
Scientiae Mathematicae Japonicae 1

Yosuke Kakiuchi, Kosuke Kato and Hideki Katagiri

Abstract. In the manufacturing process, it is necessary to schedule the processing
order of machines in order to improve productivity. The scheduling can be modeled as
an open shop scheduling problem. However, it has a constraint that multiple machines
cannot process the same job at the same time, and is not suitable for cooperative
works, such as software development or service engineering. In this paper, we propose
a novel model of scheduling for cooperative works, based on an open shop scheduling
problem. We also propose two formulations for the model to solve the problem with a
Satisfiability Modulo Theories (SMT) solver. This paper aims to expand the range of
the scheduling problem not only to manufacturing but also cooperative works.

1 Introduction
Scheduling is necessary in many situations in corporate activities, such as production,

transportation and personnel allocation in projects. Particularly, in the manufacturing pro-
cess, production scheduling is carried out to improve productivity. Production scheduling
can be formulated into the scheduling of how to assign multiple machines to multiple jobs,
and there are several types of problems, according to the assumption of the problem.

The problem assuming the fixed processing order of machines is called a flow shop
scheduling problem. In this problem, all machines must be assigned in the same order in
each job. It is suitable for flow works in which the order of process is not changed. Next, if
the processing order is determined for each job, it is called a job shop scheduling problem.
In a job shop scheduling problem, the processing order is different for each machine, but
it is given in advance. Furthermore, the scheduling under the assumption that the order
of processing is chosen arbitrarily and can be assigned in any order is called an open shop
scheduling problem. This problem is a model for a job such that you can complete the
process in any order.

Those three scheduling models have a constraint that multiple machines cannot process
the same job at the same time. They are suitable for manufacturing, but are not suitable
for software development or service engineering, because there is a possibility that one job
can be jointly performed by multiple workers at the same time, such as jointly testing a
software module or distributively performing a service on different sites.

In this paper, we propose a novel model of scheduling that relaxes the constraint rather
than the open shop scheduling problem. In contrast to traditional scheduling models men-
tioned above, the proposed model allows one worker to be assigned to the same job multiple
times, and allows multiple workers to be assigned to same job at the same time. Namely,
the proposed model enables workers to do a task cooperatively. From the viewpoint of the
flexibility and extensibility, we formulate the proposed model based on SMT (Satisfiability

2010 Mathematics Subject Classification. Primary: 90B35, 90C11; Secondary: 90B70, 68M20 .
Key words and phrases. Scheduling, open shop scheduling problem, satisfiability modulo theories,

minimum makespan, mixed 0-1 integer programming .

Received January 24, 2017 ; revised March 11, 2017, March 17, 2017

MODELING AND SOLVING OPEN SHOP COOPERATIVE TASK
SCHEDULING PROBLEMS BASED

ON SATISFIABILITY MODULO THEORIES

2

J1 J2 . . . Jm
M1 4 5 . . . 8
M2 7 6 . . . 3
...

...
...

. . .
...

Mn 8 4 . . . 2

Table 1: An example of processing time tij

Modulo Theories) rather than mathematical programming. We also propose two formula-
tions for the model to solve the problem with a SMT solver. SMT solvers cannot be only
used in the field of semiconductor design automation, but also can be used in constraint sat-
isfaction problem. We iteratively apply an SMT solver to obtain an (approximate) optimal
solution.

This paper is organized as follows: Section 2 introduces the open shop scheduling prob-
lem, and refers to several preceding studies. In section 3, we propose the scheduling model
and two formulations of the model. In section 4, we state the solution algorithm and the
implementation, and we also show the experimental results. Finally, section 5 concludes
this paper.

2 Preliminaries

2.1 Open Shop Scheduling Problem
The open shop scheduling problem is a scheduling to decide the way to assign n machines
{M1,M2, . . . ,Mi, . . . ,Mn} to m jobs {J1, J2, . . . , Jj , . . . , Jm}. Given tij units of processing
time by the machine Mi for the job Jj , the open shop problem is a problem of searching a
solution optimizing an objective. Table 1 shows an example of tij .

The open shop problem is presented in the literature [1], and also has been studied as
some variants, changing some assumptions. Brucker et al. [5] presented the complexity
for open shop scheduling with transportation delay. Masuda et al. [2] discussed the case
where bi-criteria are considered for a two-machine open shop scheduling problem. They
also developed a parametric linear programming problem for a two-machine open shop
scheduling problem.

