STRONGLY GRADED RINGS WHICH ARE MAXIMAL ORDERS

HIDETOSHI MARUBAYASHI¹, SRI WAHYUNI², INDAH EMILIA WIJAYANTI³, IWAN ERNANTO⁴

Received December 8, 2017

Abstract.

Let $R = \bigoplus_{n \in \mathbb{Z}} R_n$ be a strongly graded ring of type \mathbb{Z} . In [6], it is shown that if R_0 is a maximal order, then so is R. We define a concept of \mathbb{Z} -invariant maximal order and show R_0 is a \mathbb{Z} -invariant maximal order if and only if R is a maximal order. We provide examples of R_0 which are \mathbb{Z} -invariant maximal orders but not maximal orders.

1 Introduction Let $R = \bigoplus_{n \in \mathbb{Z}} R_n$ be a strongly graded ring of type \mathbb{Z} , where \mathbb{Z} is the ring of integers. We always assume that R_0 , the degree zero part, is a prime Goldie ring with its quotient ring Q_0 and $C_0 = \{c \in R_0 \mid c \text{ is regular in } R_0\}$, which is a regular Ore set of R and the ring of fractions Q^g of R at C_0 has the following properties:

- (i). $Q^g = \bigoplus_{n \in \mathbb{Z}} Q_0 R_n (Q_0 R_n = R_n Q_0).$
- (ii). $Q^g = Q_0[X, X^{-1}, \sigma]$ for some automorphism σ of R_0 ([6, 1.3]) and so
- (iii). Q^g is a left and right principal ideal ring.

We denote by the quotient ring of R by Q. We define a concept of \mathbb{Z} -invariant maximal order in order to get the following three conditions are equivalent: (i) R_0 is a \mathbb{Z} -invariant maximal order (ii) R is a maximal order (iii) R is a graded maximal order. We give examples of R_0 which are \mathbb{Z} -invariant maximal orders but not maximal orders. We refer the readers to [7] or [8] and [9] for some elementary properties and some definitions of order theory and graded ring theory which are not mentioned in the paper.

2 The proof of Theorem Since Q^g is the quotient ring of R at C_0 , the following lemma follows from the proof of [2, Theorem 1.31].

Lemma 1 Let A be an ideal of R. Then $AQ^g = Q^g A$.

Lemma 2 Let A_0 be an ideal of R_0 . Then the right ideal A_0R is an ideal of R if and only if $R_nA_0 = A_0R_n$ for all $n \in \mathbb{Z}$. In this case, A_0R is a graded ideal.

Proof. If A_0R is an ideal of R, then $R_nA_0R_{-n} \subseteq A_0$, that is, $R_nA_0 \subseteq A_0R_n$ for all $n \in \mathbb{Z}$ and so $R_{-n}A_0 \subseteq A_0R_{-n}$ also follows. Hence $R_nA_0 = A_0R_n$. Conversely if $R_nA_0 = A_0R_n$ for all $n \in \mathbb{Z}$, then it is easy to see that A_0R is an ideal of R.

²⁰¹⁰ Mathematics Subject Classification. 13A15, 13A18, 13G05, 13E05.

Key words and phrases. Graded ring; maximal order; prime Goldie ring; hereditary Noetherian prime ring.

Definition 1

- (1). A left and right R_0 -submodule A_0 of Q_0 is called \mathbb{Z} -invariant if $R_n A_0 = A_0 R_n$ for all $n \in \mathbb{Z}$.
- (2). R_0 is called a \mathbb{Z} -invariant maximal order in Q_0 if $O_l(A_0) = R_0 = O_r(A_0)$ for any nonzero \mathbb{Z} -invariant ideal A_0 of R_0 .
- (3). (10, p.205) R is a graded maximal order in Q^g if for each graded over-ring S such that $R \subseteq S \subseteq Q^g$ and $aSb \subseteq R$ for some regular homogeneous elements $a, b \in Q^g$, it follows R = S.

Lemma 3

- (1). Let A_0 and B_0 be \mathbb{Z} -invariant left and right R_0 -submodules in Q_0 . Then A_0B_0 is \mathbb{Z} -invariant.
- (2). Let A_0 be a \mathbb{Z} -invariant left R_0 -ideal which is a right R_0 -submodule in Q_0 and B_0 be a \mathbb{Z} -invariant right R_0 -ideal which is a left R_0 -submodule in Q_0 . Then $C_0 = \{r_0 \in R_0 \mid A_0r_0 \subseteq R_0\}$ and $D_0 = \{r_0 \in R_0 \mid r_0B_0 \subseteq R_0\}$ are both \mathbb{Z} -invariant.

