called an irrational element in Zω
n . Let x ∈ R. Then, there exists

w ∈ Zω
n such that x − ⌊x⌋ =

∑
i≥1 wi/n

i, where ⌊x⌋ = max{k ∈ Z | k ≤ x}. We say

that x is represented by w ∈ Zω
n . It is easy to see that x is a rational number if and

only if it is represented by a rational element in Zω
n .

Lemma 1. Let x, x′ ∈ Z∗
n and y be an irrational element of Zω

n with xy = x′y.

Then x = x′.

Proof. Without loss of generality, we can assume that |x| ≤ |x′|. By assump-

tion, y|x′|−|x|+j = yj for each j ≥ 1. Since y is an irrational element in Zω
n , |x′| = |x|.

Therefore, x = x′. □

Lemma 2. Suppose that pairs (x, y) and (x′, y′) of words satisfy (A). Then

xy∞ = x′y′∞ if and only if x = x′ and y = y′.

Proof. Suppose that xy∞ = x′y′∞. It suffices to show that x = x′ and y = y′.

First we show that |x| = |x′|. On the contrary, suppose that |x| < |x′|. For any k ≥ 1,

there exists a unique k ∈ {1, . . . , |y|} such that k ≡ k mod |y|. Then

x′|x′| = (x′y′∞)|x′| = (xy∞)|x′| = (y∞)|x′|−|x| = y|x′|−|x|.

On the other hand,

y′|y′| = (x′y′∞)|x′|+|y′|(|y|/g) = (xy∞)|x′|+|y|(|y′|/g) = (y∞)|x′|−|x|+|y|(|y′|/g) = y|x′|−|x|,

where g = gcd(|y′|, |y|). Since x′ ̸= ε, by the assumption of x′, we see x′|x′| ̸= y′|y′|, a

contradiction. Thus |x| = |x′|. Hence we have that x = x′ and y∞ = y′∞.
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Next we show that |y| = |y′|. On the contrary, suppose that |y| < |y′|. There

exist α ∈ Z and β ≥ 0 such that |y′|α+ |y|β = g . For any i ≥ 1

(y′∞)i+g = (y′∞)i+|y′|α+|y|β = (y′∞)i+|y|β = (y∞)i+|y|β = (y∞)i = (y′∞)i.

Since y′∞ has the period g , y′ has the period g ≤ |y| < |y′|. This contradicts the

assumption of y′. Since |y| = |y′|, we conclude y = y′. □

Lemma 3. Let x, y ∈ Z̃n. Suppose that x|x| = y|y| and the word y satisfies the

condition (2) in Definition 2. Then xy∞ = y∞ if and only if |x| ≡ 0mod |y| and x =

y|x|/|y|.

Proof. Suppose that xy∞ = y∞. It suffices to show that |x| ≡
0mod |y| and x = y|x|/|y|. Let m ≥ 0 and 1 ≤ r ≤ |y| such that |x| = |y|m + r.

Then for any i ≥ 1

(y∞)i+r = (xy∞)|x|+i+r = (xy∞)|x|+i+r+|y|m = (xy∞)|x|+i+|x| = (y∞)i+|x|

= (xy∞)i+|x|

= (y∞)i.

Thus y∞ has the period r and (y1 . . . y|y|)
∞ = y∞ = (y1 . . . yr)

∞. Since (ε, y) and

(ε, y1 . . . yr) satisfy (A), by Lemma 2, we have |y| = r. Therefore |x| ≡ 0 mod |y|.
Moreover, since (xy∞)i = (y∞)i for all 1 ≤ i ≤ |x|, we have x = y|x|/|y|. □

Let σ : Zω
n → Zω

n be the sift map defined by σ(w1w2w3 . . .) = w2w3w4 . . . Write

σk−1 = σσ · · ·σ︸ ︷︷ ︸
k−1

for each k ≥ 1, where σ0 is the identity map. We note that σk−1(w)i =

wk−1+i for any k, i ≥ 1 and each w ∈ Zω
n .

Lemma 4. Let (x, y) be a pair of words satisfying (A). Then for |x| ≤ j < j′,

σj(xy∞) = σj′(xy∞) if and only if j′ − j ≡ 0 mod |y|.

Proof. For any k ≥ 1, there exists a unique k ∈ {1, . . . , |y|} such that k ≡ k

mod |y|. Then

σj(xy∞) = σj−|x|(y∞) = (yj−|x|+1 . . . yj′−|x|)σ
j′−|x|(y∞), and

σj′(xy∞) = σj′−|x|(y∞).

Thus σj(xy∞) = σj′(xy∞) if and only if (yj−|x|+1 . . . yj′−|x|)σ
j′−|x|(y∞) =

σj′−|x|(y∞). By Lemma3, (yj−|x|+1 . . . yj′−|x|)σ
j′−|x|(y∞) = σj′−|x|(y∞) if and only

if j′ − j ≡ 0 mod |y|. □
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For any v ∈ Zω
n and any t ∈ Zn, set Dv = Z +

∑
i≥1 vi/n

i ⊂ R, and Dt
v =

nZ+ t+
∑

i≥1 vi/n
i ⊂ R. Note that 0 ≤

∑
i≥1 vi/n

i ≤ 1 and Dv =
⊔

t∈X Dt
v.

Lemma 5. Let y and y′ be irrational elements in Zω
n. Then, the following state-

ments are equivalent.

(1) Dy ∩Dy′ ̸= ∅.
(2)

∑
i≥1 yi/n

i =
∑

i≥1 y
′
i/n

i.

