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Abstract. A possibilistic regression model is an interval-type model. An interval-
type model intuitively helps us to understand the possibilities of the target system.
The data distribution defines the possibility interval of the system, which may hinder
our understanding of the analysis results. Improved models have reported using out-
lier problem approaches. We propose models to deal with the vagueness included in a
possibility grade derived from a possibilistic regression model and samples. Unfortu-
nately, the results obtained by the proposed models were not as expected. Then, the
improved model was proposed to handle the vagueness included in possibility grades.
The numerical example confirmed that the proposed model could eliminate the influ-
ence of unusual samples and describe the possibilities of a focal system. The paper
reports the improved model and the results by using a numerical example.

1 Introduction The interval-type possibilistic regression model proposed by Tanaka
and Watada [16], as used in this paper, includes all samples. An interval output illus-
trates the possibility distribution of a focal system. This interval type is rewritten in
linear programming (LP), and can be obtained easily. Furthermore, there are various
models [1, 4, 7, 12] using possibilistic regression in addition to the least-squares model
proposed by Diamond [2, 3]. Fuzzy least squares based on a fuzzy random variable
[9, 10] provides a lot of information. However, we use an interval type from the view-
point of soft computing, because an interval model helps us to understand the analysis
object intuitively.

An interval type illustrates the possibilities of an analyzed system by including all
samples. The shape of a model is defined by that of the data distribution. For this
reason, an interval type is susceptible to the shape of the data distribution. Therefore,
processing of outliers for an interval type [14, 15], in which a model coincides with
a focal system [5, 8, 11, 18, 19, 20, 21, 22, 23], a linguistic regression model [17],
and so forth, are reported. We have proposed a model to deal with the vagueness
included in a possibility grade derived from a possibilistic regression model and samples
[24, 25]. The objectives of the proposed model are to remove the influence of unusual
samples and describe the possibilities of a focal system so that it can be understood
subjectively. Unfortunately, the results obtained by the proposed method were not as
expected. That model is sometimes unable to remove the influence of unusual samples
and distortion of the model. Therefore, a model dealing with the vagueness included
in the possibility grade has been built [24, 25]. The proposed model made it possible
to eliminate the influence of unusual samples and describe the possibilities of a focal
system [26].

This paper is organized as follows. Section 2 briefly explains the interval type of the
possibility regression model dealt with in this paper. Section 3 explains the proposed
model to process vagueness included in possibility grades. In Section 4, we confirm
the usefulness of the proposed model using a simple numerical example. Section 5
concludes this paper.
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2 Possibilistic Regression Model Consider a possibilistic regression equation us-
ing triangular fuzzy regression coefficients:

(1) Yi = (a0, c0) + (a1, c1)xi1 + · · ·+ (ap, cp)xip = (axi, c|xi|).

The independent and dependent variables are xi = (1, xi1, . . . , xip) and yi in sam-
ples (xi, yi)(i = 1, 2, . . . , n). The center and width of the coefficient shown in equation
(1) are a = (a1, a2, . . . , ap) and c = (c1, c2, . . . , cp), respectively. An output of equa-
tion (1) contains this dependent variable. In addition, the vagueness of this model,
that is the widths, should be small. Therefore, a possibilistic regression model can be
rewritten in the following LP:

(2)
min. F

s.t. axi − c|xi| ≤ yi ≤ axi + c|xi|, i = 1, 2, . . . , n.

In equation (2), F employs various functions such as widths of coefficients, F =
∑p

j cj ,
and widths of forecasted values, F =

∑n
i c|xi|.

The regression coefficients are a symmetrical triangular fuzzy number, and the
model describes the possibility distribution of the target system. The predicted value
Y=(Y

C
i , Y W

i ) in the independent variable xi is the interval value with the center Y C
i =

axi and the width Y W = c|xi|. The possibility grade µ(yi,xi) is written as follows:

(3) µ(yi,xi) = max

(
0, 1− |yi − Y C

i |
Y W
i

)
.

