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ON APPROXIMATE SOLUTION TO THE INVERSE
QUASI-VARIATIONAL INEQUALITY PROBLEM

Soumitra Dey and V. Vetrivel

Abstract. In the recent past, several existence theorems for the solution of inverse
variational problem which is a special case of variational inequality problems have
been established by several authors. In this paper, we have define an approximate
solution to inverse quasi-variational inequality problem in a locally convex Hausdorff
topological vector space.

1 Introduction The theory of variational inequality problems (VIP) and its applications
are well known in the last five decades. The notion of inverse variational inequality problem
(IVIP) has received the attention of researchers recently due to its applications in various
fields, such as traffic network problems, economic equilibrium problems (see, for example
[1]). Though, the inverse variational inequality problem is a special case (see [13]) of vari-
ational inequality problems, various authors [1, 11] have explored new sufficient conditions
for the existence of solution to inverse variational inequality problem, because of the fact
that the existence theorems for inverse variational inequality problem are stronger than
those for variational inequality problems.

He et. al. [6] introduced the inverse variational inequality problem to study the bipartite
market equilibrium problem. Zou et. al. [13] gave a novel method to solve inverse variational
inequality problems based on neural networks.

Recently, Aussel et. al. [2] have studied the inverse quasi-variational inequality problem
(IQVIP) with an application to road pricing problem and Han et. al. [1] have established
the existence of solution to the inverse quasi-variational inequality problem using fixed point
theorem and Fan-Knaster-Kuratowski-Mazurkiewicz (KKM) Lemma.

Let K be a non-empty subset of IRn and f : IRn → IRn. Let Φ : IRn → 2K be a set-valued
mapping. The inverse quasi-variational inequality problem is to find a vector x ∈ IRn such
that

f(x) ∈ Φ(x), 〈x, y − f(x)〉 ≥ 0,∀y ∈ Φ(x).(1)

When Φ(x) = Ω for all x ∈ IRn, where Ω is a non-empty subset of IRn, the inverse
quasi-variational inequality problem reduces to the inverse variational inequality problem,
that is, to find an x ∈ IRn such that

f(x) ∈ Ω, 〈x, y − f(x)〉 ≥ 0,∀y ∈ Ω.

For more details, one can also refer to [3, 4, 5, 7, 8, 9, 10].

Han et. al. [1] proved the following existence theorem.
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Theorem 1.1 Let f−1(K) be bounded convex and K ⊆ f(IRn) be compact. Assume that
(i) f is continuous on IRn and natural quasi IRn

+ -convex on f−1(K),
(ii) f is monotone on f−1(K), and f−1(.) is l.s.c. on K,
(iii) Φ is continuous on IRn and for each u ∈ IRn , Φ(u) is convex closed, and f−1(Φ(u))
is bounded and convex with f−1(Φ(u)) ⊆ IRn

+.
Then, the inverse quasi-variational inequality has a solution.

When there is no solution to the inverse quasi-variational inequality problem especially
when the ranges of f and Φ do not intersect, one can look for an approximate solution,
as there is no possibility of the existence of solution. In this paper we give sufficient
conditions for the existence of an approximate solution to the inverse quasi-variational
inequality problem in infinite dimensional setting.

2 Basic definitions and results Let K be a non-empty subset of a locally convex Haus-
dorff topological vector space X, p be a continuous semi-norm on X and 〈·, ·〉 be a continuous
bilinear functional on X×X. Then, for any x ∈ X define dp(x, K) = inf {p(x − y),∀y ∈ K}.
A point z ∈ K is said to be a best approximation to x with respect to p from K if
p(z − x) = dp(x,K). It is well known that[12] if K is a non-empty compact convex subset,
then such a best approximation from K exists to given any x in X. We say that K is
relatively compact if it’s closure is compact.

Definition 2.1 [15] Let X and Y be two Hausdorff topological spaces. A set-valued map-
ping Φ : X → 2Y is said to be
(i) upper semi-continuous (in short u.s.c) at x0 ∈ X if for any neighbourhood N0 of Φ(x0),
there exists a neighbourhood N (x0) of x0 such that

Φ(x) ⊆ N0, for all x ∈ N (x0).