(3) y = y′.

Proof. It suffices to show that (2) implies (3). On the contrary, suppose that

there exists i ≥ 1 such that yi ̸= y′i. Let i0 = min{i | yi ̸= y′i}. Then,

yi0/n
i0 +

∑
i≥i0+1

yi/n
i = y′i0/n

i0 +
∑

i≥i0+1

y′i/n
i.

Without loss of generality, we can assume that yi0 < y′i0 . Since y and y′ are irrational

elements,

1/ni0 < y′i0/n
i0 − yi0/n

i0 +
∑

i≥i0+1

y′i/n
i =

∑
i≥i0+1

yi/n
i < 1/ni0 ,

a contradiction. □

Lemma 6. Let (x, y) and (x′, y′) be pairs of words satisfying (A) such that

min{|y|, |y′|} ≥ 2 whenever y ̸= y′. Then, the following statements are equivalent.

(1) Dxy∞ ∩Dx′y′∞ ̸= ∅.
(2)

∑
i≥1 (xy

∞)i/n
i =

∑
i≥1 (x

′y′∞)i/n
i.

(3) xy∞ = x′y′∞.

Proof. Suppose that
∑

i≥1 (xy
∞)i/n

i =
∑

i≥1 (x
′y′∞)i/n

i. It suffices to prove

that xy∞ = x′y′∞. On the contrary, suppose that there exists i ≥ 1 such that

(xy∞)i ̸= (x′y′∞)i. Let i0 = min{i | (xy∞)i ̸= (x′y′∞)i}. Then

(xy∞)i0/n
i0 +

∑
i≥i0+1

(xy∞)i/n
i = (x′y′∞)i0/n

i0 +
∑

i≥i0+1

(x′y′∞)i/n
i.

Without loss of generality, we can assume that (xy∞)i0 < (x′y′∞)i0 .

If min{|y|, |y′|} ≥ 2, or if y = y′ ∈ {1, . . . , n− 2}, then we have

1/ni0 < (x′y′∞)i0/n
i0 − (xy∞)i0/n

i0 +
∑

i≥i0+1

(x′y′∞)i/n
i =

∑
i≥i0+1

(xy∞)i/n
i < 1/ni0 ,

a contradiction.
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If y = y′ = 0, then i0 ≤ |x′|. Then

1/ni0 ≤ (x′y′∞)i0/n
i0 − (xy∞)i0/n

i0 +
∑

i≥i0+1

(x′y′∞)i/n
i =

∑
i≥i0+1

(xy∞)i/n
i < 1/ni0 ,

a contradiction.

If y = y′ = n− 1, then i0 ≤ |x|. Then

1/ni0 < (x′y′∞)i0/n
i0 − (xy∞)i0/n

i0 +
∑

i≥i0+1

(x′y′∞)i/n
i =

∑
i≥i0+1

(xy∞)i/n
i ≤ 1/ni0 ,

a contradiction. Therefore xy∞ = x′y′∞. □

The proof of the following lemma is immediate, so the details are left to the

reader.

Lemma 7. Let v ∈ Zω
n and t ∈ Zn. Then,

(a) a(Dv) = Dv1
σ(v), a

−1(Dt
v) = Dtv, a

−1(Dv) =
⊔

t∈Zn
Dtv,

(b) b±1(Dt
v) = Dt±1

v , and b±1(Dv) = Dv.

Definition 3. Let w ∈ Zω
n . Set Vw = {uσj(w) | j ≥ 0, u ∈ Z∗

n}, Ew = Vw ×
({a} ⊔ Zn), and Lw = {a}±. Define αw : Ew → Vw, βw : Ew → Vw and lw :

Ew → Lw by αw(v, a) = αw(v, k) = v, βw(v, a) = σ(v), βw(v, k) = kv, lw(v, a) = a

and lw(v, k) = a−1 for each v ∈ Vw and each k ∈ Zn. The labelled directed graph

(Vw, Ew, Lw, αw, βw, lw) and the Schreier graph (Z, {±1}, ϕ) will be denoted by Γw

and ΓZ respectively, where ϕ : Z → Aut(Z) is the usual action.

Lemma 8. (1) If w is an irrational element in Zω
n, then

Vw =
⊔
j≥1

{σj(w)} ⊔
⊔

u∈Z∗
n

{uw} ⊔
⊔

j≥1,s∈Z∗
n,t∈Zn,t ̸=wj

{stσj(w)}.

(2) If w = uv∞ is a rational element in Zω
n as in Definition 2, then

Vw =
⊔

|u|≤j<|u|+|v|

{σj(w)} ⊔
⊔

|u|<j≤|u|+|v|,s∈Z∗
n,t∈Zn,t ̸=wj

{stσj(w)}.

Proof. By Lemmas 2 and 4, we can easily show (2). Thus we prove (1). Let

j, j′ ≥ 1, u, u′ ∈ Z∗
n, and t, t

′ ∈ Zn with t ̸= wj and t′ ̸= wj′ . It suffices to show the

following statements:

(a) j = j′ whenever σj(w) = σj′(w).

(b) u = u′ whenever uw = u′w.

(c) u = u′, t = t′, and j = j′ whenever utσj(w) = u′t′σj′(w).

(d) σj(w) ̸= uw.
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(e) σj(w) ̸= ut′σj′(w).

(f) uw ̸= u′tσj(w).

The statements (b) and (d) directly follow from Lemma 1.

