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Abstract. This paper introduces two types of aggregations, namely the octagonal fuzzy weighted
averaging(OFWA) operator for non-interactive aggregation and octagonal fuzzy Choquet integral(OFCI)
operator for interactive aggregation. The paper emphasis the use of octagonal fuzzy number as a
general case of some well known linear fuzzy numbers. Procedure for solving multi-attribute decision
making(MADM) problem using OFWA and OFCI operators are described and algorithms for the
same are presented to handle large data. Finally, an illustrative example is provided to demonstrate
the application of the OFCI operator in MADM problem.
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1 Introduction Multi-attribute Decision Making (MADM) problems involve aggregating information
from various decision makers, aggregating the interactive criteria and then the final selection through
ranking the alternatives. In real situations, quantifying the quality of the alternative may not be
precise[2]. Zadeh[33] suggested employing the fuzzy set theory as a modeling tool that can help overcome
the situation. However, the presence of fuzziness in decision making increases the computational diffi-
culty in aggregating and ranking the alternatives, which has been handled by various authors including
us. To cite a few [1, 3, 4, 7, 8, 17, 20, 24].
The Choquet integral based aggregation finds its use in cases where individual criteria importance and
group importance are required. The Choquet integral is related to a fuzzy measure which considers
the interaction among the criteria to be aggregated [16, 21, 25]. For this reason, Choquet integral is
more suited to deal with fuzzy MCDM problems and in recent years, many scholars have done a lot
of good research in this field. Yang et. al. [31, 32] studied the real and fuzzy Choquet integrals for
fuzzy integrand. Tan [23], Xu [30], Wei et.al. [28], Wu et. al. [29] used Choquet integral to propose
some intuitionistic fuzzy aggregation operators. Tan [22], Qin et.al.[18], Meng et. al. [15] studied and
used Choquet integral to determine attribute weight and applied it in decision making problems under
interval intuitionistic environment. Rebille [19] used decision making over necessity measures through
Choquet integral.
In this paper, we introduce two types of aggregations on octagonal fuzzy numbers [14], namely octago-
nal fuzzy weighted averaging(OFWA) operator and octagonal fuzzy Choquet integral(OFCI) operator.
OFWA deals with non-interactive aggregation to aggregate the evaluations of different decision makers,
OFCI operator deals with interactive aggregation that aggregates the different criteria for the same al-
ternative.
The paper is organized as follows. Section 2 discusses some of the properties of octagonal fuzzy numbers
which are used to describe the linguistic terms for expert evaluations. In the Section 3, we recall the
concept of fuzzy measure, introduce octagonal fuzzy Choquet integral(OFCI) and then investigate the
aggregation properties of OFCI. In Section 4, we present the procedure for solving MADM problem
using OFCI operator, also algorithms are provided so as to apply it to the real life situations which
usually comes with large number of alternatives and criteria. The application of the proposed method
is given in Section 5 and conclusion is presented in Section 6.

2 Octagonal Fuzzy Numbers

OCTAGONAL FUZZY CHOQUET INTEGRAL OPERATOR FOR
MULTI-ATTRIBUTE DECISION MAKING



Definition 2.1 [14] A fuzzy number Ã is said to be an octagonal fuzzy number denoted by
Ã = (a1, a2, a3, a4, a5, a6, a7, a8; k,w) with membership function

µÃ(x) =



x− a1
a2 − a1

k if a1 ≤ x ≤ a2
k if a2 ≤ x ≤ a3

k(a4 − x) + w(x− a3)

a4 − a3
if a3 ≤ x ≤ a4

w if a4 ≤ x ≤ a5
k(x− a5) + w(a6 − x)

a6 − a5
if a5 ≤ x ≤ a6

k if a6 ≤ x ≤ a7
a8 − x
a8 − a7

k if a7 ≤ x ≤ a8
0 otherwise

(2.1)

where 0 < k < w,w = height(Ã), w > k.

Remark 2.1 The fuzzy number defined in [14] is piecewise and made up of 8 linear curves and therefore
named as ’octagonal’. Note that it satisfies the properties of fuzzy number in accordance with the definition
by Klir in [13].