As shown by equation (3), the range of possibility grades is [0, 1]. When the regres-
sion coefficients are symmetric triangular fuzzy regression coefficients, their outputs
are also symmetric triangles. The possibility grade is the maximum value 1 at the
center of the distribution, and becomes the minimum value 0 when leaving the center.
The conventional possibility regression model does not consider the possibility grade
because it is a model with the least vagueness. On the other hand, the models we
propose maximize the possibility grade. The model proposed in this paper deals with
vagueness included in the possibility grade. For this reason, the proposed model can
eliminate the influence of unusual samples and illustrate the possibility of the focal
system. The next section describes the proposed model.

3 Possibilistic Regression Model with Vagueness in Possibility Grades Ob-
served variables include various errors. Errors included in sample attribute values are
discussed in statistics and probability, and many research results have been reported.
For a possibility grade [6], research results dealing with grade fluctuations are reported
using Type-2 fuzzy sets. However, the method using Type-2 fuzzy sets is more compli-
cated than handling using Type-1 fuzzy sets. Therefore, we do not use Type-2 fuzzy
sets in this work, and consider a method to easily handle the vagueness included in
possibility grades.

Here, because attribute values contain an error, it is natural to think that possibil-
ity grades obtained from attribute values also contain an error. Therefore, although
possibility grades can be obtained depending on a relationship between membership
functions and samples, we assume that a grade has flexibility [24, 25].

In this paper, the proposed regression model handles samples with vagueness in
the possibility grade to illustrate the possibility of the focal system. For that purpose,
this section explains handling with samples and LP problems to obtain the proposed
model.
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Figure 1: Vagueness included in a possibility grade

3.1 Dealing with Vagueness Including Possibility Grades The possibility
grade of attribute value yi is assumed as µi. That is, let us consider that possibil-
ity grades, µi, contain an error, ei. At this time, as shown in Fig. 1, let the true
possibility grade be µ∗

i . Then, the attribute value corresponding to the true possibility
grade µ∗

i will be the value corresponding to y∗
i in Fig. 1. Let Y C be the center of the

membership function and Y W be the width, then we can obtain the following:

(4) y∗
i = yi + eiY

W .

Then we replace y∗
i and yi to find a possibility regression model.

A possibilistic regression model as shown by equation (2) explains the proposed
method. A possibility grade µi of the ith sample contains an error ei, and the following
relationship holds with the true possibility grade µ∗

i that contains none of error:

(5) µi = µ∗
i + ei.

Here, because a possibility grade takes values of [0, 1], ei also takes values of [−1, 1].

3.2 Formulation of Model Handling Vagueness Included in Possibility
Grades From the above, the inclusion relation between yi and a model output Yi =
(axi, c|xi|) are as follows:

(6) axi − c|xi| ≤ yi + eic|xi| ≤ axi + c|xi|, i = 1, 2, . . . , n.

As a result, equation (2) can be rewritten as follows:

(7)

min. F

s.t. axi − c|xi| ≤ yi + eic|xi| ≤ axi + c|xi|,
|ei| ≤ ε, i = 1, 2, . . . , n.

Here, ε is a parameter that specifies the range of vagueness included in the possibility
grade. As possibility grades are real numbers, ε is also a real number. Furthermore,
the objective function F uses an appropriate function according to the data, similar
to the conventional possibilistic regression model.

Using only this, the influence of unusual samples can be removed. We confirm this
concretely using a numerical example.
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(a) Model 1 denoted by Eq.(9)
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(b) Model 2 denoted by Eq.(10)
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(c) Model 3 denoted by Eq.(11)
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(d) Model 4 denoted by Eq.(12)
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(e) Model 5 denoted by Eq.(13)

Figure 2: Obtained models in the numerical example

4 Numerical Example In this section, the same numerical example as in [25] is
used. The numerical example adds errors with probability to the two variables, x and
y, in the relationship of y = x. In addition, samples contain one unusual sample, and
the model parameter constraint is set to |ei| ≤ ε = 1. In the numerical example, the
following possibilistic regression equation will be found:

(8) Y = (a0, c0) + (a1, c1)x.