Suppose that utσj(w) = u′t′σj′(w) and j ≤ j′. Since σj(w) = wj+1 . . . wj′σ
j′(w),

by Lemma 1, we have utwj+1 . . . wj′ = u′t′. Since t′ ̸= wj′ , we see j = j′, thus u = u′

and t = t′, which proves (c). Similarly, we can show (a).

If j ≥ j′, by Lemma 1, ut′σj′(w) = ut′wj′+1 . . . wjσ
j(w) ̸= σj(w). Suppose that

j ≤ j′ and σj(w) = ut′σj′(w). Since σj(w) = wj+1 . . . wj′σ
j′(w), wj+1 . . . wj′σ

j′(w) =

ut′σj′(w). Hence by Lemma 1 wj+1 . . . wj′ = ut′. Thus wj′ = t′, a contradiction, and

(e) is proved.

Since wj ̸= t, uw1 . . . wj ̸= u′t. By Lemma 1, uw = uw1 . . . wjσ
j(w) ̸= u′tσj(w),

which proves (f). □

Lemma 9. Let n ≥ 2 and x ∈ R represented by w ∈ Zω
n. Then, OrbGn(x) =⊔

v∈Vw
Dv.

Proof. By Lemmas 5,6 and 8,
∪

v∈Vw
Dv =

⊔
v∈Vw

Dv. Thus it suffices to

show that OrbGn(x) =
∪

v∈Vw
Dv. Since x ∈ Dw ⊂

∪
v∈Vw

Dv, by Lemma 7,

OrbGn(x) ⊂
∪

g∈Gn

∪
v∈Vw

g(Dv) =
∪

v∈Vw

Dv.

Let j ≥ 0 and u ∈ Z∗
n. It suffices to show that Duσj(w) ⊂ OrbGn(x). We have

Duσj(w) = Z+
∑
i≥1

(uσj(w))i/n
i

= Z+

|u|∑
i=1

ui/n
i +

∑
l≥j+1

wl/n
l−j+|u|

= Z+

|u|∑
i=1

ui/n
i + nj−|u|(

∑
l≥1

wl/n
l −

j∑
l=1

wl/n
l)

= Z+ n−|u|(

|u|∑
i=1

n|u|−iui −
j∑

i=1

nj−iwi + nj(x− ⌊x⌋))

= {bka−|u|b(
∑|u|

i=1 n|u|−iui−
∑j

i=1 nj−iwi)ajb−⌊x⌋(x) | k ∈ Z} ⊂ OrbGn(x).

□

Theorem 3. Let n ≥ 2 and x be a real number represented by w ∈ Zω
n. Then,

there exists a homomorphism h = (f, ψ, γ) : (OrbGn(x), Sn) → Γw such that for every
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v ∈ Vw, the subgraph h−1(v) = (Dv, Dv × {b}±, Sn, α|, β|, l|) is isomorphic to ΓZ,

where h−1(v) = (f−1(v), ψ−1(v), Sn, α|, β|, l|).

Proof. It suffices to find a homomorphism h = (f, ψ, γ) : (OrbGn(x), Sn) → Γw

such that for every v ∈ Vw, the subgraph h
−1(v) is isomorphic to ΓZ. By Lemmas 8 and

9, for any y ∈ OrbGn(x), there exists a unique vy ∈ Vw and k ∈ Zn such that y ∈ Dk
vy

⊂
Dvy . Thus, we can define f : OrbGn(x) → Vw, ψ : OrbGn(x) × Sn → Ew ⊔ Vw and

γ : Sn → Lw by f(y) = vy, ψ(y, a) = (f(y), a), ψ(y, a−1) = (f(y), k), ψ(y, b) = f(y),

ψ(y, b−1) = f(y), γ(a) = a, γ(a−1) = a−1, γ(b) = a, and γ(b−1) = a−1. □

4. Classification of Schreier graphs

In this section we classify Schreier graphs described in the previous section.

Lemma 10. Let v ∈ Z̃n. For i ≥ 1 set Wi = b−(v∞)ia and Zi = b(v
∞)ia. Then,

for every k ≥ 1, Wk · · ·W1 and Zk · · ·Z1 are nontrivial affine maps with the slopes nk

such that

(Wk · · ·W1)(
∑
j≥1

(v∞)j/n
j) =

∑
j≥1

(v∞)k+j/n
j and

(Zk · · ·Z1)(−
∑
j≥1

(v∞)j/n
j) = −

∑
j≥1

(v∞)k+j/n
j .

Proof. The proof is by induction on k. The affine map W1 has the slope n

such that

W1(
∑
j≥1

(v∞)j/n
j) = b−(v∞)1 a (

∑
j≥1

(v∞)j/n
j) = b−(v∞)1 ((v∞)1 +

∑
j≥2

(v∞)j/n
j−1)

=
∑
j≥1

(v∞)1+j/n
j .

Assume the formula holds for k − 1, we have

(WkWk−1 · · ·W1) (
∑
j≥1

(v∞)j/n
j) =Wk(

∑
j≥1

(v∞)k−1+j/n
j)

= b−(v∞)k a (
∑
j≥1

(v∞)k−1+j/n
j)

= b−(v∞)k ((v∞)k +
∑
j≥2

(v∞)k−1+j/n
j−1)

=
∑
j≥1

(v∞)k+j/n
j
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and the affine mapWk · · ·W1 has the slope nk. Similarly, we can prove it for Zk · · ·Z1.