Remark 2.2 The above defined octagonal fuzzy number is a generalised form of some of the popular
linear fuzzy numbers like, crisp, rectangular, triangular and trapezoidal fuzzy numbers. As all these
numbers can be represented as an octagonal fuzzy number, the operations defined for octagonal fuzzy
numbers will hold good for them. The equivalent forms are as follows:

Fuzzy Numbers Equivalent Octagonal Fuzzy Numbers
Crisp Numbers

(a, a, a, a, a, a, a, a; k,w)
a

Interval Numbers
(a1, a1, a1, a1, a2, a2, a2, a2; k,w)

[a1, a2]
Triangular Fuzzy Numbers

(
a1,

ka2 − ka1 + wa1
w

,
ka2 − ka1 + wa1

w
, a2, a2,(a1, a2, a3)

−ka3 + ka2 + wa3
w

,
−ka3 + ka2 + wa3

w
, a3; k,w

)
Trapezoidal Fuzzy Number

(
a1,

ka2 − ka1 + wa1
w

,
ka2 − ka1 + wa1

w
, a2, a3(a1, a2, a3, a4)

−ka4 + ka3 + wa4
w

,
−ka4 + ka3 + wa4

w
, a4; k,w

)
Remark 2.3 The fuzzy numbers that are piece-wise linear and are made of less than 8 line segments can
be directly expressed as octagonal fuzzy number as pointed out in Remark 2.2. Fuzzy numbers which may
constitute more than 8 linear segments or those which are piece-wise non-linear are not exactly octagonal
fuzzy numbers but can be approximated to octagonal fuzzy numbers in a particular sense (Theorem 2.4.1
in [5]).

Definition 2.2 Let Ã = (a1, a2, ..., a8; k,w) and B̃ = (b1, b2, ..., b8, k, w) be two octagonal fuzzy numbers,
then
(i) Ã+ B̃ = (a1 + b1, a2 + b2, ..., a8 + b8; k,w)
(ii) cÃ = (ca1, ca2, ..., ca8; k,w), for c ≥ 0

Remark 2.4 In [9], it is verified that the sum and scalar multiplication obtained from definition 2.2 is
as that using α− cut approach.

Remark 2.5 It is clear that Ã+ B̃ and cÃ are also octagonal fuzzy numbers.

Proposition 2.1 Let Ã = (a1, a2, ..., a8; k,w), B̃ = (b1, b2, ..., b8, k, w) be two octagonal fuzzy numbers
and let c1, c2 > 0, then we have
(i) Ã+ B̃ = B̃ + Ã
(ii) c1(Ã+ B̃) = c1Ã+ c1B̃
(iii) (c1 + c2)Ã = c1Ã+ c2Ã
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Definition 2.3 An octagonal fuzzy weighted averaging operator on a collection of n octagonal fuzzy
numbers is defined as

OFWAwv(Ã1, Ã2, ..., Ãn) = wv1Ã1 + wv2Ã2 + ...+ wvnÃn (2.2)

where wv = (wv1, wv2, ..., wvn)T is the weight vector of Ãi(i = 1, 2, ..., n) with wvi ∈ [0, 1] and∑n
i=1 wvi = 1.

Definition 2.4 Ranking using Radius of Gyration:[6] Area between the radius of gyration point (rÃx , r
Ã
y )

of the octagonal fuzzy number Ã and the origin (0, 0) is given by

R(Ã) = rÃx r
Ã
y

where rÃx =

√
Ix(Ã)

Area(Ã)
and rÃy =

√
Iy(Ã)

Area(Ã)
, Ix(Ã), Iy(Ã) are respectively the moment of inertia with

respect to the x-axis and y-axis and Area(Ã) the area of the octagonal fuzzy number Ã.

Remark 2.6 Ranking using radius of gyration is used in the procedure for defuzzification, whereas to
compare the octagonal fuzzy numbers, we use the ranking algorithm introduced by us in Section 3.5 of
the paper [6] . The ranking algorithm compares any two octagonal fuzzy numbers Ã and B̃ in 10 steps
and we have proved that the algorithm returns either Ã ≺ B̃, B̃ ≺ Ã or the two octagonal fuzzy numbers
are equal(not just equivalent). Thus any two octagonal fuzzy numbers are comparable and the ordering
is anti-symmetric.

3 Fuzzy Measure and Choquet Integral For the sake of completion, we recall the concept of fuzzy
measure [12]. Using this, we define octagonal fuzzy Choquet integral operator which is then verified
for fundamental properties of aggregation operator, like idempotency, monotonicity, boundedness and
symmetry.

