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Abstract.

Let R = ⊕n∈ZRn be a strongly graded ring of type Z. In [6], it is shown that if R0

is a maximal order, then so is R. We define a concept of Z-invariant maximal order
and show R0 is a Z-invariant maximal order if and only if R is a maximal order. We
provide examples of R0 which are Z-invariant maximal orders but not maximal orders.

1 Introduction Let R = ⊕n∈ZRn be a strongly graded ring of type Z, where Z is the
ring of integers. We always assume that R0, the degree zero part, is a prime Goldie ring
with its quotient ring Q0 and C0 = {c ∈ R0 | c is regular in R0}, which is a regular Ore set
of R and the ring of fractions Qg of R at C0 has the following properties:

(i). Qg = ⊕n∈ZQ0Rn(Q0Rn = RnQ0).

(ii). Qg = Q0[X,X−1, σ] for some automorphism σ of R0 ([6, 1.3]) and so

(iii). Qg is a left and right principal ideal ring.

We denote by the quotient ring of R by Q. We define a concept of Z-invariant maximal
order in order to get the following three conditions are equivalent: (i) R0 is a Z-invariant
maximal order (ii) R is a maximal order (iii) R is a graded maximal order. We give ex-
amples of R0 which are Z-invariant maximal orders but not maximal orders. We refer the
readers to [7] or [8] and [9] for some elementary properties and some definitions of order
theory and graded ring theory which are not mentioned in the paper.

2 The proof of Theorem Since Qg is the quotient ring of R at C0, the following lemma
follows from the proof of [2, Theorem 1.31].

Lemma 1 Let A be an ideal of R. Then AQg = QgA.

Lemma 2 Let A0 be an ideal of R0. Then the right ideal A0R is an ideal of R if and only
if RnA0 = A0Rn for all n ∈ Z. In this case, A0R is a graded ideal.

Proof. If A0R is an ideal of R, then RnA0R−n ⊆ A0, that is, RnA0 ⊆ A0Rn for all n ∈ Z
and so R−nA0 ⊆ A0R−n also follows. Hence RnA0 = A0Rn. Conversely if RnA0 = A0Rn

for all n ∈ Z, then it is easy to see that A0R is an ideal of R.
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Definition 1

(1). A left and right R0-submodule A0 of Q0 is called Z-invariant if RnA0 = A0Rn for all
n ∈ Z.

(2). R0 is called a Z-invariant maximal order in Q0 if Ol(A0) = R0 = Or(A0) for any
nonzero Z-invariant ideal A0 of R0.

(3). (10, p.205) R is a graded maximal order in Qg if for each graded over-ring S such that
R ⊆ S ⊆ Qg and aSb ⊆ R for some regular homogeneous elements a, b ∈ Qg, it follows
R = S.

Lemma 3

(1). Let A0 and B0 be Z-invariant left and right R0-submodules in Q0. Then A0B0 is
Z-invariant.

(2). Let A0 be a Z-invariant left R0-ideal which is a right R0-submodule in Q0 and B0 be a
Z-invariant right R0-ideal which is a left R0-submodule in Q0. Then C0 = {r0 ∈ R0 |
A0r0 ⊆ R0} and D0 = {r0 ∈ R0 | r0B0 ⊆ R0}) are both Z-invariant.

Proof.

(1). It is clear.

(2). R0 ⊇ A0C0 impliesR0 ⊇ RnA0C0R−n = A0RnC0R−n for all n ∈ Z and soRnC0R−n ⊆
C0 and also R−nC0Rn ⊆ C0. Hence C0Rn = RnC0 for all n ∈ Z, that is, C0 is Z-
invariant. Similarly D0 is Z-invariant.

Lemma 4 The following conditions are equivalent.

(1). R0 is a Z-invariant maximal order.

(2). Ol(A0) = R0 for each Z-invariant left R0-ideal A0 which is a right R0-submodule in Q0,
and Or(B0) = R0 for each Z-invariant right R0-ideal B0 which is a left R0-submodule
in Q0.

