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Abstract. With respect to the sufficient statistics in the transformed exponential
family based on a continuous probability distribution, we examine a misuse that the
sufficient statistics ought to be distributed with a k-dimensional exponential family
where k is the dimension of the sufficient statistics. Under the irreducibility of the
sufficient statistics, we define two types of the transformed exponential family, i.e.,
regular and pseudo, so that the misuse is made explicit.

1 Introduction The exponential and curved exponential families cover a wide range of

distributions ([4], [5], [14], [15]), and are widely used for generalized mixed linear models

[7], and for methods in information geometry ([1], [2], [3], [6], [8], [13]).

Under the framework of information geometry, it is well assumed that the sufficient

statistics are linearly independent in order to make a one-to-one correspondence between

the parameter and the density [12] and that the dimension of parameters are equal to the

dimension of the sufficient statistics which are linearly independent under the duality in

the statistical manifold. [10] showed that linear independence of the score function is not

a sufficient condition for a distribution to belong to the curved exponential family, showing

that there exists a gap between the parameter space and the observations.

When we regard an original probability distribution as one of the exponential family,

we should carefully examine the assumptions in the exponential family. In this article, we

show that an appropriate transformation from an original probability distribution of random

variable X to a natural exponential family is restricted by a structure corresponding to the

expectation µ = E(X) with respect to the original distribution at most. Thus an extended

structure corresponding up to the sufficient statistics with respect to the original distribution
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implies that the transformed exponential family contradicts the assumption of the natural

exponential family in the viewpoint of the probability measure of the sufficient statistics.

We define a transformed regular/pseudo- exponential family with respect to the trans-

formation from a continuous probability distribution and examine whether the sufficient

statistics in the transformed exponential family is distributed with the k-dimensional expo-

nential family where k is the dimension of the sufficient statistics. A vague application to

the sufficient statistics implies a misuse in the exponential family.

2 A misuse in the sufficient statistics Let (Ω,F ,P) be a probability space and a

random vector X on the probability space (Ω,F ,P) induces a probability space (Rm,Bm, µ)

by µ(A) = P(X−1(A)) = P{X ∈ A} for any A ∈ Bm. Symbolically we may write it

µ = P◦X−1 and this µ is called the “probability distribution measure” of X and we denote

the probability space (Rm,Bm, µ) as (X ,A, µ) and the probability (density) function of X

as f(x|ξ) where ξ is an s-dimensional parameter with respect to the probability distribution

of X, i.e.,

(1) f(x|ξ), x ∈ Rm, ξ ∈ Rs,

where x = (x1, x2, . . . , xm)T , ξ = (ξ1, ξ2, . . . , ξs)T , and the notation T means the transpose.

Now we consider a transformed expression of f(x|ξ) as regarding an exponential family

and we denote it as f(y|η), i.e.,

(2) f(y|η) = exp [C(x) + 〈η(ξ), y(x)〉 − φ(ξ)] ,

where the notation 〈, 〉 means the inner product, η(ξ) = (η1(ξ), . . . , ηk(ξ))T is a transformed

parameter, y = y(x) = (y1(x), . . . , yk(x))T is a transformed variable, φ(ξ) is the normal-

izing term, and C(x) is a constant term. We call (2) a transformed exponential family for

the original density (1) and we define the following three kind of types in (2):

(3)



(Case A) f(y|η) =
∑

x:y(x)=y
f(x|ξ),

(Case B) f(y|η) dy =

(B1) f(x|ξ)
∣∣∣∣∂x

∂y

∣∣∣∣ dy under
∣∣∣∂x

∂y

∣∣∣ 6= 0,

(B2) f(y(x)|η) dx under
∣∣∣∂x

∂y

∣∣∣ = 0.



DEFINITION 2.1 We define the above three types (3) of the transformed exponential fam-

ily as follows:

• (Case A) a transformed discrete exponential family,

• (Case B1) a transformed regular exponential family,

• (Case B2) a transformed pseudo-exponential family.

Remark that Case A is for a discrete random vector X and it does not need one-to-

one correspondence between X and Y and Case B1 requires a one-to-one correspondence

between X and Y in order to the non-zero Jacobian
∣∣∣∂x

∂y

∣∣∣ 6= 0, so that both dimensions

are equal, i.e., k = m and the sufficient statistics Y is a k-dimensional random vector

distributed with a k-dimensional probability distribution.