Definition 3.1 [13] A fuzzy measure on X is a set function m : P(X)→ [0, 1] such that
(i) m(φ) = 0, m(X) = 1
(ii) A,B ∈ P(X), A ⊆ B ⇒ m(A) ≤ m(B).

Considering the MADM problems, the number m(A) can be interpreted as the importance of the subset
A, and the monotonicity condition (ii) in Definition 3.1 of the fuzzy measure means that the importance
of a subset of criteria cannot decrease when new criteria are added to it [26].
Let Ej = {xj , xj+1, ..., xn}(1 ≤ j ≤ n) be a criteria set. The interaction among the criteria in Ej can
be described by employing m(Ej)to express the degree of importance of Ej . That is, the degree of
importance of Ej is evaluated by simultaneously considering xj , xj+1, ..., xn. Hence, m can be called an
importance measure [27].
In order to determine such fuzzy measure, we generally need to find 2n − 2 values for n criteria, where
m(φ) = 0 and m(X) = 1 always. So the evaluation model obtained becomes quite complex, and the
structure is difficult to grasp. To avoid the problems with computational complexity and practical
estimations, λ− fuzzy measure m, a special kind of fuzzy measure, was proposed by Sugeno, which
satisfies the following additional property:

m(A ∪B) = m(A) +m(B) + λm(A)m(B), (3.1)

for all A,B ∈ P(X) and A ∩B = φ where λ > −1.

Definition 3.2 [26] If X is a finite set, then ∪ni=1{xi} = X. The λ− fuzzy measure m : P(X) → [0, 1]
for every subset A ∈ P(X), satisfies

m(A) =


1

λ

( ∏
xi∈A

[1 + λm({xi})]− 1

)
if λ 6= 0∑

xi∈A
m({xi}) if λ = 0
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Remark 3.1 [26] Based on the above definition of m(A) and using the fact that m(X) = 1, we can
uniquely solve λ which is equivalent to solving

λ+ 1 =

n∏
i=1

(1 + λm({xi})) (3.2)

and n∑
i=1

m({xi}) Range of λ Type of the λ− fuzzy measure

= 1 λ = 0 Additive
< 1 λ > 0 Super-additive
> 1 −1 < λ < 0 Sub-additive

Definition 3.3 Let Ãi = (ai1, a
i
2, ..., a

i
8; k,w)(i = 1, 2, ..., n) be a collection of n octagonal fuzzy numbers

on X and m be a λ− fuzzy measure on X. The octagonal fuzzy Choquet integral of Ãi with respect to m
is defined by

OFCI(Ã1, ..., Ãn) =

n∑
i=1

(m(E(i))−m(E(i+1))Ã(i) (3.3)

where (·) indicates a permutation on X such that Ã(1) � Ã(2) � ... � Ã(n) and E(i) = {xi, ..., xn}, E(n+1) =
φ.

Proposition 3.1 Let Ãi = (ai1, a
i
2, ..., a

i
8; k,w)(i = 1, 2, ..., n) be a collection of n octagonal fuzzy numbers

on X and m be a λ− fuzzy measure on X, then their aggregated value OFCI(Ã1, ..., Ãn) is also an
octagonal fuzzy number.

Proof: The result follows immediately from Definition 2.2�

Proposition 3.2 Let Ãi = (ai1, a
i
2, ..., a

i
8; k,w)(i = 1, 2, ..., n) be a collection of n octagonal fuzzy numbers

on X, such that

n∑
i=1

m({xi}) = 1. Then the octagonal fuzzy choquet integral coincides with the octagonal

fuzzy weighted average.

Proof: From Remark 3.1 we see that λ = 0 here. According to Definition 3.2 the λ−fuzzy measure is

given by m(E(i)) =

n∑
j=i

m({xj}). Thus

OFCI(Ã1, ..., Ãn) =

n∑
i=1

(m(E(i))−m(E(i+1))Ã(i)

=

n∑
i=1

 n∑
j=i

m({xj})−
n∑

j=i+1

m({xj})

 Ã(i)

=

n∑
i=1

m({xi})Ã(i)

= OFWA(Ã1, ..., Ãn)

Here (m({x1}),m({x2}), ...,m({xn}))T is the weight vector satisfying
n∑
i=1

m({xi}) = 1.�

Proposition 3.3
OFCI(Ã, ..., Ã) = Ã
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Proof: From equation 3.3, we have