The open shop problem can be formulated as integer linear programming. Once it is
formulated as an integer programming problem, it can be solved using a powerful solver.
However, in the integer linear programming formulation, we cannot deal with propositional
logic formulas directly. Hence, it is generally necessary to introduce an auxiliary variable
and use indirect expression. In this paper, we adopt Satisfiability Modulo Theories (SMT)
formulation. To be more specific, we formulate it as a constraint satisfaction problem based
on SMT and obtain an optimal solution by solving it with the SMT solver iteratively. Since
most SMT solvers can deal with both propositional logic and linear arithmetic, we shall
describe the problem using both of them. In subsequent formulations, it is required that
logical expressions become true to satisfy constraints.

One of the formulations for the open shop problem introduces the time sij and fij
at which machine Mi starts and finishes job Jj respectively. The sij and fij are integer
variables. If we assume that the objective function is minimizing the maximum of the
completion time, the problem formulation is as follows:

Yosuke Kakiuchi, Kosuke Kato and Hideki Katagiri

3

Figure 1: Example of violating expression (4)

Figure 2: Example of violating expression (5)

minimize : max{CTi; 0 ≤ i ≤ n}(1)

subject to : sij ≥ 0, ∀i ∀j(2)

fij = sij + tij , ∀i ∀j(3) ∧
∀i′ ̸=i

(fi′j ≤ sij) ∨ (fij ≤ si′j), ∀i ∀j(4)

∧
∀j′ ̸=j

(fij′ ≤ sij) ∨ (fij ≤ sij′), ∀i ∀j,(5)

where CTi means the completion time of Mi, that is, CTi = max{fij ; 1 ≤ j ≤ m}. ∨
is a logical disjunction operator whose result is true when at least one of the operands
(conditions) is true. ∧ (large

∧
) is a logical conjunction operator whose result is true when

all of the operands (conditions) are true.
Each expression means that:

• Expression (2) guarantees that sij may not be assigned negative values.

• Expression (3) is a definition of fij .

• Expression (4) prohibits overlapping of multiple workers at the same time for the same
job. Figure 1 shows an example of violating the expression (4) due to overlapping of
J2. We assume that i′ = 1, i = 2 and j = 2. Since J2 on M1 and J2 on M2 are
overlapped, the truth value of the condition f12 ≤ s22 is false, and that of f22 ≤ s12
is false. Thus, the truth value of expression (4) becomes false in this situation. As in
this example, it is false if there is even one overlap in which the same job is assigned
to different machines at the same time, otherwise it is true.

• Expression (5) prohibits overlapping of multiple jobs at the same time for the same
workers. Figure 2 shows an example of violating the expression (5) due to overlapping
on M1. We assume that i = 1, j′ = 1 and j = 2. Since J1 and J2 on M1 are
overlapped, the truth value of the condition f11 ≤ s12 is false, and that of f12 ≤ s11
is false. Thus, the truth value of the expression (5) becomes false in this situation.
As in this example, it is false if there is even one overlap in which two or more jobs
are assigned to the same machine at the same time, otherwise it is true.

Depending on the situation, we can adopt the maximum of the completion time (makespan)
[7], the sum of the completion time [4, 6] or the sum of the tardiness [8, 9] as the objective
function.

Modeling and Solving Open Shop Cooperative Task Scheduling Problems
Based on Satisfiability Modulo Theories

4

There are some previous studies with respect to the application of SMT solvers into
scheduling problems. In one of the previous studies [10], the authors try to model and solve
a resource-constrained project scheduling problem with an SMT solver. They demonstrated
that an SMT solver is capable of solving a scheduling problem and have good performance.
The differences are two points: we model the scheduling problem for co-operative tasks as
two different formulations, while they modeled a resource-constrained project scheduling
problem. Moreover, we describe the algorithm to optimize the solution for the problem and
show the results, while they only outline the optimization.

3 A model of a scheduling problems for co-operative tasks

3.1 Problem
We propose a novel scheduling model for co-operative tasks, based on the open shop

scheduling problem. The problem statement is the following.

(Scheduling model for co-operative tasks)
For each worker i and each job j, given efficiency Eij and required work for completion Cj ,
determine the schedule which satisfies that for each job j, the total amount of work exceeds
Cj .