Note that, because of k 6= m in Case B2, the sufficient statistics Y (X) is a k-dimensional

random vector distributed with
∣∣∣∂x

∂y

∣∣∣ = 0, so that we should recognize that the sufficient

statistics Y in the transformed pseudo-exponential family does not correspond to X one-

on-one.

We consider a k-dimensional canonical exponential family as follows:

(4) g(z|θ) = exp [C(z) + 〈θ, z〉 − φ(θ)] , z ∈ Rk, θ ∈ Rk.

It is obvious that the sufficient statistics is a k-dimensional z. Under the framework of in-

formation geometry for the density (4), it is well assumed that k+1 functions {1, z1, . . . , zk}

are linearly independent in order to make a one-to-one correspondence between θ and g(z|θ)

for arbitrary θ ∈ Rk, where 1 is the identity mapping. For example, [12] defined the linear

independence for the density (2) as follows:

DEFINITION 2.2 The functions {1, y1(x), . . . , yk(x)} in (2) are said to be linearly inde-

pendent if the following holds: a0 +
∑k

j=1 ajyj(x) = 0 for any x in an open set if and only

if a0 = · · · = ak = 0.

Here we consider the following definition for Definition 2.2:



DEFINITION 2.3 The functions {y1(x), . . . , yk(x)} in (2) are said to be reducible if the

following holds: for some yi(x), there exists constants di, cj (j 6= i) ∈ R such that

yi(x) =
∑
j 6=i

cj yj(x) + di ,

where at least one of {cj} is not zero. If the functions {y1(x), . . . , yk(x)} are not reducible

for arbitrary yi(x), then we call them irreducible.

We have a relationship between Definition 2.2 and Definition 2.3 in the following lemma:

LEMMA 2.1 If the functions {y1(x), . . . , yk(x)} in (2) are irreducible for any x in an open

set, then they satisfy the linear independence in Definition 2.2.

Proof: If the functions {y1(x), . . . , yk(x)} are irreducible, the condition a0+
∑k

j=1 ajyj(x) =

0 in Definition 2.2 can be regarded as follows:〈
1, a0 e0 +

k∑
j=1

(
ajyj(x)

)
ej

〉
= 0,

where the vector 1 = (1, 1, . . . , 1) and ej is the (j + 1)-th unit vector (j = 0, 1, . . . , k).

Suppose that there exists some aiyi(x) 6= 0. Then aiyi(x) = −a0−
∑

j 6=i ajyj(x). If ai 6= 0,

then

yi(x) = −a0

ai
−

∑
j 6=i

aj

ai
yj(x),

i.e., yi(x) is reducible and this is a contradiction, so that ai = 0 and this also contradicts the

assumption aiyi(x) 6= 0. Thus we have a0 = a1y1(x) = · · · = akyk(x) = 0 and ∀yi(x) 6= 0

for any x in an open set, so that a0 = a1 = · · · = ak = 0. Therefore the functions

{1, y1(x), . . . , yk(x)} satisfy the linear independence in Definition 2.2. 2

Therefore, as a matter of principle, we suppose that k+1 functions {1, y1(x), . . . , yk(x)}

in (2) are irreducible. We show two typical examples as follows:

EXAMPLE 2.1 In the multinomial distribution with k + 1 cells, the probability function is

f(x|ξ) =
(

n

x1 x2 · · · xk+1

) k+1∏
i=1

pxi
i



where x = (x1, . . . , xk), ξ = (p1, . . . , pk),
∑k+1

i=1 pi = 1 (pi ≥ 0 (i = 1, . . . , k + 1)), and

where ∀xi ≥ 0,
∑k+1

i=1 xi = n, and each integer xi (i = 1, . . . , k) is the frequency in the i-th

cell respectively. For f(x|ξ), the transformed exponential family is

f(y|η) = exp

{
C(x) +

k∑
i=1

ηi(ξ)yi(x) − φ(ξ)

}

with respect to Y = Y (X), where yi(x) = xi, ηi(ξ) = log(ξi/(1 −
∑k

j=1 ξj), (i = 1, . . . , k),

φ(ξ) = −n log

1 −
k∑

j=1

ξj

 , and C(x) = log
(

n

x1 x2 · · · xk+1

)
.

Here the linear independence of {1, y1(x), . . . , yk(x)} holds.