OFCI(Ã, ..., Ã) =

n∑
i=1

(m(E(i))−m(E(i+1))Ã

= Ã

n∑
i=1

(m(E(i))−m(E(i+1))

= Ã
(
m(E(1) −m(E(n+1)

)
= Ã (m(X)−m(φ))

= Ã �

Proposition 3.4 Let Ãi = (ai1, a
i
2, ..., a

i
8; k,w) and B̃i = (bi1, b

i
2, ..., b

i
8; k,w) (i = 1, 2, ..., n) be a collection

of 2n octagonal fuzzy numbers on X such that Ãi � B̃i (i = 1, 2, ..., n) but there exists no j and k such
that Ãi � Ãj � B̃k � B̃i for any j, k(6= i) ∈ {1, 2, ..., n} and m be a λ− fuzzy measure on X, then

OFCI(Ã1, ..., Ãn) ≤ OFCI(B̃1, ..., B̃n).

Proof: Since E(i+1) ⊆ E(i), we have m(E(i+1)) ≤ m(E(i)). Thus m(E(i)) − m(E(i+1)) ≥ 0 for all

i. Suppose after rearranging in ascending order, Ãi is moved to Ã(j) and B̃i is moved to B̃(k), then

Ã(j) � B̃(k) and no Ã. or B̃. comes in between. Also, we have n such inequalities. Thus, j = k. i.e.

Ã(i) � B̃(i) for i = 1, 2, ..., n Now,

OFCI(Ã1, ..., Ãn) =

n∑
i=1

(m(E(i))−m(E(i+1))Ã(i)

�
n∑
i=1

(m(E(i))−m(E(i+1))B̃(i)

= OFCI(B̃1, ..., B̃n) �

Proposition 3.5 Let Ãi = (ai1, a
i
2, ..., a

i
8; k,w) (i = 1, 2, ..., n) be a collection of n octagonal fuzzy num-

bers on X and m be a λ− fuzzy measure on X, then OFCI(Ã1, ..., Ãn) is bounded.

Proof: From the definition of OFCI,

OFCI(Ã1, ..., Ãn) =

n∑
i=1

(m(E(i))−m(E(i+1))Ã(i)

where (·) indicates a permutation on X such that Ã(1) � Ã(2) � ... � Ã(n). Thus

OFCI(Ã1, ..., Ãn) =

n∑
i=1

(m(E(i))−m(E(i+1))Ã(i)

� Ã(1)

n∑
i=1

(m(E(i))−m(E(i+1))

� Ã(1)

(
m(E(1))−m(E(n+1)

)
� Ã(1) (m(X)−m(φ))

� Ã(1)

Also
OFCI(Ã1, ..., Ãn) =

n∑
i=1

(m(E(i))−m(E(i+1))Ã(i)

� Ã(n)

n∑
i=1

(m(E(i))−m(E(i+1))

� Ã(n) �

From Definition 3.3, the following property can easily be obtained.

Proposition 3.6 Let Ãi = (ai1, a
i
2, ..., a

i
8; k,w)(i = 1, 2, ..., n) be a collection of n octagonal fuzzy numbers

on X and m be a λ− fuzzy measure on X. If (Ã′1, Ã
′
2, ..., Ã

′
n) is any permutation of (Ã1, Ã2, ..., Ãn), then

OFCI(Ã1, Ã2, ..., Ãn) = OFCI(Ã′1, Ã
′
2, ..., Ã

′
n).

Proof: The proof is obvious, as whatever the permutation the OFCI first orders the given collections
of octagonal fuzzy numbers and then aggregates. �
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4 Multi-Attribute Decision Making with OFCI Operator Consider the MADM problem han-
dled in [7] with k decision makers D1, D2, ..., Dk. evaluating the importance of n criteria c1, c2, ..., cn and
m alternatives A1, A2, ..., Am based on each of the n criteria. The problem is considered in octagonal
fuzzy environment.