∑
1≤i≤n

tij · Eij ≥ Cj , ∀j,

where tij is the total amount of time the worker i is assigned to the job j. The efficiency
Eij is an integer constant, and means how much work can be achieved per unit time. For
example, E23 = 6 means that worker 2 achieves 6 amount of work for job 3 per unit time. If
the worker 2 is assigned to job 3 during 4 unit times, she/he achieves 3× 4 = 12 amount of
work . The required work for completion Cj is an integer constant, and means the amount
of work required for completion of job j.

This model allows one worker to be assigned to the same job multiple times, and allows
multiple workers to be assigned to same job at the same time. Only thing that the model
prohibit is to assign one worker to two or more jobs. However, the model is too loose and
causes frequent job switching. This is inconsistent with actual personnel allocation. We
therefore introduce the starting cost Bij which must be spent when the worker is newly
assigned to a job. The implementation of Bij is different among formulations.

3.2 Formulation
We formulate the model proposed in the previous section in two ways using 0-1 decision

variables and continuous ones. One has no restrictions on job switching, and the other has
a restriction. Since we assume the usage of some SMT solver, we formulate them in the
form of combining linear arithmetic and propositional logic.

3.2.1 Formulation 1
The first formulation allows unlimited job switching. Let Eij be the efficiency of worker

i for job j, Cj be required work for completion for job j, and T be a time frame. We
introduce boolean decision variables xt

ij as follows:

xt
ij =

{
1 (if worker i is assigned to job j at time t)

0 (otherwise)

Yosuke Kakiuchi, Kosuke Kato and Hideki Katagiri

5

xt
ij determines on/off of assignment at time t. The following constraints are defined from

the problem statement:

minimize : max{CTi; 0 ≤ i ≤ n}(6)

subject to : xt
ij ∈ {0, 1}, ∀i ∀j ∀t(7) ∑

1≤j≤m

xt
ij ≤ 1, ∀i ∀t(8)

∑
1≤i≤n

∑
1≤t≤T

f(i, j, t) ≥ Cj , ∀j,(9)

where CTi is the completion time of worker i, and the function f(i, j, t) is as follows:

f(i, j, t) =

{
xt
ij · (Eij −Bij) ((t = 0) ∨ (xt

ij ̸= xt−1
ij))

xt
ij · Eij (otherwise),

that is, when newly assigning to a job, calculate it with a work amount per unit time with
penalty (i.e. Bij), and when continuing to assign to a job, calculate it without penalty (i.e.
Eij). Short-circuit evaluation is applied to the above OR condition.

3.2.2 Formulation 2
In the second formulation, we limit the number of assignments to each job. It is assumed

that a worker can be assigned to each job up to A times. Under this assumption, we
introduce integer decision variables saij and fa

ij which is a start time and an end time of the
a-th assignment to job j, respectively.

The following constraints are defined from the problem statement:

minimize : max{CTi; 0 ≤ i ≤ n}(10)

subject to : 0 ≤ saij ≤ T, ∀i ∀j ∀a(11)

0 ≤ fa
ij ≤ T, ∀i ∀j ∀a(12)

saij ≤ fa
ij , ∀i ∀j ∀a(13) ∧

(j′,a′)̸=(j,a)

(sa
′

ij′ ≤ saij) ∧ (fa′

ij′ ≤ saij) ∨(14)

(fa
ij ≤ sa

′

ij′) ∧ (fa
ij ≤ fa′

ij′), ∀i ∀j ∀a∑
1≤i≤n

(∑
1≤a≤A

(fa
ij − saij) · Eij − g(i, j, a)

)
≥ Cj ,∀j,(15)

where CTi is the completion time of worker i, and the function g(i, j, a) is as follows:

g(i, j, a) =

{
0 (saij = fa

ij)

Bij (otherwise)

3.2.3 A solution example and assignments to decision variables
Here, we show examples of formulas for n = 3 and m = 3. Table 2 shows efficiency Eij

and job switching penalty Bij . Table 3 shows the required work for completion Cij .