□

Remark 3. Let x, y ∈ R. Then, by Remark 1, Schreier graphs (OrbGn(x), Sn)

and (OrbGn(y), Sn) are isomorphic if and only if there exist two bijections f :

OrbGn(x) → OrbGn(y) and γ : Sn → Sn such that γ(s)(f(z)) = f(s(z)) for each

z ∈ OrbGn(x) and each s ∈ Sn.

Lemma 11. Let x, y ∈ R. Suppose that the Schreier graph (OrbGn(x), Sn ) is

isomorphic to the Schreier graph (OrbGn(y), Sn ) by a bijection γ : Sn → Sn. Then

γ(a)γ(b)γ(a−1)γ(b−1)n = 1R in Gn

if and only if

γ = 1Sn or γ(a) = a, γ(a−1) = a−1, γ(b) = b−1, and γ(b−1) = b.

Proof. Let f : OrbGn(x) → OrbGn(y) be a bijection as in Remark 3. For any

s ∈ S and any x0 ∈ OrbGn(x), γ(s)γ(s
−1)(f(x0)) = f(ss−1(x0)) = f(x0) by Remark

3. Since f is a bijection, γ(s)γ(s−1) = 1OrbGn (y). Since γ(s)γ(s−1) is an affine map,

γ(s)γ(s−1) = 1R, thus γ(s)
−1 = γ(s−1) ∈ Aff(R).

Suppose that γ(a)γ(b)γ(a−1)γ(b−1)n = 1R and γ ̸= 1Sn
. Since a(x) = nx and

γ(b−1) has the n-th power, γ(b−1) ∈ {b}±.
Suppose that γ(b−1) = b−1. Then γ(b) = b. Since γ ̸= 1Sn , we have γ(a) = a−1.

Then γ(a)γ(b)γ(a−1)γ(b−1)n = a−1bab−n ̸= 1R, a contradiction. Thus γ(b−1) = b

and γ(b) = b−1.

If γ(a) = a−1, then γ(a−1) = a and γ(a)γ(b)γ(a−1)γ(b−1)n = a−1b−1abn ̸= 1R, a

contradiction. Hence γ(a) = a and γ(a−1) = a−1. □

Theorem 4. Let m,n ≥ 2 with m ̸= n.

(1) For any x, y ∈ R, the Schreier graph (OrbGm(x), Sm) is not isomorphic to the

Schreier graph (OrbGn(y), Sn) as labelled directed graphs.

(2) For any α1, α2 ∈ R\Q, the Schreier graph (OrbGn(α1), Sn, α1) is Sn-isomorphic

to the Schreier graph (OrbGn(α2), Sn, α2) as marked labelled directed graphs.

(3) For any q ∈ Q and any α ∈ R \ Q, the Schreier graph (OrbGn(q), Sn) is not

isomorphic to the Schreier graph (OrbGn
(α), Sn) as labelled directed graphs.

(4) Let q1, q2 ∈ Q. Then, the following statements are equivalent.

(a) The Schreier graph (OrbGn(q1), Sn) is isomorphic to the Schreier graph

(OrbGn(q2), Sn) as labelled directed graphs.

(b) OrbGn(q1) = OrbGn(q2) or OrbGn(−q1) = OrbGn(q2).

Proof. On the contrary, suppose that the Schreier graphs (OrbGm(x), Sm) and

(OrbGn(y), Sn) are isomorphic by bijections f : OrbGm(x) → OrbGn(y) and γ : Sm →
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Sn as in Remark 1. We check at once that γ(a)γ(b)γ(a−1)γ(b−1)m ̸= 1R ∈ Gn.

By Remark 1, γ(a)γ(b)γ(a−1)γ(b−1)m(f(z)) = f(aba−1b−m(z)) = f(z) for each z ∈
OrbGm(x), contradiction, which proves (1). Since StabGn(α) = 1 for any α ∈ R \ Q,

by Proposition 1, the statement (2) is proved.

Let q be a rational number represented by uv∞ and x ∈ R such that the Schreier

graph (OrbGn
(q), Sn) is isomorphic to the Schreier graph (OrbGn

(x), Sn) as labelled

directed graphs by bijections f : OrbGn(q) → OrbGn(x) and γ : Sn → Sn as in Remark

3. Let q0 =
∑

j≥1(v
∞)j/n

j ∈ OrbGn(q). Since aba−1b−n(q′) = q′ for each q′ ∈
OrbGn(q), by Remark 3, we have γ(a)γ(b)γ(a−1)γ(b−1)n(f(q′)) = f(aba−1b−n(q′)) =

f(q′). Hence, γ(a)γ(b)γ(a−1)γ(b−1)n = 1R. By Lemma 11,

γ = 1Sn or γ(a) = a, γ(a−1) = a−1, γ(b) = b−1, and γ(b−1) = b. (E)

On the other hand, by Lemma 10, there exists a nontrivial affine map W|v| · · ·W1 =

ck · · · c1 such that ck · · · c1(q0) = q0, where ci ∈ {a, b−1}. By Remark 3, we have

γ(ck) · · · γ(c1)(f(q0)) = f(ck · · · c1(q0)) = f(q0).

(i) If γ = 1Sn , then the nontrivial affine map ck · · · c1 fixes both q0 and f(q0).

Hence, f(q0) = q0.