4.1 Abstract Algorithm for solving the MCDM problem using OFCI operator:

Step 1: Aggregate the evaluations of the decision makers:
Use OFWA operator for this step, so that the problem now has a vector C of size n, which gives
the importance of the n criteria and an m×n matrix, which is the evaluations of the m alternatives
based on n criteria. All the entries in the vector and the matrix are octagonal fuzzy numbers

Step 2: Find the λ−fuzzy measure of the power set of the criteria set:

(i) Compute the λ− fuzzy measure for individual criteria as

gλ(Ci) =
R(Ci)

2×max(R(Ci))
, i = 1, 2, ..., n

where R is the radius of gyration as given in Definition 2.4

(ii) Solve the equation λ+ 1 =
n∏
i=1

(1 + λgλ(Ci)) for λ and

λ = 0 if

m∑
i=1

gλ(Ci) = 1

λ < 0 if

m∑
i=1

gλ(Ci) > 1

λ > 0 if
m∑
i=1

gλ(Ci) < 1

(iii) gλ(A) is obtained using Definition 3.2, where A ∈ P({c1, c2, ..., cn})

Step 3: Aggregate the criterias for the alternatives:
Use the octagonal fuzzy Choquet integral operator to aggregate the n evaluations for each alter-
native, to obtain an octagonal fuzzy number.

Step 4: Order the alternatives:
Sort the alternatives.

4.2 Algorithms for solving the MCDM problem using OFCI operator: In the above abstract
algorithm, Step 1 is direct as it is the weighted average which involves addition and scalar multiplication
only. The result of this Step is the matrix DM with m rows and n columns with each entry (i, j) the
aggregation of the decision makers’ evaluation of ith alternative versus jth criteria. Also Step 2 (i) and
(ii) are direct calculations. Step 3 is tricky as we have to identify the subsets of the criteria set and then
the corresponding λ−measure. Hence we present an algorithm to find gλ(A), where A is the subset of the
criteria set. In this algorithm, we will obtain matrix M with two columns and 2n rows, the first column
gives the binary equivalent of the numbers 1, 2, ..., 2n and the second column gives the gλ measure of the
subset of the criteria set, which is identified using the corresponding first column entry. For example,
the binary number ”10110” will represent the subset {c2, c3, c5} i.e from right to left the entries denote
c1, c2, ..., cn with each binary digit acting like a characteristic function of the subset.

Algorithm 4.1 Subset of the Criteria set and its Measure

Require: gλ(Ci), (i = 1, 2, ...n), n - number of criteria
for r ← 1 to 2n do

Mr,1 = ””
for i← 1 to n do

ti ← floor(mod( r−12i−1 , 2))
Mr,1 = Concatenate(Mr,1, ti)

. First column of M identifies the subsets of the criteria set
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end for
for i← 1 to n do

si ← floor(mod(
r − 1

2i−1
, 2)) ∗ (1 + λgλ(Ci))

end for
prod← 1
for j ← 1 to n do

if si 6= 0 then
prod← prod ∗ si

end if
end for

Mr,2 =
prod− 1

λ
. Second column gives the measure of the set identified in the corresponding first column

end for

Algorithm 4.2 Octagonal Fuzzy Choquet Integral to aggregate the criteria

Require: the order of the decision matrix
for i← 1,m do . Identifying the set E(i)

for l← 1, n do
OBi,l ← ””
ti,l ← 1

end for
for p← n, 1 step −1 do

OBi,l ←concatenate(OBi,l, ti,p)
end for

end for
for j ← 2, n do

for i← 1,m do
for l← 1, n do

if si,j−1 = l then
ti,l ← 0

end if
end for
for p← n, 1 step −1 do

OBi,j ←concatenate(OBi,l, ti,p) . OBi,j denote the set E(j)

end for . for the alternative i
end for

end for
for u← 1,m do

for r ← 1, 2n do
for j ← 1, n do

if Mr,1 = OBu,j then
aj ←Mr,2 . aj is the measure of the set E(j)

end if
end for

end for
an+1 ← 0

CIu ←
n∑
s=1

DMu,su,s
∗ (as − as+1)

. CI is a vector of size n with CIu is the aggregated evaluation for alternative u
end for

To end the procedure, the vector CI is sorted using the ranking method, radius of gyration and the
alternative with maximum R(CIu) is the best alternative.