We obtain model 1 with F =
∑p

j cj as the objective function of the interval-type
possibilistic regression model shown by equation (2), and model 2 with the objective
function F =

∑n
i c|xi|. In addition to models 3 and 4, which add the vagueness of

grades to models 1 and 2, we also obtain model 5 that considers the vagueness of
possibility grades to the model proposed by Yabuuchi [24].

The outputs of models 1 to 5 are denoted as Y1 to Y5, respectively. The five models



Table 1: Features of obtained models in the numerical examples
Model 1 Model 2 Model 3 Model 4 Model 5

Sum of widths of regression
coefficients

0.685 6.733 0.435 1.513 0.857

Sum of widths of forecasted
values

344.521 432.172 437.480 348.199 254.751

Sum of possibility grades de-
rived from the model and
samples

21.473 15.927 16.420 17.003 14.018

Sum of possibility grades for
widths of forecasted values

2.542 2.287 3.077 3.569 4.244

Outside samples of intervals 3 3 7

are as follows:

Y1 = (4.232, 0) + (0.908, 0.685)x,(9)

Y2 = (8.627, 6.717) + (0.634, 0.016)x,(10)

Y3 = (4.495, 0) + (0.701, 0.435)x,(11)

Y4 = (4.039, 1.244) + (0.859, 0.270)x,(12)

Y5 = (2.944, 0.643) + (0.973, 0.214)x.(13)

The least squares is as follows:

(14) YS = 4.316 + 0.827x.

In Fig. 2, the original sample is rounded, and the values converted by equation (4) are
indicated by a rhombus. Fig. 2 shows that the models handling vagueness included
in possibility grades are not distorted. However, the value of the constant term seems
to be large owing to the influence of a specific sample. For this reason, the center
of model 3 has a small inclination. The center of model 3 is similar to model 1, the
constant term is slightly larger, and the inclination seems to be smaller. On the other
hand, in model 5, the centers of the model and the data distribution almost coincide,
the width of the forecasted value becomes small, and the possibility of the system can
be understood intuitively.

The information obtained from these models is listed in Table 1. The possibility
grade is large when the sample is close to the center, so the model with the small width
of the interval has the small sum of possibility grade. For this reason, the sum of the
possibility grades of model (9) has the maximum value, and that of model (13) has the
minimum value. However, in Table 1, the sum of the possibility grade for the width of
the forecasted value is opposite to the sum of the possibility grades. This is, the sum
of the possibility grade for the width of the forecasted value of the model (9) has the
second smallest value, and that of the model (13) is the maximum value.

From the above, we can summarize the features of the proposed model that consider
the vagueness included in the possibility grade. First, it was subjectively perceptible
that the model describes the data distribution. Second, the influence of the outlier
was eliminated, and a mode without distortion in shape was obtained.

In addition, its effect was improved by using the model in conjunction with the
model proposed by Yabuuchi [24] that maximizes the sum of the possibility grade for
the width of the forecasted value.

In the above, the parameter ε of models 3–5 has been set to 1 because the range of
possibility grades is [0, 1]. On the other hand, because models 1 and 2 are conventional
models, this parameter was not used. Here, the models are obtained by using 0.5, 1.0,
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Table 2: The coefficients of the three models using ε = {0.5, 1.0, 1.5, 2.0}
ε = 0.5 ε = 1.0 ε = 1.5 ε = 2.0

Model 3
A0 (4.232, 0 ) (4.495, 0 ) (4.232, 0 ) (4.363, 0 )
A1 (0.908, 0.457) (0.701, 0.435) (0.908, 0.274) (0.891, 0.230)

Model 4
A0 (3.697, 1.137) (4.039, 1.244) (3.990, 2.169) (4.132, 1.495)
A1 (0.956, 0.359) (0.859, 0.270) (0.808, 0.138) (0.786, 0.191)

Model 5
A0 (2.866, 0.709) (2.944, 0.643) (2.944, 0.643) (2.944, 0.643)
A1 (1.056, 0.475) (0.973, 0.214) (0.973, 0.214) (0.973, 0.214)