(ii) If γ(a) = a, γ(a−1) = a−1, γ(b) = b−1, and γ(b−1) = b, then by Lemma

10, γ(ck) · · · γ(c1)(−q0) = Z|v| · · ·Z1(−q0) = −q0. Since the nontrivial affine map

γ(ck) · · · γ(c1) fixes both −q0 and f(q0), we have −q0 = f(q0).

We start to prove (3). On the contrary, if x = α ∈ R \ Q, by the above, we see

f(q0) ∈ Q, a contradiction, which proves (3).

Next we prove (4). Suppose that the statement (a) holds, i.e.,q = q1, x = q2 ∈ Q
above. If γ = 1Sn , by (i) above, OrbGn(q1) = OrbGn(q0) = OrbGn(q2). If γ ̸= 1Sn , by

(ii) above, OrbGn(−q1) = OrbGn(−q0) = OrbGn(q2), which proves (b).

Suppose that the statement (b) holds. We show that (OrbGn(q1), Sn) and

(OrbGn(q2), Sn) are isomorphic. Without loss of generality, we can assume that

OrbGn(−q1) = OrbGn(q2). Define γ : Sn → Sn by γ(a) = a, γ(a−1) =

a−1, γ(b) = b−1, and γ(b−1) = b. In addition define f : OrbGn
(q1) → OrbGn

(q2)

by f(ck · · · c1(q1)) = γ(ck) · · · γ(c1)(−q1), where ci ∈ Sn. By induction on k, we can

show that (ck · · · c1)(q1) + (γ(ck) · · · γ(c1))(−q1) = 0 for each k ≥ 1 and each ci ∈ Sn.

Hence, f is well-defined and an injection. By definition, f is a surjection satisfying

that f(s(z)) = γ(s)(f(z)) for each z ∈ OrbGn(q1) and each s ∈ Sn. By Remark 3, the

Schreier graphs (OrbGn(q1), Sn) and (OrbGn(q2), Sn) are isomorphic by f and γ. □

Corollary 1. Let q1, q2 be rational numbers. Then, the following statements

are equivalent.

(a) The Schreier graph (OrbGn(q1), Sn, q1) is isomorphic to the Schreier graph

(OrbGn(q2), Sn, q2) as marked labelled directed graphs.

(b) |q1| = |q2|.
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Proof. From the latter part of the proof of Theorem 4, we can show that

(b) implies (a). Suppose that (OrbGn(q1), Sn, q1) is isomorphic to (OrbGn(q2), Sn, q2)

by bijections f : OrbGn(q1) → OrbGn(q2) with f(q1) = q2 and γ : Sn → Sn as in

Remark 3. It suffices to show that |q1| = |q2|. Let us represent by uv∞ ∈ Zω
n q1 ∈ Q.

Set q0 =
∑

j≥1(v
∞)j/n

j ∈ OrbGn(q1). Then, there exist d1, . . . , dj ∈ Sn such that

(dj · · · d1)(q1) = q0. From the proof of Theorem 4, the map γ satisfies (E) in the proof

of Theorem 4, and the map f satisfies

f(q0) =

{
q0 if γ = 1Sn

−q0 if γ ̸= 1Sn .

Moreover, there exist c1, . . . , ck ∈ Sn such that (ck · · · c1)(q0) = q0 and

γ(ck) · · · γ(c1)(f(q0)) = f(q0). Then

(dj · · · d1)−1(ck · · · c1)(dj · · · d1)(q1) = q1.

By Remark 3

γ(d1)
−1 · · · γ(dj)−1γ(ck) · · · γ(c1)γ(dj) · · · γ(d1)(q2) = q2.

Thus γ(ck) · · · γ(c1)(γ(dj) · · · γ(d1)(q2)) = γ(dj) · · · γ(d1)(q2).
Suppose that γ = 1Sn . Then, (ck · · · c1)((dj · · · d1)(q2)) = (dj · · · d1)(q2). Since

the nontrivial affine map ck · · · c1 fixes both q0 = (dj · · · d1)(q1) and (dj · · · d1)(q2),
(dj · · · d1)(q1) = (dj · · · d1)(q2). We conclude that q1 = q2.

Suppose that γ ̸= 1Sn
. By Remark 3, γ(dj) · · · γ(d1)(q2) =

(γ(dj) · · · γ(d1))(f(q1)) = f((dj · · · d1)(q1)) = f(q0) = −q0 = −(dj · · · d1)(q1).
Since the map γ satisfies (E) in the proof of Theorem 4, by induction on j, we can

show q1 = −q2. □

5. Applications

First we determine the group structure of stabilizers for all rational numbers

by using the Schreier graphs described in the previous section. The proof of next

proposition allows us to understand a word stood for a generator as well as the group

structure. We note that the the stabilizer StabGn(q) is an infinite index subgroup of

Gn since the orbit OrbGn(q) is an infinite set.

Proposition 2. Let n ≥ 2 and q be a rational number represented by uv∞ ∈
Zω
n. Then, there exists f ∈ Aff(R) such that f(x) = n|v|(x − q) + q for each x ∈ R,

and StabGn(q) = ⟨f⟩ ∼= Z.
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Proof. For i ≥ 1 set W̃i = b−(uv∞)ia. By Lemma 10 we have

W̃|u|+|v| · · · W̃|u|+1W̃|u| · · · W̃1(b
−⌊q⌋(q)) = W̃|u|+|v| · · · W̃|u|+1(

∑
i≥1

(v∞)i/n
i)

=W|v| · · ·W1(
∑
i≥1

(v∞)i/n
i)

=
∑
i≥1

(v∞)i/n
i

= W̃|u| · · · W̃1 (b
−⌊q⌋(q)).

