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Abstract

We introduce the concept of interior ideal and the concept of fuzzy
interior ideal in hypersemigroups and we prove, among others, that in
regular also in intra-regular hypersemigroups the interior ideals and the
fuzzy interior ideals coincide. We also prove that an hypergroupoid H is
simple if and only if every fuzzy ideal of H is a constant function; and
that an hypersemigroup H is simple if and only if every fuzzy interior
ideal of H is a constant function, equivalently if, for every element a of
H, we have H = H x {a} x H.

1 Introduction

This paper is based on our paper [5] and partly on [6]. We first introduce
the concept of an interior ideal and the concept of a fuzzy interior ideal of an
hypersemigroup and we prove that if H is an hypersemigroup and A an interior
ideal of H, then the characteristic mapping f4 is a fuzzy interior ideal of H.
“Conversely”, if A is a nonempty subset of H and fa a fuzzy interior ideal of
H, then the set A is an interior ideal of H. Then we prove that any fuzzy
ideal of an hypersemigroup H is a fuzzy interior ideal of H and in regular,
also in intra-regular hypersemigroups the concepts of interior ideals and fuzzy
interior ideals coincide. We also prove that in a regular and in an intra-regular
hypersemigroup H the interior ideals are subsemigroups of H. Following Kuroki,
we call an hypergroupoid H fuzzy simple if every fuzzy ideal of H is a constant
function. We prove that an hypergroupoid is simple if and only if it is fuzzy
simple, and an hypersemigroup H is simple if and only H = Hx*{a}+H for every
a € H, equivalently, if every fuzzy interior ideal of H is a constant function. As
a consequence, for an hypersemigroup H, the following are equivalent: (1) H is
simple. (2) H = H = {a} x H for every a € H. (3) H is fuzzy simple. (4) every
fuzzy interior ideal of H is a constant function.
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2 Prerequisites

For the sake of completeness, we will give some definitions already given in [2].
An hypergroupoid is a nonempty set H with an hyperoperation
o:HxH—P*(H)| (a,b) - aobon H and an operation
x: P*(H)x P*(H) = P*(H) | (A,B) - A* B on P*(H) (induced by the
operation of H) such that Ax B = U (aob) for every A,B € P*(H)
(a,b)e AxB
(P*(H) being the set of nonempty subsets of H). As the operation “+” depends
on the hyperoperation “o”, an hypergroupoid can be denoted by (H, o) (instead
of (H,o,x)). If (H,o) is an hypergroupoid then, for every x,y € H, we have
{z}x{y} = U (a0 b) =z oy. The following proposition, though clear,
ac{z},be{y}
plays an essential role in the theory of hypergroupoids.

Proposition 2.1. Let (H,o) be an hypergroupoid, x € H and A, B € P*(H).
Then we have the following:

(1) Ifr € Ax B, thenx € aob for somea € A, b€ B and

(2) Ifac Aandbe B, thenaobC AxB.

Proposition 2.2. If (H,o) is an hypergroupoid then, for every A,B,C,D €
P*(H), we have
(1) ACB=AxCCBxC and Cx A C C x B, equivalently,
ACBandCCD = AxCCBxD.
(2) H«x ACH and AxH C H.

Definition 2.3. Let (H,o) be an hypergroupoid. A nonempty subset A of H
is called a left (resp. right) ideal of H if H* A C A (resp. AxH C A). If A is
both a left and a right ideal of H, then it is called an ideal of H. A nonempty
subset A of H is called a subgroupoid of H if Ax A C A.

Clearly, every left (resp. right) ideal of H is a subgroupoid of H.

Definition 2.4. An hypergroupoid (H, o) is called hypersemigroup if

{z}+(yoz) = (zoy)*{z}
for every x,y,z € H. Since {x}*{y} = zoy for every x,y € H, this is equivalent
to saying that {x} ({y} * {z}) = ({x} * {y}) x {z} for every z.y,z € H.