(ii) lower semi-continuous (in short l.s.c) at x0 ∈ X if for any y0 ∈ Φ(x0) and any neigh-
bourhood N (y0) of y0, there exists a neighbourhood N (x0) of x0 such that

Φ(x) ∩N (y0) 6= ∅, for all x ∈ N (x0).

A set-valued mapping Φ : X → 2Y is said to be continuous at a point x0 ∈ X if it is
both u.s.c and l.s.c at x0 ∈ X. It is said to be continuous on X, if it is continuous at every
point x ∈ X.

Definition 2.2 [17] Let X and Y be two topological vector spaces. A set-valued mapping
Φ : X → 2Y is said to be concave if

Φ(λx + (1 − λ)y) ⊆ λΦ(x) + (1 − λ)Φ(y), for all x, y ∈ X and λ ∈ [0, 1].

Lemma 2.3 [15] Assume that X and Y are any two topological spaces and Φ : X → 2Y is
a set-valued mapping. Then Φ is lower semi-continuous at x0 ∈ X if and only if for any
net {xα} ⊆ X with xα −→ x0 and for any y0 ∈ Φ(x0), there exists a subnet {xβ} of {xα}
and a net yβ ∈ Φ(xβ) such that yβ −→ y0.

Let K be a non-empty subset of X. We call a set-valued mapping Φ : K → 2K Kakutani
factorizable [14] if Φ = Φn ◦ Φn−1 ◦ ..... ◦ Φ0, that is, if there is a diagram

Φ : K
Φ0−−→ K1

Φ1−−→ K2 → ....
Φn−−→ Kn+1 = K,

where for each Φi is a non-empty set-valued mapping and Ki is a convex subset of X. For such
Kakutani factorizable mappings, Lassonde [14] proved the following fixed point theorem.
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Theorem 2.4 [14] Let K be non-empty convex subset of a locally convex Hausdorff topo-
logical vector space X and a set-valued mapping Φ : K → 2K be Kakutani factorizable, that
is Φ=Φn ◦Φn−1 ◦ ..... ◦Φ0, where each Φi is non-empty compact convex valued upper semi-
continuous set-valued mapping. If Φ(K) is relatively compact, then Φ has a fixed point, that
is, there exists x0 ∈ K such that x0 ∈ Φ(x0).

We end this section with the following theorem which we will need in the proof of our
main theorem.

Theorem 2.5 [12, Theorem B] Let E and F be two locally convex topological vector spaces,
X be a non-empty compact and convex subset of E, Y be a non-empty subset of F , and
f, g : X × Y → R. If

(i) f(x, y) ≤ g(x, y),
(ii) for each x ∈ X, {y ∈ Y : f(x, y) > 0} is convex,
(iii) for each y ∈ Y , x → f(x, y) is lower semi-continuous on X,
(iv) for each y ∈ Y , {x ∈ X : g(x, y) ≤ 0} be non-empty and convex,
(v) g is lower semi-continuous on X × Y ,

then there exists x0 ∈ X such that f(x0, y) ≤ 0 for all y ∈ Y .

3 Existence of approximate solution to IQVIP We now prove our main theorem.

Theorem 3.1 Let K be a non-empty compact and convex subset of a locally convex Haus-
dorff topological vector space X. Let f : K → X be a continuous mapping and Φ : K → 2K

be a continuous set-valued mapping with non-empty compact convex values, satisfying the
following conditions:
(i) Φ is concave and Φ(K) is convex
(ii) for x1, x2 ∈ K and u1 ∈ Φ(x1), u2 ∈ Φ(x2), we have

〈x1, u2 − z〉 + 〈x2, u1 − z〉 ≥ 0, for all z ∈ Ap

(iii) for each y ∈ Φ(K), {x ∈ K : 〈x, z − y〉 ≤ 0} is non-empty and convex for all z ∈ Ap,
where Ap =

∪
x∈K {z ∈ Φ(x) : p(z − f(x)) = dp(f(x), Φ(x))}.

Then, the inverse quasi-variational inequality problem (1) admits an approximate solution,
that is, there exist x0 ∈ K and z0 ∈ Φ(x0) such that

p(z0 − f(x0)) = dp(f(x0), Φ(x0)) and 〈x0, y − z0〉 ≥ 0, for all y ∈ Φ(x0).