Set f = b⌊q⌋W̃−1
1 · · · W̃−1

|u| W̃|u|+|v| · · · W̃|u|+1W̃|u| · · · W̃1b
−⌊q⌋. Then, f is an affine map

with the slope n|v| such that f(q) = q. Hence ⟨f⟩ < StabGn(q).

Let g ∈ StabGn(q). By (∗)n, there exists i ∈ Z such that g(x) = ni(x− q) + q for

any x ∈ R. If |v| = 1, f has the slope n, thus g = f i. Hence, we may assume that

|v| ≥ 2. On the contrary, suppose that there exist h ∈ StabGn(q) \ ⟨f⟩, 0 < r < |v|,
j ∈ Z, and k ≥ 0 such that h(x) = nrx+ j/nk and h(q) = q. Then, we have

q =
−j

nk(nr − 1)
.

There exist m ≥ 0 and z = z1z2 . . . zr ∈ Z̃n with z ̸= (n− 1)r such that

|j| =

(
r−1∑
i=0

(n− 1)ni

)
m+

r−1∑
i=0

zr−in
i = nr

(
m

r∑
i=1

n− 1

ni
+

r∑
i=1

zi
ni

)
.

Since

nr

nr − 1
=
∑
j≥0

(
1

nr

)j

,

we have

qnk = m+
∑
i≥1

(z∞)i
ni

or qnk = −(m+ 1) +
∑
i≥1

(z∞)i
ni

,

where z = (n − 1 − z1) . . . (n − 1 − zr) ∈ Z̃n. Thus, qnk has a repeating part whose

length is the period of z∞. However,

qnk =

⌊q⌋+
∑
i≥1

(uv∞)i
ni

nk =

(
⌊q⌋nk +

k∑
i=1

(uv∞)in
k−i

)
+
∑
i≥1

(uv∞)i+k

ni
,

which contradicts (2) in Definition 2. □
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Next we introduce the definition of being isomorphic in presentations for sub-

groups in order to translate the graphical expression of the Schreier graphs into the

algebraic expression of subgroups. Consequently, we get a relevance to presentations

for the stabilizers from the previous result about the classification of the Schreier

graphs (see Theorem 5).

For i ∈ {1, 2}, let Gi be a group with a generating set Ti. Let T
−1
i = {t−1 | t ∈ Ti}

and T±
i = Ti ∪ T−1

i . We assume that

(∗) t ∈ Ti ∩ T−1
i if and only if t ∈ Ti, t2 = 1.

For i ∈ {1, 2} let Xi = {xt | t ∈ Ti }. Set X−1
i = {x−1

t | t ∈ Ti}, where x−1
t denotes a

new symbol corresponding to the element xt. We assume that Xi∩X−1
i = ∅ and that

the expression (x−1
t )−1 denotes the element xt. For i ∈ {1, 2} the free group with

the basis Xi is denoted by F (Xi), and for a subset Ri of F (Xi) the normal closure of

the set Ri in F (Xi) is denoted by ⟨⟨Ri⟩⟩. Let Gi be the group with the presentation

⟨Xi |Ri⟩ with respect to the epimorphism ψi : F (Xi) → Gi given by ψi(xt) = t.

Definition 4. For i ∈ {1, 2}, let Hi be a subgroup of Gi. H1 and H2 are

isomorphic in presentations ⟨X1|R1⟩ and ⟨X2|R2⟩ respectively if there exists a bi-

jection γ : X±
1 → X±

2 with γ(x−1
t ) = γ(xt)

−1 such that γ̃ (ψ−1
1 (H1)) = ψ−1

2 (H2)

and γ̃(⟨⟨R1⟩⟩) = ⟨⟨R2⟩⟩, where γ̃ : F (X1) → F (X2) is defined by γ̃(xε1t1 · · ·x
εk
tk
) =

γ(xt1)
ε1 · · · γ(xtk)εk for εi ∈ {±1}. Then, γ̃ is an isomorphism and H1

∼= H2. Con-

versely, if there exists an isomorphism γ̃ : F (X1) → F (X2) such that γ̃(K1) = K2 for

each Ki ∈ {ψ−1
i (Hi),Kerψi, X

±
i }, then γ = γ̃|X±

1
satisfies the above condition.

Proposition 3. Let Γi = (Gi/Hi, T
±
i ,Hi) and

Γ ′
i = (F (Xi)/ψ

−1
i (Hi), X

±
i , ψ

−1
i (Hi)) be Schreier coset graphs for i ∈ {1, 2}. Then,

the following statements are equivalent.

(a) Γ1 is isomorphic to Γ2 as marked labelled directed graphs by a bijection γ :

T±
1 → T±

2 such that γ(t−1) = γ(t)−1 for every t ∈ T1.

(b) Γ ′
1 is isomorphic to Γ ′

2 as marked labelled directed graphs by a bijection γ′ :

X±
1 → X±

2 with γ′(x−1
t ) = γ′(xt)

−1 for every xt ∈ X1 satisfying the condition

(B) ψ1(xt)
2 = 1G1 if and only if ψ2(γ

′(xt))
2 = 1G2 .