Proposition 2.5. ([1,2]; for its proof we refer to [4]) If (H, o) be an hypersemi-
group, then (P*(H), %) is a semigroup.

As a result, for any A, B,C € P*(H), we write A% (BxC) = (A% B)xC :=
A x B x C; and in an expression of the form A; % Ag x ..... x A,, where the
A; (i=1,2,..,n) are elements of P*(H) we can put parentheses in any place
beginning with some A; and ending in some A; (1 <4,5 < n).

Following Zadeh, any mapping f : H — [0,1] of an hypergroupoid H into
the closed interval [0, 1] of real numbers is called a fuzzy subset of H (or a fuzzy
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set in H) and, for any nonempty subset A of H, the characteristic function fa
of A, is the fuzzy subset of H defined by

fA:H—>{0,1}|x—>fA(x):{ (1) iiff f;i

The concepts of fuzzy left ideals and fuzzy right ideals of semigroups due to
Kuroki [6], are the following: A fuzzy subset f of a semigroup S is called a fuzzy
left (resp. fuzzy right) ideal of S if, for every z,y € S, we have f(zy) > f(y)
(resp. f(xy) > f(x)). It is called a fuzzy ideal of S if it is both a fuzzy left and
a fuzzy right ideal of S. These concepts can be transferred, in a natural way, to
an hypergroupoid as follows:

Definition 2.6. [3] Let (H, o) be an hypergroupoid. A fuzzy subset f of H is
called a fuzzy left ideal of H if

f(xoy) > f(y) for all z,y € H,

in the sense that if ,y € H and u € x oy, then f(u) > f(y).
A fuzzy subset f of H is called a fuzzy right ideal of H if

flxoy) > f(x) for all z,y € H,

meaning that if x,y € H and u € z oy, then f(u) > f(x).

A fuzzy subset f of H is called a fuzzy ideal of H it is both a fuzzy left ideal
and a fuzzy right ideal of H. As one can easily see, a fuzzy subset f of H is a
fuzzy ideal of H if and only f(x oy) > max{f(x), f(y)} for all z,y € H, in the
sense that x,y € H and u € x oy implies f(u) > max{f(x), f(y)}.

3 Main results

Definition 3.1. Let H be an hypersemigroup. A nonempty subset A of H is
called an interior ideal of H if

HxAxHCA.

By a subidempotent interior ideal of H we mean an interior ideal of H which is
at the same time a subsemigroup of H.

The concept of fuzzy interior ideal of semigroups is also due to Kuroki [6],
and it is the following: A fuzzy subset f of a semigroup S is called a fuzzy
interior ideal of S if, for any z,a,y € S, we have f(xay) > f(a). This concept
can be naturally transferred to an hypersemigroup as follows:

Definition 3.2. Let H be an hypersemigroup. A fuzzy subset f of H is called
a fuzzy interior ideal of H if

f((x oa) x {y}) > f(a) for every z,a,y € H,
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in the sense that if x,a,y € H and u € (z o a) * {y}, then f(u) > f(a).
For an hypersemigroup, we clearly have

(zoa)x{y} = {a} x (aoy) = {z} +{a} * {y}.

Proposition 3.3. Let H be an hypersemigroup. If A is an interior ideal of H,
then the characteristic function fa is a fuzzy interior ideal of H. “Conversely”,
if A is a nonempty subset of H such that fa is a fuzzy interior ideal of H, then
A is an interior ideal of H.

Proof. —. Let z,a,y € H. Then fA((x o a) * {y}) > fa(a). In fact: Let

u€ (zoa)x{y}. If a € A, then fa(a) = 1. Since A is an interior ideal of H,
we have Hx Ax H C A. So we have u € {z} *{a} x{y} C HxAxH C A.
Then u € A, and fa(u) = 1. Thus we get fa(u) > fa(a). Let now a ¢ A. Then
fala) = 0. Since fa is a fuzzy subset of H and u € H, we have fa(u) > 0.
Thus we have fa(u) > fa(a).