Proof.

- (1). It is clear.
- (2). $R_0 \supseteq A_0 C_0$ implies $R_0 \supseteq R_n A_0 C_0 R_{-n} = A_0 R_n C_0 R_{-n}$ for all $n \in \mathbb{Z}$ and so $R_n C_0 R_{-n} \subseteq C_0$ and also $R_{-n} C_0 R_n \subseteq C_0$. Hence $C_0 R_n = R_n C_0$ for all $n \in \mathbb{Z}$, that is, C_0 is \mathbb{Z} -invariant. Similarly D_0 is \mathbb{Z} -invariant.

Lemma 4 The following conditions are equivalent.

- (1). R_0 is a \mathbb{Z} -invariant maximal order.
- (2). $O_l(A_0) = R_0$ for each \mathbb{Z} -invariant left R_0 -ideal A_0 which is a right R_0 -submodule in Q_0 , and $O_r(B_0) = R_0$ for each \mathbb{Z} -invariant right R_0 -ideal B_0 which is a left R_0 -submodule in Q_0 .

Proof.

 $(2) \Rightarrow (1)$ This is a special case.

(1) \Rightarrow (2) Let A_0 be a \mathbb{Z} -invariant left R_0 -ideal which is a right R_0 -submodule in Q_0 and let $C_0 = \{ r_0 \in R_0 \mid A_0 r_0 \subseteq R_0 \}$. Then $A_0 C_0$ is a \mathbb{Z} -invariant ideal of R_0 by Lemma 3. Thus $R_0 = O_l(A_0 C_0) \supseteq O_l(A_0) \supseteq R_0$ and so $O_l(A_0) = R_0$ follows. Similarly if B_0 is a \mathbb{Z} -invariant right R_0 -ideal which is a left R_0 -submodule in Q_0 , then $O_r(B_0) = R_0$.

Theorem 1 Let $R = \bigoplus_{n \in \mathbb{Z}} R_n$ be a strongly graded ring of type \mathbb{Z} . Then the following conditions are equivalent:

- (1). R_0 is a \mathbb{Z} -invariant maximal order in Q_0 .
- (2). R is a maximal order in Q.
- (3). R is a graded maximal order in Q^g .

Proof.

(1) \Rightarrow (2) Let S be an over-ring of R such that $aSb \subseteq R$ for some regular $a, b \in Q$. We may assume that $a, b \in R$. Put T = R + RaS, an over-ring of R with $Tb \subseteq R$. We claim T = R. Since TbR is an ideal of R, it follows from Lemma 1 that $TbQ^g = TbRQ^g = uQ^g = Q^g u$ for some regular element $u \in Q^g$ since Q^g is a principal ideal ring. For any $t \in T$, $tu \in TbQ^g = Q^g u$ and so $t \in Q^g$. Thus $T \subseteq Q^g$ follows. For any $n \in \mathbb{Z}$, let $C_n(T) = \{a_n \in Q_0R_n \mid \exists t = a_n + a_{n_1} + \cdots + a_{n_l} \in T \text{ such that } n > n_i(1 \le i \le l)\} \cup \{0\}$, which is a left and right R_0 -submodule of Q^g . It is easy to see that $C_n(T) = R_nC_0(T) = C_0(T)R_n$. So, in particular, $C_0(T)$ is a \mathbb{Z} -invariant over-ring of R_0 . To prove that $C_0(T)$ is a left R_0 -ideal, write $b = b_k +$ (the lower degree parts). Since $Tb \subseteq R$, it follows that $R_0 \supseteq C_{-k}(T)b_k = C_0(T)R_{-k}b_k$ and so $R_0 \supseteq C_0(T)R_{-k}b_kR_0$. Hence $C_0(T)$ is a left R_0 -ideal of R_0 and is a right R_0 -submodule. Thus, by Lemma 4, $O_l(C_0(T)) = R_0$ and $R_0 \subseteq C_0(T) \subseteq O_l(C_0(T)) = R_0$ since $C_0(T)$ is an over-ring of R_0 , which implies $R_0 = C_0(T)$ and $R_n = R_nC_0(T) = C_n(T)$ for all $n \in \mathbb{Z}$. Hence T = R follows. Since $aS \subseteq RaS \subseteq T = R$, the left version of the above proof shows that S = R. Hence R is a maximal order in Q.

 $(2) \Rightarrow (3)$ This is a special case.