Proof. Define a set-valued mapping S : K → 2K by S=S1 ◦ S0, where
S0 : K → 2Ap and S1 : Ap → 2K with

S0(x) = {z ∈ Φ(x) : p(z − f(x)) = dp(f(x), Φ(x))} and
S1(z) = {ω ∈ K : 〈ω, y − z〉 ≥ 0,∀y ∈ Φ(ω)} .

We first claim that S is a Kakutani factorizable set-valued mapping. By our assumption,
Φ(x) is compact, convex for each x ∈ K, and thus for every x ∈ K, f(x) has a best
approximation from Φ(x). Hence S0(x) is non-empty.

To show that S0(x) is closed, let {zα} be any net in S0(x) which converges to z. We
show that z ∈ S0(x). Since {zα} belongs to S0(x),

p(zα − f(x)) = dp(f(x),Φ(x)).

As Φ(x) is compact, z ∈ Φ(x). Letting α −→ ∞, we see that dp(f(x),Φ(x)) = p(z − f(x)),
that is, z ∈ S0(x) and hence S0(x) is closed. For each x ∈ K, Φ(x) is compact, hence S0(x)
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is compact.

Also, S0(x) is convex for each x ∈ K. Indeed, let z1 and z2 belong to S0(x) for fixed
x ∈ K. This implies that

p(z1 − f(x)) = dp(f(x), Φ(x)) and p(z2 − f(x)) = dp(f(x), Φ(x)).

We show that for any λ ∈ [0, 1], λz1 + (1−λ)z2 ∈ S0(x). Since Φ(x) is convex, λz1 + (1−
λ)z2 ∈ Φ(x) for any λ ∈ [0, 1]. For λ ∈ [0, 1]

p(λz1 + (1 − λ)z2 − f(x)) ≤ λp(z1 − f(x)) + (1 − λ)p(z2 − f(x))
= λdp(f(x), Φ(x)) + (1 − λ)dp(f(x), Φ(x))
= dp(f(x), Φ(x))
≤ p(λz1 + (1 − λ)z2 − f(x)),

which implies that λz1 + (1 − λ)z2 ∈ S0(x). Hence S0(x) is convex.

We now show that S0 is upper semi-continuous. Let B be any non-empty closed subset
of Φ(K). To show that S−1

0 (B) is closed, it is enough to show that if ωα ∈ S−1
0 (B)

and ωα −→ ω, then ω ∈ S−1
0 (B). Let ωα ∈ S−1

0 (B) and ωα −→ ω. This implies that
S0(ωα) ∩ B 6= ∅. Let ζα ∈ S0(ωα) ∩ B. Since Φ(K) is compact, without loss of generality,
we can assume that ζα −→ ζ. This implies that ζ ∈ B as B is closed. Now we show that
ζ ∈ S0(ω). Indeed, since ζα ∈ S0(ωα), p(ζα−f(ωα)) = dp(f(ωα), Φ(ωα)). Now, as α −→ ∞,
we get p(ζ − f(ω)) = dp(f(ω), Φ(ω)), that is, ζ ∈ S0(ω) and hence ζ ∈ S0(ω) ∩ B. Thus
S−1

0 (B) is closed and S0 is upper semi-continuous.

We next show that S1(z) is non-empty. Fix z ∈ Ap and define fz : K × Φ(K) → IR by
fz(x, y) = 〈x, z − y〉. By assumption (iii), the continuity of 〈·, ·〉, it is easy to see that all
the conditions of Theorem 2.5 are satisfied by taking fz(, ) = gz(, ). Therefore there exists
x0 ∈ K such that 〈x0, z − y〉 ≤ 0 for all y ∈ Φ(K). In particular there exists x0 ∈ K such
that 〈x0, z − y〉 ≤ 0 for all y ∈ Φ(x0), that is, there exists x0 ∈ K such that 〈x0, y − z〉 ≥ 0
for all y ∈ Φ(x0). Hence S1(z) is non-empty.

To show the compactness of S1(z), it is enough to show that it is closed. Let {xα} be a
net in S1(z) such that xα −→ x. Since xα ∈ S1(z), 〈xα, y − z〉 ≥ 0, for all y ∈ Φ(xα), for
each α. Let us show that 〈x, y − z〉 ≥ 0, for all y ∈ Φ(x). Let y ∈ Φ(x). Since xα −→ x and
Φ is lower semi continuous, by Lemma 2.3, there exists a net y′

α ∈ Φ(xα) such that y′
α −→ y.