<. Let A be a nonempty subset of H and f4 a fuzzy interior ideal of H. Then
H+«AxH C A. Indeed: Let u € H+x Ax H. Then u € voy for some v € H x A,
y € Handv € xoa for some x € H,a € A. Since voy C (xoa)*{y}, we have
u € (xoa)x*{y}, where x,y € H and a € A. Since f4 a fuzzy interior ideal of
H, we have fa(u) > fa(a) = 1. Since f4 is a fuzzy subset of H and u € H, we
have fa(u) < 1. So we have fa(u) =1, and u € A. O

Proposition 3.4. Let H be an hypersemigroup. If f is a fuzzy ideal of H, then
fis a fuzzy interior ideal of H.

Proof. Let z,a,y € H. Then f((x oa)x* {y}) > f(a). In fact:

Let u € (zoa)*{y}. By Proposition 2.1, there exists v € zoa such that u € voy.
Since v € z o a and f is a fuzzy left ideal of H, we have f(v) > f(a). Since
u€wvoy and f is a fuzzy right ideal of H, we have f(u) > f(v). Then we have
f(u) > f(a), and the proof is complete. O

Definition 3.5. (cf. also [3]) An hypersemigroup H is called regular if for every
a € H there exists € H such that a € {a} * (x 0 a).

Lemma 3.6. [3; Lemma 1.2] Let H be an hypersemigroup. The following are
equivalent:

(1) H is regular.

(2) a € {a} x{x} x{a} for everya € H.

(3) AC Ax H x A for every nonempty subset A of H.

Proposition 3.7. Let H be a reqular hypersemigroup and A an interior ideal
of H. Then A is a subsemigroup of H.

Proof. Since A is an interior ideal of H, we have H x A« H C A. Since H is
regular, we have A C A x H x A. Then we have

AxA C (AxH+xA)xA=(AxH)xAxACH=xAxHC A,

so A is a subsemigroup of H. O
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Proposition 3.8. Let H be a regular hypersemigroup and f a fuzzy interior
ideal of H. Then f is a fuzzy ideal of H.

Proof. Let a,b € H. Then f(aob) > f(a) and f(aob) > f(b). In fact:
Let w € aob. Then f(u) > f(a). Indeed: Since a € H and H is regular, there
exists € H such that a € {a} * {z} * {a}. Then

aob C {a}x{x}+{a}x{b} = (aox)*(ach),

from which u € vow for some v € aox, w € aob. We have u € vow C {v}*(aob)
and f({v} * (a o b)) > f(a), thus we have f(u) > f(a), and f is a fuzzy right
ideal of H. We also have f(u) > f(b). Indeed: Since b € H and H is regular,
there exists y € H such that b € {b} * {y} * {b}. Then we have

u€aobC {a}x{b}*{y}*{b} =(aob)x*(yob).
Then u € sot for some s €aob, t € yob. Then we have

uesotC (aob)x{th={a}l*(bot).

Since f({a} x(bo t)) > f(b), we obtain f(u) > f(b), and f is a fuzzy left ideal
of H. Therefore f is a fuzzy ideal of H. O
From Propositions 3.4 and 3.8 we have the following

Theorem 3.9. In regular hypersemigroups the concepts of fuzzy ideals and fuzzy
interior ideals coincide.

Definition 3.10. (cf. also [3]) An hypersemigroup H is called intra-regular if
for every a € H there exist z,y € H such that a € (zoa)* (aovy).

Lemma 3.11. Let H be an hypersemigroup. The following are equivalent:

(1) H is intra-regular.

(2) a € Hx*{a}*{a}* H for every a € H.