(3) \Rightarrow (1) Let A_0 be a \mathbb{Z} -invariant ideal of R_0 . By Lemma 2, A_0R is a graded ideal of R. Thus it follows from [6, Lemma 1.5] that $RO_l(A_0) = O_l(A_0R) = R = O_r(RA_0) = O_r(A_0)R$ and so $O_l(A_0) = R_0 = O_r(A_0)$. Hence R_0 is a \mathbb{Z} -invariant maximal order in Q_0 .

Finally, we give some examples of maximal orders R such that R_0 are \mathbb{Z} -invariant maximal orders but not maximal orders.

Let R_0 be a hereditary Noetherian prime ring (an HNP ring for short) with its quotient ring Q_0 satisfying the following conditions:

- (a). There is a cycle M_{01}, \ldots, M_{0n} $(n \ge 2)$ so that $X = M_{01} \cap \cdots \cap M_{0n}$ is a maximal invertible ideal of R_0 .
- (b). Any maximal ideal different from $M_{0i}(1 \le i \le n)$ is invertible.

See [1] and [5] for examples of HNP rings satisfying (a) and (b) (the simplest example is $\begin{pmatrix} \mathbb{Z} & p\mathbb{Z} \\ \mathbb{Z} & \mathbb{Z} \end{pmatrix}$, where p is a prime number). Let

$$R = \bigoplus_{n \in \mathbb{Z}} X^n (R_n = X^n)$$

a strongly graded ring of type \mathbb{Z} , and A_0 be an eventually idempotent ideal of R_0 . Then there are $M_{0i_1}, \ldots, M_{0i_r}$ $i_j \in \{1, \ldots, n\}$ (r < n) which are the full set of maximal ideals containing A_0 . Thus A_0 is not a \mathbb{Z} -invariant ideal by [4, Theorem 14].

Hence R_0 is a \mathbb{Z} -invariant maximal order since an ideal of R_0 is \mathbb{Z} -invariant if and only if it is invertible by [3, Theorem 2.9 and 4.2].

Acknowledgements: This work was done while the first author was visiting Universitas Gadjah Mada (UGM) Yogyakarta, Indonesia by the support from the Department of Mathematics, UGM and The Ministry of Research and Higher Education. He would like to thank algebra's staff at the Department of Mathematics UGM for their kind hospitality during the visit in October 2017.

References

- G.Q. Abbasi, S. Kobayashi, H. Marubayashi and A. Ueda, Non Commutative Unique Factorization Rings, Comm. in Algebra 19(1) (1991) 167-198.
- [2] A.W. Chatters and C.R. Hajarnavis, Rings with Chain Conditions, Research Notes in Mathematics 44, Pitman, London, (1980).
- [3] D. Eisenbud and J.C. Robson, Hereditary Noetherian Prime Rings, J. of Algebra, 16 (1) (1970) 86-104.
- K.R. Goodearl and R.B. Warfield, Simple Modules over Hereditary Noetherian Prime Rings, J. of Algebra 57 (1979) 82-100.
- [5] M. R. Helmi, H. Marubayashi and A. Ueda, Ore-Rees rings which are maximal orders, J. Math. Soc. Japan, 68 (1) (2016) 405-423.
- [6] H. Marubayashi, E. Nauwelaerts and F. Van Oystaeyen, Grade rings over arithmetical orders, Comm. in Algebra, 12 (6) (1984) 745-775.
- [7] J.C. Mc Connell and J.C. Robson, Noncommutative Noetherian Rings, Pure and Applied Mathematics, Wiley-Interscienc, New York, 1987.
- [8] H. Marubayashi and F. Van Oystaeyen, Prime Divisors and Noncommutative Valuation Theory, Lecture Notes in Mathematics 2059, Springer, 2012.
- [9] C. Nastasescu and F. Van Oystaeyen, Graded Ring Theory, North-Holland Mathematics Library 28, North-Holland Amsterdam, 1982.
- [10] F. Van Oystaeyen and A. Verschoren, Relative Invariants of Rings, Pure and Applied Mathematics 86, Marcel Dekker, 1984.

Communicated by Naruhiko Aizawa

- ¹ Dept. Mathematics, Naruto University, Japan. E-mail: marubayahide@gmail.com,
- ^{2,3,4} Dept. Mathematics, Universitas Gadjah Mada, Indonesia
- ² E-mail: swahyuni@ugm.ac.id
- ³ E-mail: ind wijayanti@ugm.ac.id
- ⁴ E-mail: iwan.ernanto@ugm.ac.id