EXAMPLE 2.2 In the normal distribution N(µ, σ2) whose density is

f(x|ξ) =
1√

2πσ2
exp

{
− 1

2σ2
(x − µ)2

}
(x ∈ R)

with ξ = (µ, σ) for −∞ < µ < ∞ and 0 < σ < ∞, the transformed exponential family is

f(y|η) = exp

{
C(x) +

2∑
i=1

ηi(ξ) yi(x) − φ(ξ)

}

with respect to Y = Y (X), where η1(ξ) = µ/σ2, η2(ξ) = −1/(2σ2), y1(x) = x, y2(x) = x2,

φ(ξ) =
µ2

2σ2
+ log(σ), and C(x) = log

1√
2π

.

Here the region {(y1(x), y2(x)) : x ∈ R} is equivalent to a parabolic curve in the 2-

dimensional space and the functions {1, y1(x), y2(x)} are irreducible by Definition 2.3. This

example is of (Case B2) in the relationship (3) unless the parameter σ2 is supposed to be

known.

Since it is well known that the exponential family includes a lot of probability distri-

butions, we are apt to confuse the sufficient statistics in the exponential family with the

sufficient statistics distributed with the exponential family. The following theorem shows a

solution to the above confusion.



THEOREM 2.1 Let X be an m-dimensional random vector distributed with a probabil-

ity density function (1) and, for a transformed exponential family (2) of X, let the k-

dimensional random vector Y (X) = (Y (1)(X), Y (2)(X)) which is the sufficient statistics

in (2). Suppose that these k + 1 functions {1, y(1),y(2)} are irreducible. There exists three

cases as follows: (Case 1) k < m, (Case 2) k = m, (Case 3) k > m. In Case 1, since

we have a loss of information based on X, it contradicts that Y is the sufficient statistics.

In Case 2, since X and Y have a one-to-one correspondence, this is a transformed regular

exponential family. In Case 3, since Y (1)(X) is regarded as corresponding to X under

k > m and the dimension of Y (2)(X) is k − m, there exists a measurable and irreducible

function u such that y(2) = u
(
y(1)

)
and the conditional density of y(2) given y(1) is the

indicator function, i.e., this is a transformed pseudo-exponential family.

Proof: Both Case 1 and Case 2 are obvious, so we prove Case 3 only.

Since the joint density h(y(1), y(2)) of Y is equivalent to the transformed exponential

family (2), i.e.,

h(y(1), y(2)) = f(y|η) = exp{C(x) + 〈η(1)(ξ), y(1)〉 + 〈η(2)(ξ), y(2)〉 − φ(ξ)},

where η(ξ) = (η(1)(ξ), η(2)(ξ)) and the dimension of η(1)(ξ) is m, we have the following

representation:

f(y|η) = f(y(2) |y(1)) f(y(1)),

where the marginal of Y (1) and the conditional density of Y (2) given Y (1) are

f(y(1)) = exp{〈”(1)(‰), y(1)〉 − φ(‰)}
Z

exp{C(x) + 〈”(2)(‰), y(2)〉}dy(2),

f(y(2) |y(1)) =
exp{C(x) + 〈”(2)(‰), y(2)〉}

R

exp{C(x) + 〈”(2)(‰), y(2)〉} dy(2)
(5)

under the assumption that 0 <
∫

exp{C(x) + 〈η(2)(ξ), y(2)〉}dy(2) < ∞. Since these k + 1

functions {1, y(1), y(2)} are irreducible, Y (1) = Y (1)(X) corresponds X one-on-one, and

Y (2) = Y (2)(X) is a measurable function of X, any element of Y (2) is not of a linear

combination of Y (1), so that there exists a measurable function u such that Y (2) = u(Y (1))

and {1, y(1), u(y(1))} are irreducible.

For the joint density function h(y(1), y(2)) with the relationship y(2) = u(y(1)), it holds

that h(y(1), y(2)) = δu(y(1))(y(2)) h(y(1)), where h(y(1)) is the marginal function of Y (1),



the function δu(y(1))(y(2)) is the Dirac’s delta function at the point u(y(1)), that is, the

conditional density function of Y (2) given y(1) is the delta function δu(y(1))(Y
(2)):

(6) h(y(2) |y(1)) =
h(y(1), y(2))

h(y(1))
=

δu(y(1))(y(2)) h(y(1))
h(y(1))

= δu(y(1))(y
(2)),

so that, since the conditional probability function (5) is equivalent to the conditional (6),

we have the following relationship:

δu(y(1))(y
(2)) =

exp{C(x) + 〈η(2)(ξ), y(2)〉}∫
exp{C(x) + 〈η(2)(ξ), y(2)〉}dy(2)

(7)

=

{
1, if Y (2) = u(y(1)),
0, if Y (2) 6= u(y(1)).