(3) AC Hx Ax Ax H for every nonempty subset of H.
Proof. The implication (1) = (2) and the equivalence (2) < (3) are obvious.
Let us prove the implication (2) = (1). Let a € H. By (2), we have a €
(H * {a}) * ({a} * H) By Proposition 2.1, a € u o v for some u € H x {a},
v €E€{a}*H, u € xoaand v € aoy for some z,y € H. Then we have

ac€uovC(xoa)x*(aoy), then a € (xoa)*(aoy), where z,y € H and so H
is intra-regular. O

Proposition 3.12. Let H be an intra-regular hypersemigroup and A an interior
ideal of H. Then A is a subsemigroup of H.

Proof. Since A is an interior ideal of H, we have H * Ax H C A. Since H is
intra-regular, we have A C H x A« Ax H. Then we have

AxA C (HxAxAxH)«A=(Hx*xA)xAx(H=xA)
C HxAxHCA,
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so A is a subsemigroup of H. O
By Propositions 3.7 and 3.12, we have the following

Corollary 3.13. In regular and in intra-reqular hypersemigroups the interior
ideals and the subidempotent interior ideals coincide.

Proposition 3.14. Let H be an intra-reqular hypersemigroup and f is a fuzzy
interior ideal of H. Then fis a fuzzy ideal of H.

Proof. Let a,b € H and u € aob. Since a € H and H is intra-regular, there
exist z,y € H such that a € {z} % {a} * {a} * {y}. Then

aobC {o} «{a} {a} + {y} + {0} = (woa) + ((aoy) « {b}).
Then u € vow for some v € zoa, w € (aoy)*{b}. We have

u€evowC (zoa)*{w}

and, since f is a fuzzy interior ideal of H, f((x oa) * {w}) > f(a). Thus we
get f(u) > f(a), and f is a fuzzy right ideal of H. Since b € H and H is

intra-regular, there exist z,¢ € H such that b € {z} * {b} = {b} * {t}, then we
have

aob C {a)}* {2}« (b} % {b) * {1} = ((aoz)*{b})*(bot).
Then u € cod for some ¢ € (a0 z)*{b}, d €bot. Sinceu € cod C {c}* (bot)
and f({c} * (bot)) > f(b), we have f(u) > f(b), and f is a fuzzy left ideal of

H. Hence f is a fuzzy ideal of H. O
By Propositions 3.4 and 3.14, we have the following theorem

Theorem 3.15. In intra-reqular hypersemigroups the concepts of fuzzy ideals
and fuzzy interior ideals coincide.
An ideal A of an hypergroupoid H is called properif A # H.

Definition 3.16. An hypergroupoid H is called simple if does not contain
proper ideals, that is, for every ideal A of H, we have A = H.

The concept of fuzzy simple semigroups due to Kuroki [6] can be naturally
transferred to hypergroupoids as follows:

Definition 3.17. An hypergroupoid H is called fuzzy simple if every fuzzy
ideal of H is a constant function, that is, for every fuzzy ideal f of H and every
a,b € H, we have f(a) = f(b).

Notation 3.18. Let H be an hypergroupoid and a € H. We denote by I, the
subset of H defined as follows:

Io={be H|f(b) = f(a)}.

Lemma 3.19. Let H be an hypergroupoid and f a fuzzy right (resp. fuzzy left)
ideal of H. Then the set I, is a right (resp. left) ideal of H for every a € H.
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Proof. Let a € H and f a fuzzy right ideal of H. The set I, is a right ideal
of H. Indeed: Since a € [, the set I, is a nonempty subset of H. Moreover,
I,«H C I,. Indeed: Let x € I, * H. Then x € uwo v for some u € I,, v € H.
Since € wowv and f is a fuzzy right ideal of H, we have f(x) > f(u). Since
u € I, we have f(u) > f(a), thus we have f(z) > f(a). Since u € I,, we have
u € H. Since u,v € H, we have uov C H+« H C H,sox € H. Since x € H
and f(z) > f(a), we have z € I,. Thus I, is a right ideal of H. Similarly, if f
is a fuzzy left ideal of H, then the set I, is a left ideal of H for every a € H. [J

Corollary 3.20. If H is an hypergroupoid and f a fuzzy ideal of H, then the set
1, is an ideal of H for every a € H.