Modeling and Solving Open Shop Cooperative Task Scheduling Problems
Based on Satisfiability Modulo Theories

6

J1 J2 J3

M1 3/2 6/3 7/3
M2 2/2 2/1 9/3
M3 4/3 3/2 7/3

Table 2: Example of efficiency Eij/Bij

J1 J2 J3

32 58 64

Table 3: Example of required work for completion Cj

Fig. 3 shows a line chart of a solution example such that all constarints are satisfied.
As a result, T = 10. We calculate the amount of work for checking whether the constraint
is satisfied:

Job 1: (2 · 2− 2) + (4 · 8− 3) + (4 · 1− 3) = 2 + 29 + 1 = 32
Job 2: (7 · 10− 3) + (2 · 1− 1) = 67 + 2 = 69
Job 3: (9 · 7− 3) + (7 · 1− 3) = 60 + 4 = 64

Formulation 1
In formulation 1, the assignments corresponding to Figure 3 are as follows:

x0
12 = x1

12 = · · · = x9
12 = 1,

x0
23 = x1

23 = · · · = x6
23 = 1, x7

21 = x8
21 = 1, x9

22 = 1,
x0
31 = x1

31 = · · · = x7
31 = 1, x8

33 = 1, x9
31 = 1,

and all other xa
ij = 0.

Formulation 2
In formulation 2, if A = 3, the assignments corresponding to Figure 3 are as follows:

(s112, f
1
12) = (0, 10)

(s123, f
1
23) = (0, 7), (s121, f

1
21) = (7, 9), (s122, f

1
22) = (9, 10)

(s131, f
1
31) = (0, 8), (s133, f

1
33) = (8, 9), (s231, f

2
31) = (9, 10)

and all other saij = fa
ij .

4 Experiment

4.1 Implementation
We used SMT (Satisfiability Modulo Theories) solvers to solve scheduling problems. The

SMT solvers are usually used in the field of semiconductor design automation, such as logic
synthesis, symbolic simulation, formal verification, and so on. They exploit both linear
arithmetic and propositional logic, so that they has flexibility to describe various kinds of
problems. In this paper, we use Z3 by Microsoft Research [11] as the SMT solver. It is the
solver that shows high performance even in some bench-mark tests.

The SMT solver merely returns a feasible solution, that is, a solution which satisfies all
of given constraints. Therefore, the time to obtain one of feasible solutions using the SMT
solver tends to be less than that to obtain one of optimal solutions using a mathematical

Yosuke Kakiuchi, Kosuke Kato and Hideki Katagiri

7

Figure 3: Example of scheduling for a solution

programming solver. On the other hand, the quality of the solution obtained by the SMT
solver is not guaranteed in the sense of the objective function value (e.g. makespan). In
order to obtain a feasible solution with guaranteed quality, we add a constraint that the
objective function value is less than or equal to a given value t to the problem and optimize
a solution by solving the problem with the SMT solver iteratively. To be more specific, the
SMT solver first solves a constraint satisfaction problem with the additional constraint for
a certain t. Depending on the result, after the value of t is increased or decreased, the solver
solves it again. This increase (or decrease) value is reduced by half.

Algorithm 1 shows iterative application of the solver we propose.
The procedure optimizes the time frame t so that t becomes the minimum makespan.

The function solve() executes the solver and returns the result as a return value. UNSAT
means that the solver can never discover a satisfying assignment. SAT means that the
solver can discover one satisfying assignment.

The initial time frame Ti is enough small not to satisfy the constraints. Hence, the
solver always returns UNSAT on the first call of solve(P (t)). It causes an increase of time
frame t by the half of ta. As long as the result is UNSAT , t will continue to increase, but
eventually P (t) will be satisfiable, and solve(P (t)) will return SAT . If the result is SAT ,
the solver also returns an assignment which satisfies the constraints. The assignment is one
of the available scheduling, but it is not necessarily optimal. We need to find the boundary
between SAT and UNSAT . In other words, we have to find t where the result changes
between SAT and UNSAT when t is changed by 1.

4.2 Experimental Results
The above algorithm was implemented as a Python program. We also used Z3py, the Z3

Python user interface. The computation environment is the following; CPU: Intel Core i5
Processor 2.5 GHz，RAM: 8GB, OS: Windows 7 (64bit).

Table 4 shows experimental results on formulation 1 and 2 (A = 1, 2) for each problem.
The first column indicates the number of workers and jobs. The second column indicates
the minimum of makespan, or T in the formulations, among the solutions such that the
constraint is satisfied. The other columns mean elapsed times in each formulation. “Total”
is the sum of the time for all iterations. “Round” is the average time of an iteration.
“t.o.” indicates that the experiment was canceled because the running time exceeded 10,000
seconds.