This implies that 〈xα, y′
α − z〉 ≥ 0, as xα ∈ S1(z). Since xα −→ x, 〈·, ·〉 is continuous and

y′
α −→ y, as α −→ ∞, we see that 〈x, y − z〉 ≥ 0. Since y is arbitrary, 〈x, y − z〉 ≥ 0, for

all y ∈ Φ(x), that is, x ∈ S1(z) and hence S1(z) is closed. Since K is compact, S1(z) is
compact.

Let us now show that S1(z) is convex. Let p, q ∈ S1(z) and λ ∈ [0, 1]. That is,
〈p, y − z〉 ≥ 0, for all y ∈ Φ(p) and 〈q, y′ − z〉 ≥ 0, for all y′ ∈ Φ(q). It is enough to show
that 〈λp + (1 − λ)q, y − z〉 ≥ 0, for all y ∈ Φ(λp+(1−λ)q). Let y ∈ Φ(λp+(1−λ)q). Since
Φ is concave, we have y = λy1 + (1 − λ)y2, for some y1 ∈ Φ(p), y2 ∈ Φ(q).
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Now,

〈λp − (1 − λ)q, y − z〉
= 〈λp − (1 − λ)q, λy1 + (1 − λ)y2 − z〉
= λ2 〈p, y1 − z〉 + (1 − λ)2 〈q, y2 − z〉 + λ(1 − λ)[〈p, y2 − z〉 + 〈q, y1 − z〉]
≥ 0 [ p, q ∈ S1(z) and assumption (ii)],

which implies that 〈λp + (1 − λ)q, y − z〉 ≥ 0, for all y ∈ Φ(λp + (1 − λ)q). Thus λp + (1 −
λ)q ∈ S1(z), for all λ ∈ [0, 1] and hence S1(z) is convex.

We now show that S1 is upper semi-continuous. Let B ⊆ K be closed and {zα} be a
net with zα ∈ S−1

1 (B) such that zα −→ z as α −→ ∞. This implies that S1(zα) ∩ B 6= ∅,
for all α. Let yα ∈ S1(zα) ∩ B and yα −→ y0 as α −→ ∞. Since B is closed, y0 ∈ B. We
have to show that y0 ∈ S1(z). Since yα ∈ S1(zα), 〈yα, y − zα〉 ≥ 0, for all y ∈ Φ(yα) and
for all α. Let y ∈ Φ(y0). Since yα −→ y0, by lower semi-continuity of Φ, there exist a net
y′

α ∈ Φ(yα) such that y′
α −→ y. This implies 〈yα, y′

α − zα〉 ≥ 0,∀α. As α −→ ∞, we get
〈y0, y − z〉 ≥ 0. Since y is arbitrary,

〈y0, y − z〉 ≥ 0, for all y ∈ Φ(y0),

which implies that y0 ∈ S1(z). Hence y0 ∈ S1(z) ∩ B, that is, S1 is upper semi-continuous.
Thus the set-valued mapping S is Kakutani factorizable. Now, by Theorem 2.4, S :

K → 2K has a fixed point. That is, there exists an x0 ∈ K such that

x0 ∈ S1(z0), for some z0 ∈ S0(x0)

which implies that there exists x0 ∈ K and z0 ∈ Φ(x0) such that

p(z0 − f(x0)) = dp(f(x0), Φ(x0)) and 〈x0, y − z0〉 ≥ 0, for all y ∈ Φ(x0).

It is worth noting that if f(x0) = z0, then x0 becomes a solution to inverse quasi-
variational inequality problem (1).

The following example illustrates our Theorem 3.1.

Example 3.2 Let K = [−1, 0] ⊆ R. Let f(x) = ex and Φ : K → 2K be defined by
Φ(x) = [x, 0], for all x ∈ K. Here Ap = {0} and it is easy to verify that all the conditions of
Theorem 3.1 are satisfied and that x0= 0 is an approximate solution to inverse quasi-
variational inequality problem. It is important to note that there is no solution to the inverse
quasi-variational inequality problem involving these K, f and Φ.

Acknowledgement: The authors thank the referee for his valuable suggestions to im-
prove the earlier version of this paper.
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