If Y (2) = u(y(1)), then the numerator is equivalent to the denominator in (7), i.e.,

exp{C(x) + 〈η(2)(ξ), y(2)〉} =
∫

exp{C(x) + 〈η(2)(ξ), y(2)〉}dy(2),

which implies that the probability distribution of Y (2) should be one point distribution

because the based random variable X is a continuous distribution. If Y (2) 6= u(y(1)), then

the numerator in (7) should be zero, i.e.,

exp{C(x) + 〈η(2)(ξ), y(2)〉} = 0,

and this is impossible, but we need not directly consider the conditional density of Y (2)

given Y (1) in this situation and the transformed density is zero, i.e., f(y|η) = 0.

Therefore, for the sufficient statistics Y = (Y (1), Y (2)), the transformed density (2) is

represented by

(8) f(y|η) =

{
f(y(1)), if Y (2) = u(y(1)),
0, if Y (2) 6= u(y(1)),

where f(y(1)) = exp{C(x) + 〈η(1)(ξ), y(1)〉 + 〈η(2)(ξ), u(y(1))〉 − φ(ξ)}, so that we can

regard the second element Y (2) as either a random variable with one point distribution

or a non-random (deterministic) variable given u(y(1)). In the equation (8), the left-hand

side is the density of k-dimensional random variable and the right-hand side is that of

m-dimensional random variable (k > m), which implies that the k-dimensional sufficient

statistics Y is distributed with a transformed pseudo-exponential family in (3). 2



Although the conditional expectation and variance of Y (2) given Y (1) in Case 3 are

E[Y (2) |Y (1)] = u(Y (1)) and V [Y (2) |Y (1)] = 0,

the expectation and variance of Y (2) are

E[Y (2)] = E
[
E[Y (2) |Y (1)]

]
= E[u(Y (1))],

V [Y (2)] = V
[
E[Y (2) |Y (1)]

]
+ E

[
V [Y (2) |Y (1)]

]
= V [u(Y (1))],

and the covariance between Y (1) and Y (2) is Cov[Y (1), Y (2)] = Cov[Y (1), u(Y (1))]. On the

other hand, based on the structure of exponential family, we have the following relationships

with respect to the sufficient statistics Y :

E[Y ] =
∂φ(ξ)
∂η(ξ)

=
(

E[Y (1)]
E[Y (2)]

)
,

V [Y ] =
∂2φ(ξ)

∂η(ξ) ∂η(ξ)T
=

(
V [Y (1)] Cov[Y (1), Y (2)]

Cov[Y (1),Y (2)]T V [Y (2)]

)
,

so that the transformed exponential family (2) with respect to k-dimensional Y = (Y (1),Y (2))

has the same properties with respect to the usual exponential family (4) with respect to

Z = (Z1, . . . , Zk) on the surface, but the transformed pseudo-exponential family in (3) is

not like the k-dimensional exponential density (4) because the pseudo-density is reduced to

the density (8) with respect to only Y (1). Thus, even if the sufficient statistics Y (X) in

the transformed exponential family (2) is irreducible, it might belong to the k-dimensional

transformed pseudo-exponential family.

For the m-dimensional normal distribution N(µ,Σ), the density is represented as fol-

lows:

f(x|—,Σ) = exp

(

˙

Σ−1—, x
¸

−
1

2

˙

Σ−1x, x
¸

−
˙

Σ−1—, —
¸

+ log (|Σ|)
2

)

1

(2π)m/2
,

so that the sufficient statistics Y in the transformed exponential family under unknown

parameters µ and Σ is

Y = (X1, . . . , Xm, X2
1 , . . . , X2

m, X1X2, . . . , Xm−1Xm)T

whose dimension is 2m + (m2 − m)/2. Note that [9] studied the circular mechanism as a

limitation to the transformed exponential family.



3 Conclusion In this article, we considered a misuse of the sufficient statistics in the

transformed exponential family from a continuous probability distribution based on the lin-

ear independence of the sufficient statistics which are assumed in the information geometry.

We defined new two terms, the transformed regular exponential family and the transformed

pseudo-exponential family and we determined properties of the sufficient statistics under

the irreducibility of the transformed exponential family. We recognized an importance of

the Jacobian matrix with respect to the transformation of random variables.

We hope that it is decreasing to misuse that the sufficient statistics in a transformed

pseudo-exponential family ought to be distributed with the k-dimensional regular exponen-

tial family where k is the dimension of the sufficient statistics.
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