Overall, formulation 2 in A = 1 can obtain a solution in a shorter time than formula-
tion 1. Because of the limitation to A (job switching), formulation 2 can obtain only an
approximate solution, but it can obtain all the same results as an exact solution in the
experiments. The problem instances in formulation 1 becomes difficult to solve for m = 5
or more, because formulation 1 always tries to find and return the optimal solution. Fig-

Modeling and Solving Open Shop Cooperative Task Scheduling Problems
Based on Satisfiability Modulo Theories

8

Algorithm 1: An algorithm of itrative constraint solving

Data:
P (t): problem with time frame t.
Ti: an initial value of the time frame.
Ta: an increments of the time frame.

Result:
t: the minimum makespan.
the last a solution is the best scheduling.

t← Ti

ta ← Ta

prevResult← UNSAT
while true do

result← solve(P (t))
if (prevResult, result) == (UNSAT,UNSAT) then

t← t+ ta
else if (prevResult, result) == (UNSAT, SAT) then

if ta = 1 then break ;
else

t← t− ta

else if (prevResult, result) == (SAT,UNSAT) then
if ta = 1 then break ;
else

t← t+ ta

else if (prevResult, result) == (SAT, SAT) then
t← t− ta

ta ← ⌈ta/2⌉
prevResult← result

ure 4 shows elapsed time for each makespan in formulation 1. The solver terminated and
returned SAT , when the makespan was set to 13 or less. On the other hand, it returned
UNSAT , when the makespan was set to 14 or more. Moreover, when the makespan was
set from 13 to 16, each elapsed time for constraint solving was more than 2,500 seconds.
As this figure shows, in formulation 1, problem instances around the optimal makespan are
hard to solve, because the constraint is much tighter. It is essential that computational
cost of open shop scheduling problem grows exponentially. However, if we set up a time
limit, an approximate solution can be obtained sooner. The dotted line in Figure 4 shows
an example in the case where the time limit is given as 250 seconds. In this situation, the
solution for the makespan of 19 can be obtained as approximate solution.

As a method to find an approximate solution of optimization based on SMT, MAX-SAT
[12] is often used. In a MAX-SAT problem, a solver tries to satisfy as many logical clauses
as possible. The solution which the solver has found cannot make the constraint true, but
most of constraint is satisfied. However, in the scheduling problem in this paper, not the
truth value of the constraint but the constant value in the constraint must be optimized.
For this reason, it is difficult to apply MAX-SAT straightforwardly.

Rather, in the case of the scheduling problem assuming software development, each
clause of constraint to be satisfied, such as makespan, human resource, or tardiness, has
priority. If the solver cannot solve the constraint, it tries to solve more relaxed one after

Yosuke Kakiuchi, Kosuke Kato and Hideki Katagiri

9

Min. Form.2:Time(sec.)
(#Worker, make Form.1:Time(sec.) A = 1 A = 2
#Job) span Total Round Total Round Total Round

(2,2) 14 21.05 3.12 0.07 0.01 0.78 0.13
(2,3) 17 486.59 81.10 0.15 0.03 758.23 126.37
(2,4) 18 6089.47 1014.91 0.62 0.10 5324.71 887.45
(2,5) 22 t.o. t.o. 11.23 1.87 t.o. t.o.
(3,2) 9 9.44 1.57 0.09 0.02 63.12 10.52
(3,3) 10 149.92 24.99 0.22 0.04 272.95 45.49
(3,4) 10 505.06 84.18 0.6 0.1 343.70 57.28
(3,5) 14 t.o. t.o. 265.99 44.33 t.o. t.o.
(4,2) 6 5.05 0.84 0.1 0.02 333.66 55.61
(4,3) 7 43.88 8.78 0.73 0.15 t.o. t.o.
(4,4) 8 864.57 172.91 43.04 8.61 t.o. t.o.
(4,5) 10 8430.86 1405.14 5196.04 866.01 t.o. t.o.
(5,2) 5 1.78 0.30 0.14 0.02 3010.57 501.76
(5,3) 6 76.17 12.70 16.48 2.75 t.o. t.o.
(5,4) 6 442.59 73.77 26.37 4.40 t.o. t.o.
(5,5) 8 4447.72 889.54 5974.65 1194.93 t.o. t.o.

Table 4: Experimental Results

ignoring clauses of low priority. We guess that more practical scheduling results will be
obtained by doing so.