Proof.
(2)⇒ (1) This is a special case.
(1) ⇒ (2) Let A0 be a Z-invariant left R0-ideal which is a right R0-submodule in Q0 and
let C0 = { r0 ∈ R0 | A0r0 ⊆ R0 }. Then A0C0 is a Z-invariant ideal of R0 by Lemma 3.
Thus R0 = Ol(A0C0) ⊇ Ol(A0) ⊇ R0 and so Ol(A0) = R0 follows. Similarly if B0 is a
Z-invariant right R0-ideal which is a left R0-submodule in Q0, then Or(B0) = R0.

Theorem 1 Let R = ⊕n∈ZRn be a strongly graded ring of type Z. Then the following
conditions are equivalent:

(1). R0 is a Z-invariant maximal order in Q0.

(2). R is a maximal order in Q.

(3). R is a graded maximal order in Qg.
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Proof.
(1) ⇒ (2) Let S be an over-ring of R such that aSb ⊆ R for some regular a, b ∈ Q. We
may assume that a, b ∈ R. Put T = R + RaS, an over-ring of R with Tb ⊆ R. We claim
T = R. Since TbR is an ideal of R, it follows from Lemma 1 that TbQg = TbRQg =
uQg = Qgu for some regular element u ∈ Qg since Qg is a principal ideal ring. For any
t ∈ T , tu ∈ TbQg = Qgu and so t ∈ Qg. Thus T ⊆ Qg follows. For any n ∈ Z, let
Cn(T ) = {an ∈ Q0Rn | ∃t = an + an1 + · · ·+ anl

∈ T such that n > ni(1 ≤ i ≤ l)} ∪ {0},
which is a left and right R0-submodule of Qg. It is easy to see that Cn(T ) = RnC0(T ) =
C0(T )Rn. So, in particular, C0(T ) is a Z-invariant over-ring of R0. To prove that C0(T )
is a left R0-ideal, write b = bk+ (the lower degree parts). Since Tb ⊆ R, it follows that
R0 ⊇ C−k(T )bk = C0(T )R−kbk and so R0 ⊇ C0(T )R−kbkR0. Hence C0(T ) is a left R0-ideal
since R−kbkR0 is a non-zero ideal of R0 and is a right R0-submodule. Thus, by Lemma
4, Ol(C0(T )) = R0 and R0 ⊆ C0(T ) ⊆ Ol(C0(T )) = R0 since C0(T ) is an over-ring of R0,
which implies R0 = C0(T ) and Rn = RnC0(T ) = Cn(T ) for all n ∈ Z. Hence T = R follows.
Since aS ⊆ RaS ⊆ T = R, the left version of the above proof shows that S = R. Hence R
is a maximal order in Q.
(2) ⇒ (3) This is a special case.
(3) ⇒ (1) Let A0 be a Z-invariant ideal of R0. By Lemma 2, A0R is a graded ideal of R.
Thus it follows from [6, Lemma 1.5] that ROl(A0) = Ol(A0R) = R = Or(RA0) = Or(A0)R
and so Ol(A0) = R0 = Or(A0). Hence R0 is a Z-invariant maximal order in Q0.

Finally, we give some examples of maximal orders R such that R0 are Z-invariant max-
imal orders but not maximal orders.

Let R0 be a hereditary Noetherian prime ring (an HNP ring for short) with its quotient
ring Q0 satisfying the following conditions:

(a). There is a cycle M01, . . . ,M0n (n ≥ 2) so that X = M01 ∩ · · · ∩M0n is a maximal
invertible ideal of R0.

(b). Any maximal ideal different from M0i(1 ≤ i ≤ n) is invertible.

See [1] and [5] for examples of HNP rings satisfying (a) and (b) ( the simplest example is(
Z pZ
Z Z

)
, where p is a prime number). Let

R = ⊕n∈ZX
n(Rn = Xn)

a strongly graded ring of type Z, and A0 be an eventually idempotent ideal of R0. Then
there are M0i1 , . . . ,M0ir ij ∈ {1, . . . , n}( r < n) which are the full set of maximal ideals
containing A0. Thus A0 is not a Z-invariant ideal by [4, Theorem 14].

Hence R0 is a Z-invariant maximal order since an ideal of R0 is Z-invariant if and only
if it is invertible by [3, Theorem 2.9 and 4.2].
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