Table 3: Features of the three models using ε = {0.5, 1.0, 1.5, 2.0}
ε = 0.5 ε = 1.0 ε = 1.5 ε = 2.0

Model 3
Index 1 459.361 437.480 275.617 231.563
Index 2 18.403 16.420 13.721 12.253
Index 3 3.151 3.077 3.731 3.912

Model 4
Index 1 431.065 348.199 273.368 284.759
Index 2 18.044 17.003 13.359 13.483
Index 3 3.175 3.569 3.326 3.393

Model 5
Index 1 521.995 254.751 254.751 254.751
Index 2 18.663 14.018 14.018 14.018
Index 3 2.928 4.244 4.244 4.244

Index 1: Sum of widths of forecasted values

Index 2: Sum of possibility grades derived from the model and samples

Index 3: Sum of possibility grades to widths of forecasted values

1.5, and 2.0 as the parameter ε, and the characteristics are confirmed. Table 2 lists the
coefficients obtained by the models. Even if the parameter is changed, the center of the
models does not change significantly. In addition, the width of the model decreased
by increasing the value of the parameter. Furthermore, in model 5, the same model
was obtained when ε ≥ 1.0.

Table 3 lists the features of the model obtained by changing the parameter ε. When
ε was changed from 1.5 to 2.0, the possibility grade of models 3 and 4 did not change
significantly. In particular, when ε was increased, the width of the predicted value and
the value of the possibility grade became smaller. However, index 3, which divided the
possibility grade by the width of the predicted value, increased. In general, if the width
of the predicted value is small, the sum of the possibility grade is also small. Then, the
relationship between indices 1 and 2 can understand. Index 3 has a large value when
the samples are near the center of the possibility interval. Therefore, increasing the
value of the parameter ε gathers samples near the center of the possibility interval.

As described above, the width of the solution search space is increased by increasing
the value of the parameter, and an unexpected solution is obtained from LP. Although
the upper limit of the number of samples processed with fuzziness possibility grade
was limited, index 1 of model 4 is larger for ε = 2.0 than for εe = 1.5. In addition,
model 5 uses possibility grades for the objective function. For this reason, model 5
might not be influenced by the parameter ε more than necessary.

To confirm these results, the models are shown in Figs. 3–5. In Figs. 3–5, the
boundaries of the model when ε is changed to 0.5, 1.0, 1.5, and 2.0 are shown by a
dashed-dotted line, dashed-two dotted line, dashed line, and dotted line, respectively.
The features listed in Tables 2 and 3 are confirmed by the results in Figs. 3–5.

The statistical model emphasizes samples away from the center of gravity of the
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Figure 3: Model 3 using ε = {0.5, 1.0, 1.5, 2.0}
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0

10

20

30

40

50

60

0 5 10 15 20 25 30 35

y

x

𝜀 ≤ 0.5
𝜀 ≤ 1.0

𝜀 ≤ 1.5
𝜀 ≤ 2.0

Figure 5: Model 5 using ε = {0.5, 1.0, 1.5, 2.0}

CONSTRUCTION OF A POSSIBILISTIC REGRESSION MODEL
BASED ON POSSIBILITY GRADES WITH VAGUENESS AND RELATIONSHIP WITH PARAMETERS



Y. YABUUCHI

data distribution. On the other hand, samples away from the center of the interval
model distort the model. We also found that the parameter of the proposed model
adjusts the influence of samples away from the center of this model.

5 Conclusion In this paper, we have proposed a possibility regression model con-
sidering the vagueness included in possibility grades. Then, the usefulness of the
proposed model was confirmed by using the numerical example with outliers. The
proposed technique improved the forecast accuracy of models and eliminated the in-
fluence of unusual samples. In addition, by adjusting the parameter ε, it is possible to
adjust the influence of samples away from the center of the model.

Furthermore, it has been improved by using it in conjunction with the model pro-
posed by Yabuuchi to maximize the sum of the possibility grade for the width of the
forecasted value. Finally, the proposed model only arranges the constraints as shown
in equation (6), and sufficient results have been obtained.
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