5 Conclusion
In this paper, we presented a novel model for co-operative tasks based on open shop

scheduling problem. We also proposed two types of formulations for the model: one al-
lows unlimited job switching and another limits job switching. The model is suitable for
scheduling in software development or service engineering, and contributes to automation
of the scheduling in the fields. The experimental results show that it is costly to obtain
exact solutions, but it requires less cost to find an approximate solution.

For further study, it is required to develop more efficient formulation and algorithms.
Solvers are powerful, but in some cases it is better to use a customized algorithm. It is also
important to find not optimal but good solution, because the solution is enough useful if it
is used as a reference.

References

[1] Teofilo Gonzalez and Sartaj Sahni: “Open Shop Scheduling to Minimize Finish Time”, Journal
of the ACM Vol. 23 Issue 4, pp. 665-679, 1976.

[2] Teruo Masuda and Hiroaki Ishii: “Two machine open shop scheduling problem with bi-
criteria”, Discrete Applied Mathematics Vol.52 Issue 3, pp. 253-259, 1994.

[3] Ellur Anand and Ramasamy Panneerselvam, “Literature Review of Open Shop Scheduling
Problems”, Intelligent Information Management vol.7, pp. 33-52, 2015.

[4] Peter Brucker, Johann Hurink, Bernd Jurisch, Birgit Wstmann: “A branch & bound algorithm
for the open-shop problem”, Discrete Applied Mathematics, Vol. 76, pp. 43-59, 1997.

[5] Peter Brucker, Sigrid Knust, T.C. Edwin Cheng and Natalia V. Shakhlevich: “Complexity
Results for Flow-Shop and Open-Shop Scheduling Problems with Transportation Delays”,
Annals of Operations Research vol.129, pp.81-106, 2004.

[6] Eric Taillard: “Benchmarks for basic scheduling problems”, European Journal of Operational
Research, Vol.64, pp. 278-285, 1993.

[7] Moshe Dror: “Openshop Scheduling with Machine Dependent Processing Times”, Discrete
Applied Mathematics, Vol. 39, pp. 197-205, 1992.

Modeling and Solving Open Shop Cooperative Task Scheduling Problems
Based on Satisfiability Modulo Theories

10

Figure 4: Formulation 1: result of for 3 workers and 5 jobs and approximate solutions

[8] Jorge M.S. Valentea, Rui A.F.S. Alvesb: “Heuristics for the single machine scheduling problem
with quadratic earliness and tardiness penalties”, Computers & Operations Research, Vol. 35,
pp.36963713, 2008.

[9] Seyed Hossein Hashemi Doulabi: “A Mixed Integer Linear Formulation for the Open Shop
Earliness-Tardiness Scheduling Problem”, Applied Mathematical Sciences, Vol. 4, pp. 1703-
1710, 2010.

[10] Carlos Anstegui, Miquel Bofill, Miquel Palah, Josep Suy and Mateu Villaret: “Satisfiability
Modulo Theories: An Efficient Approach for the Resource-Constrained Project Scheduling
Problem”, in proceedings of 9th Symposium of Abstraction, Reformulation, and Approxima-
tion, 2011.

[11] Leonardo de Moura and Nikolaj Bjrner: “Z3: An efficient SMT solver”, in prodeedings of
14th International Conference of Tools and Algorithms for the Construction and Analysis of
Systems (TACAS 2008), pages 337-340, 2008.

[12] Pierre Hansen, Brigitte Jaumard: “Algorithms for the maximum satisfiability problem”, Com-
puting, vol. 44, no. 4, p.279-303, 1990.

Communicated by Hiroaki Ishii

Yosuke Kakiuchi, Kosuke Kato and Hideki Katagiri

Hideki Katagiri

Kanagawa University

3-27-1 Rokkakubashi, Yokohama, 221-8686 Japan

E-mail: katagiri@kanagawa-u.ac.jp

Yosuke Kakiuchi

Hiroshima Institute of Technology

2-1-1 Miyake, Saeki-ku, Hiroshima 731-5193 Japan

E-mail: y.kakiuchi.du@it-hiroshima.ac.jp

Kosuke Kato

Hiroshima Institute of Technology

2-1-1 Miyake, Saeki-ku, Hiroshima 731-5193 Japan

E-mail: k.katoh.me@it-hiroshima.ac.jp