Lemma 3.21. Let H be an hypergroupoid. If A a left (resp. right) ideal or an
ideal of H, then the characteristic function fa is a fuzzy left (resp. fuzzy right)
ideal or a fuzzy ideal of H. “Conversely”, if A is a nonempty subset of H and
fa a fuzzy left (resp. fuzzy right) ideal or a fuzzy ideal of H, then A is a left
(resp. right) ideal or an ideal of H.

Proof. Let A be a left ideal of H, 2,y € H and u € xoy. Then fa(u) > fa(y).
Indeed: If y € A, then xoy C H*x A C A, then u € A and fa(u) =1 > fa(y).
Ity & A, then fa(y) =0 < fa(u), so fa is a fuzzy left ideal of H. Let now f4
be a fuzzy left ideal of H. Then H x A C A. Indeed: Let uw € H x A. Then
u € xoy for some x € H, y € A. Since u € x oy, we have fa(u) > fa(y) = 1.
Then fa(u) =1, and u € A. The “dual” (for right-fuzzy right ideals) can be
proved in a similar way, this completes the proof. O

Theorem 3.22. An hypergroupoid H is simple if and only if it is fuzzy simple.

Proof. =. Let f be a fuzzy ideal of H and a,b € H. Since f is a fuzzy ideal
of H and a € H, by Corollary 3.20, the set I, is an ideal of H. Since H is
simple, we have I, = H. Then b € I,, so f(b) > f(a). By symmetry, we get
f(a) > f(b). Thus we have f(a) = f(b), and H is fuzzy simple.

<=. Let H be fuzzy simple and I an ideal of H. Then I = H. Indeed: Let
x € H. Since I is an ideal of H, by Lemma 3.21, the characteristic function f;
is a fuzzy ideal of H. Since H is fuzzy simple, f; is a constant function, that is,
f1(y) = f1(2) for every y,z € H. Take an element a € I (I # (). Then we have
fi(x) = fr(a) =1, s0 x € I. Thus H is simple. O

Theorem 3.23. If H is an hypersemigroup, then the following are equivalent:
(1) H is simple.
(2) H=H *{a} « H for everya € H.
(3) Every fuzzy interior ideal of H is a constant function.

Proof. (1) = (2). Let a € H. The set H x {a} x H is an ideal of H. Indeed,

it is a nonempty subset of H, and we have
Hx(Hx{a}*H)=(Hx+«H)*{a}+«H C Hx{a}* H and
(Hx{a}+H)xH=H=x*{a}+x(H*H)C H=x{a}*H.

Since H is simple, we have H * {a} * H = H.

(2) = (3). Let f be a fuzzy interior ideal of H and a,b € H. Then f(a) = f(b).
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Indeed: Since b € H, by hypothesis, we have b € (zoa)x{y} for some z,y € H.
Since f is a fuzzy interior ideal of H, we have f(b) > f(a). By symmetry, we
get f(a) = f(b), so f(a) = f(b).

(3) = (1). Let f is a fuzzy ideal of H. By Proposition 3.4, f is a fuzzy interior
ideal of H. By hypothesis, f is a constant function. Thus H is fuzzy simple.
Then, by Theorem 3.22, H is simple. (]

Summarizing, in case of an hypersemigroup the following are equivalent: (1)
H is simple; (2) H = H x {a} *x H for every a € H; (3) H = H x Ax H for
every A € P*(H); (4) H is fuzzy simple; (5) every fuzzy interior ideal of H is
a constant function. Clearly H = H x {a} * H for every a € H is equivalent to
H = H x A« H for every nonempty subset A of H.

With my best thanks to Prof. Klaus Denecke for his interest in my work
and his prompt reply.
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