Proof. Let φi : Gi → Aut(Gi/Hi) and φ′
i : F (Xi) → Aut(F (Xi)/ψ

−1
i (Hi))

be the usual left actions for i ∈ {1, 2}. We define Ψi : F (Xi)/ψ
−1
i (Hi) → Gi/Hi by

Ψi(y ψ
−1
i (Hi)) = ψi(y)Hi. Since y

−1y′ ∈ ψ−1
i (Hi) is equivalent to ψi(y)

−1ψi(y
′) ∈ Hi,

Ψi is well-defined and an injection. Since ψi is a surjection, Ψi is also a surjection.

Suppose that the statement (a) holds. Let f : G1/H1 → G2/H2 be a bijection

between vertices such that f(H1) = H2 and fφ1(t) = φ2(γ(t))f for every t ∈ T1.
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Set f ′ = Ψ−1
2 fΨ1 : F (X1)/ψ

−1
1 (H1) → F (X2)/ψ

−1
2 (H2). Clearly f ′ is bijective with

f ′(ψ−1
1 (H1)) = ψ−1

2 (H2).

Define γ′ : X±
1 → X±

2 by

γ′(xεt ) =

{
xεγ(t) if γ(t) ∈ T2 and ε ∈ {±1},
x−ε
γ(t)−1 if γ(t) /∈ T2 and ε ∈ {±1}.

Then we have γ′(x−1
t ) = γ′(xt)

−1. To show that γ′ is bijective, we define σ : X±
2 → X±

1

by

σ(xεt ) =

{
xεγ−1(t) if γ−1(t) ∈ T1 and ε ∈ {±1},
x−ε
γ−1(t)−1 if γ−1(t) /∈ T1 and ε ∈ {±1}.

Then

σ γ′(xεt ) =

{
σ(xεγ(t)) if γ(t) ∈ T2 and ε ∈ {±1},
σ(x−ε

γ(t)−1) if γ(t) /∈ T2 and ε ∈ {±1}.

If γ(t) ∈ T2, γ
−1(γ(t)) = t ∈ T1. If γ(t) /∈ T2, γ

−1(γ(t)−1) = γ−1(γ(t−1)) = t−1 /∈ T1
by (∗). Since γ(t−1) = γ(t)−1, we have γ−1(s−1) = γ−1(s)−1. Hence we have

σ γ′(xεt ) =

{
xεt if γ(t) ∈ T2 and ε ∈ {±1},
xεt if γ(t) /∈ T2 and ε ∈ {±1},

thus σ γ′ = 1X±
1
. The similar argument gives γ′σ = 1X±

2
. Thus γ′ is a bijection.

Since ψ2(γ
′(xt)) = γ(t) and t2 = 1G1 if and only if γ(t)2 = 1G2 , we have ψ1(xt)

2 =

1G1 if and only if ψ2(γ
′(xt))

2 = 1G2 , which establishes (B).

Since Ψ1φ
′
1(xt) = φ1(t)Ψ1 and Ψ2φ

′
2(γ

′(xt)) = φ2(γ(t))Ψ2, we have

φ′
2(γ

′(xt))f
′φ′

1(xt)
−1 = φ′

2(γ
′(xt))Ψ

−1
2 fΨ1φ

′
1(xt)

−1 = Ψ−1
2 φ2(γ(t))fφ1(t)

−1Ψ1

= Ψ−1
2 fΨ1

= f ′.

By Remark 1 we obtain (b).

Suppose that the statement (b) holds. Let f ′ : F (X1)/ψ
−1
1 (H1) →

F (X2)/ψ
−1
2 (H2) be a bijection between vertices such that f ′(ψ−1

1 (H1)) = ψ−1
2 (H2)

and f ′φ′
1(xt) = φ′

2(γ
′(xt))f

′ for every xt ∈ X1. Set f = Ψ2f
′Ψ−1

1 : G1/H1 → G2/H2.

Clearly f is bijective with f(H1) = H2.

Define γ : T±
1 → T±

2 by γ(tε) = ψ2(γ
′(xεt )) for each t ∈ T1 and ε ∈ {±1}. First

we show that γ is well-defined. Suppose that tε11 = tε22 . If ε1 = ε2 and t1 = t2,

then ψ2(γ
′(xε1t1 )) = ψ2(γ

′(xε2t2 )). If ε1 ̸= ε2, then t1 = t2. Since ψ2(γ
′(xtj ))

2 = 1G2
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by (B), ψ2(γ
′(xε1t1 )) = ψ2(γ

′(x−ε1
t1 )) = ψ2(γ

′(xε2t2 )). Thus γ is well-defined. Then we

have γ(t−1) = γ(t)−1. Next we show that γ is bijective. We define ρ : T±
2 → T±

1 by

ρ(tε) = ψ1(γ
′−1(xεt )) for each t ∈ T2 and ε ∈ {±1}. Since γ′ satisfies the condition

(B), ψ2(xt)
2 = 1G2 if and only if ψ1(γ

′−1(xt))
2 = 1G1 . Hence ρ is well-defined. We

can easily see that γρ = 1T±
2

and ργ = 1T±
1
. Hence γ is a bijection.

Since Ψ1φ
′
1(xt) = φ1(t)Ψ1 and Ψ2φ

′
2(γ

′(xt)) = φ2(γ(t))Ψ2,

φ2(γ(t))fφ1(t)
−1 = φ2(γ(t))Ψ2f

′Ψ−1
1 φ1(t)

−1 = Ψ2φ
′
2(γ

′(xt))f
′φ′

1(xt)
−1Ψ−1

1

= Ψ2f
′Ψ−1

1

= f.

By Remark 1 we obtain (a). □

Lemma 12. Let Γi = (Gi/Hi, T
±
i ,Hi) be Schreier coset graphs for i ∈ {1, 2}.