5 Illustration Consider an hypothetical problem of selecting a supplier among four suppliers. They
determine five attributes, namely capacity, quality, cost, distance and delivery time. By the help of
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three experts, they evaluate all the suppliers, also the experts determine the fuzzy weights of the criteria.
Assume that the experts are equally important. The evaluations are as follows:

Importance of criteria matrix Evaluation matrix of Expert 1

DC =

 VH H H VH M
VH H MH H MH
VH H MH VH M

 DM1 =


VG VG VG VG VG
G VG VG VG MG

VG MG G G G
G M M G MG


Evaluation matrix of Expert 2 Evaluation matrix of Expert 3

DM2 =


G MG G G VG
G VG VG VG MG
G G MG VG G

VG M MG M G

 DM3 =


MG MG G VG VG
MG MG G MG G
VG VG VG VG MG
MG VG MG VG M


where the corresponding octagonal fuzzy numbers for the above used linguistic term set are as given

in the following table:

Linguistic Linguistic Corresponding
term set for term set for octagonal fuzzy number
attributes Weights

VP VL (0, 10, 20, 30, 40, 50, 60, 70;
1

2
, 1)

P L (10, 20, 30, 40, 50, 60, 70, 80;
1

2
, 1)

MP ML (20, 30, 40, 50, 60, 70, 80, 90;
1

2
, 1)

M M (30, 40, 50, 60, 70, 80, 90, 100;
1

2
, 1)

MG MH (40, 50, 60, 70, 80, 90, 100, 100;
1

2
, 1)

G H (50, 60, 70, 80, 90, 100, 100, 100;
1

2
, 1)

VG VH (60, 70, 80, 90, 100, 100, 100, 100;
1

2
, 1)

As the experts are considered equal, their weight vector will be

(
1

3
,

1

3
,

1

3

)
.

The first step to the problem is to aggregate the evaluations of the three experts and then to obtain
the λ- fuzzy measure of the singleton sets {Ci}, (i = 1, 2, ..., 5) which is as 0.5, 0.467, 0.43, 0.489, 0.378
respectively.
Solving the equation

(1 + 0.5λ)(1 + 0.467λ)(1 + 0.43λ)(1 + 0.489λ)(1 + 0.378λ)− λ− 1 = 0

we get the λ- values to be 0,−0.93772,−5.19866,−2.51050 + 2.76915i,−2.51050− 2.76915i and consid-
ering the cases in Remark 3.1, we let λ = −0.938
Following the algorithms, we aggregate all the information and obtain a octagonal fuzzy number for each
alternative follows:

Alternative 1 (56.206, 66.204, 76.202, 86.201, 96.199, 99.291, 99.983, 99.983;
1

2
, 1)

Alternative 2 (53.788, 63.786, 73.785, 83.783, 93.781, 97.962, 99.983, 99.983;
1

2
, 1)

Alternative 3 (54.933, 64.932, 74.93, 84.928, 94.927, 99.182, 99.983, 99.983;
1

2
, 1)

Alternative 4 (46.574, 56.572, 66.571, 76.569, 86.567, 93.745, 98.028, 99.983;
1

2
, 1)

The order of the alternatives is A1 � A3 � A2 � A4.

Remark 5.1 The method proposed seems to be helpful in many cases provided the situation in any
practical example can be described in terms of ideas in fuzzy sets on which the method is based.

6 Conclusion In this paper, we introduced two aggregation operators, which are used to aggregate
two types of information, namely, interactive and non-interactive. The aggregation for non-interactive
information is verified to be a particular case of OFCI operator. The fundamental aggregation properties
are verified for OFCI operator and a procedure for solving MADM problem involving the two types of

Felbin C Kennedy and Dhanalakshmi V



aggregation is considered. An illustrative example is given to demonstrate the same. We note that
algorithms are presented for complicated steps in the procedure, so that computer programs can be
written to handle the real life problems which comes with large number of alternatives and criterias’(as
pointed out with a concrete example in the second authors’ thesis [5]). Also from Remark 2.1, we see
that the problem with any other linear fuzzy numbers, like crisp, interval, triangular or trapezoidal fuzzy
numbers, can be used, by considering their equivalent octagonal fuzzy numbers.
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Figure 1: MathCAD 14 programs for Algorithm 2.1
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Figure 2: MathCAD 14 programs for Algorithm 4.1

Figure 3: MathCAD 14 programs for Algorithm 4.2
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Figure 4: Illustration

The λ− fuzzy measure for individual criteria is gλ(Ci) =


0.5

0.467
0.43
0.489
0.378


Solving the equation λ + 1 = (1 + 0.5λ)(1 + 0.467λ)(1 + 0.43λ)(1 + 0.489λ)(1 + 0.378λ), we get λ =

0
−5.1986

−2.5105− 2.7691i
−2.5105 + 2.7691i

−0.9377

 The λ− fuzzy measure of the power set of the criteria set:
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