Then the following statements are equivalent.

(a) Γ1 is isomorphic to Γ2 as marked labelled directed graphs by a bijection γ :

T±
1 → T±

2 satisfying the following condition: for any t1, . . . , tk ∈ T1 and any

ε1, . . . , εk ∈ {±1},

(C) tε11 · · · tεkk = 1G1 if and only if γ(tε11 ) · · · γ(tεkk ) = 1G2 .

(b) H1 and H2 are isomorphic in presentations ⟨X1|R1⟩ and ⟨X2|R2⟩ respectively.

Proof. By Proposition 3, (a) is equivalent to the following statement.

(a′) Γ ′
1 is isomorphic to Γ ′

2 as marked labelled directed graphs by a bijection γ′ :

X±
1 → X±

2 such that γ′(x−1
t ) = γ′(xt)

−1 for every xt ∈ X1 and

(C ′) ψ1(x
ε1
t1 ) · · ·ψ1(x

εk
tk
) = 1G1 if and only if ψ2(γ

′(xε1t1 )) · · ·ψ2(γ
′(xεktk )) = 1G2 .

In addition we note that the following statements are equivalent.

(1) There exists a bijection γ′ : X±
1 → X±

2 with γ′(x−1
t ) = γ′(xt)

−1 satisfying the

condition (C ′).

(2) There exists a group isomorphism δ : F (X1) → F (X2) such that δ(X±
1 ) = X±

2

and δ(⟨⟨R1⟩⟩) = ⟨⟨R2⟩⟩.

Suppose that the statement (a) holds. By the above, we may suppose that

the statement (a′) holds, and can take γ̃′ as δ in (2), where γ̃′ : F (X1) → F (X2)

given by γ̃′(xε1t1 · · ·x
εk
tk
) = γ′(xt1)

ε1 · · · γ′(xtk)εk . It suffices to prove that γ̃′ (ψ−1
1 (H1))

= ψ−1
2 (H2). Let f

′ : F (X1)/ψ
−1
1 (H1) → F (X2)/ψ

−1
2 (H2) be a bijection between ver-

tices which preserves marked vertices. Now, we note that for i ∈ {1, 2}, ψ−1
i (Hi) =



18 TAKAMICHI SATO

{ l(P ) |P is an edge path in Γ ′
i from ψ−1

i (Hi) to itself }, where l(P ) = l(en) . . . l(e1)

whenever P = e1 . . . en.

Let l(P ) ∈ ψ−1
1 (H1), where ej = (x

εj−1

tj−1
· · ·xε1t1ψ

−1
1 (H1), x

εj
tj ) and P = e1 . . . en.

Since xεntn · · ·xε1t1ψ
−1
1 (H1) = β(en) = ψ−1

1 (H1), by Remark 1,

γ̃′(l(P ))ψ−1
2 (H2) = γ′(xεntn ) · · · γ

′(xε1t1 )f
′(ψ−1

1 (H1)) = f ′(xεntn · · ·xε1t1ψ
−1
1 (H1))

= f ′(ψ−1
1 (H1))

= ψ−1
2 (H2).

Thus we have γ̃′(ψ−1
1 (H1)) ⊂ ψ−1

2 (H2). Similarly γ̃′
−1

(ψ−1
2 (H2)) ⊂ ψ−1

1 (H1), which

proves γ̃′ (ψ−1
1 (H1)) = ψ−1

2 (H2).

Suppose that the statement (b) holds. There exists a bijection γ′ : X±
1 → X±

2 with

γ′(x−1
t ) = γ′(xt)

−1 such that γ̃′ (ψ−1
1 (H1)) = ψ−1

2 (H2) and γ̃′(⟨⟨R1⟩⟩) = ⟨⟨R2⟩⟩, which
establishes (2). Define f ′ : F (X1)/ψ

−1
1 (H1) → F (X2)/ψ

−1
2 (H2) by f ′(gψ−1

1 (H1))

= γ̃′(g)ψ−1
2 (H2). Since g−1

2 g1 ∈ ψ−1
1 (H1) is equivalent to γ̃′(g

−1
2 g1) ∈ γ̃′(ψ−1

1 (H1)) =

ψ−1
2 (H2), f

′ is well-defined and an injection. Since γ̃′ is a surjection, f ′ is also a

surjection. Since

f ′φ′
1(xt)(gψ

−1
1 (H1)) = f ′(xtgψ

−1
1 (H1)) = γ̃′(xtg)ψ

−1
2 (H2)

= γ̃′(xt)γ̃′(g)ψ
−1
2 (H2)

= φ′
2(γ

′(xt))f
′(gψ−1

1 (H1)),

we have f ′φ′
1(xt) = φ′

2(γ
′(xt))f

′ for every xt ∈ X1. Thus Γ ′
1 is isomorphic to Γ ′

2 as

marked labelled directed graphs by a bijection γ′ : X±
1 → X±

2 , which establishes (a′),

i.e., (a). □

By Lemmas 11 and 12, Corollary 1, (1) in Theorem 4 and the isomorphism hn,

we obtain the following theorem.

Theorem 5. Let m,n ≥ 2 and q1, q2 ∈ Q. Then the following statements are

equivalent.

(a) StabBS(1,m)(q1) and StabBS(1,n)(q2) are isomorphic in presentations BS(1,m)

and BS(1, n) respectively.

(b) m = n and |q1| = |q2|.
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