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Abstract.

The purpose of the present paper is to investigate a hypergroup arising from irre-
ducible characters of a compact group G and a closed subgroup G0 of G with index
[G : G0] < +∞. The convolution of this hypergroup is introduced by inducing irre-
ducible representations of G0 to G and by restricting irreducible representations of G
to G0. The method of proof relies on character formulae of induced representations of
compact groups and of Frobenius’ reciprocity theorem.

1. Introduction

One of the most challenging problems in the theory of hypergroups is a definite expla-
nation of their algebraic structure. To solve this problem completely might be an utopian
undertaking. But there are various ways to tackle parts of the problem. The approaches
available are based on constructing new hypergroups from known ones. Much work has
been done in the direction of extending hypergroups and of establishing new hypergroup
structures defined by hypergroup actions ([HK1]). In succession of the authors’ publications
on semi-direct product hypergroups ([HK2]) and on hypergroup structures arising from cer-
tain dual objects of a hypergroup ([HK3]). The next step taken in the present paper is the
supply of a hypergroup structure on the set of irreducible characters of a compact group G
together with a closed subgroup G0 of G. It turns out that the resulting hypergroup struc-
ture can be characterized in terms of an invariance condition on characters of irreducible
representations of G0.

The method chosen in order to establish this result depends on the application of a
character formula ([H]), of Frobenius’ reciprocity theorem ([F]) for compact groups, and on
the recently developed character theory for induced representations of hypergroups ([HKY]).

It should be mentioned that further progress in the research on the structure of hyper-
groups is on its way to publication : an extension of the notion of hyperfields ([HKKK]) to
not necessarily finite hypergroups ([HKTY1]), and a generalization of the present work to
compact hypergroups and their closed subhypergroups ([HKTY2]).

A brief layout of the paper seems to be in order.

In Section 2 the preliminaries are restricted to the main notions of hypergroup theory
([BH], [J]) ; they can also be picked up from the introduction of [HK1]. In the latter
reference semi-direct product hypergroups have been introduced.

Section 3 is devoted to defining admissible pairs (G, G0) formed by a second countable
compact group G and a closed subgroup G0 of G of finite index, and to studying properties of
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these pairs (Lemma 3.5, 3.7, 3.9 and 3.10). In the Theorem of the section the set K(Ĝ∪ Ĝ0)
of characters of the union Ĝ∪ Ĝ0 of the duals of G and G0 is characterized as a hypergroup
by the fact that (G, G0) is an admissible pair. Applications of the Theorem are given to
symmetric groups (Corollary 3.14) and to semi-direct product groups (Corollary 3.17).

Section 4 contains a variety of examples comprising those given in [SW]. An extended
list of examples can be visualized by Frobenius diagrams, a graph-theoretical illustration
related to Dynkin diagrams and Coxeter graphs ([GHJ]). In all examples (except Example
4.6) the convolution of the hypergroup K(Ĝ ∪ Ĝ0) is described explicitly.

2. Preliminaries

For a locally compact space X we shall mainly consider the subspaces Cc(X) and C0(X)
of the space C(X) of continuous functions on X which have compact support or vanish
at infinity respectively. By M(X), M b(X) and Mc(X) we abbreviate the spaces of all
(Radon) measures on X, the bounded measures and the measures with compact support
on X respectively. Let M1(X) denote the set of probability measures on X and M1

c (X) its
subset M1(X) ∩ Mc(X). The symbol δx stands for the Dirac measures in x ∈ X.

A hypergroup (K, ∗) is a locally compact space K together with a convolution ∗ in
M b(K) such that (M b(K), ∗) becomes a Banach algebra and that the following properties
are fulfilled.

(H1) The mapping
(µ, ν) 7−→ µ ∗ ν

from M b(K) × M b(K) into M b(K) is continuous with respect to the
weak topology in M b(K).

(H2) For x, y ∈ K the convolution δx ∗ δy belongs to M1
c (K).

(H3) There exists a unit element e ∈ K with

δe ∗ δx = δx ∗ δe = δx

for all x ∈ K, and an involution

x 7−→ x−

in K such that
δx− ∗ δy− = (δy ∗ δx)−

and
e ∈ supp(δx ∗ δy) if and only if x = y−

whenever x, y ∈ K.

(H4) The mapping
(x, y) 7−→ supp(δx ∗ δy)

from K × K into the space C(K) of all compact subsets of K furnished
with Michael topology is continuous.

A hypergroup (K, ∗) is said to be commutative if the convolution ∗ is commutative.
In this case (M b(K), ∗,−) is a commutative Banach ∗-algebra with identity δe. There
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is an abundance of hypergroups and there are various constructions (polynomial, Sturm-
Liouville) as the reader may learn from the pioneering papers on the subject and also from
the monograph [BH].

Let (K, ∗) and (L, ◦) be two hypergroups with units eK and eL respectively. A continuous
mapping ϕ : K → L is called a hypergroup homomorphism if ϕ(eK) = eL and ϕ is the unique
linear, weakly continuous extension from M b(K) to M b(L) such that

ϕ(δx) = δϕ(x), ϕ(δ−x ) = ϕ(δx)− and ϕ(δx ∗ δy) = ϕ(δx) ◦ ϕ(δy)

whenever x, y ∈ K. If ϕ : K → L is also a homeomorphism, it will be called an isomorphism
from K onto L. An isomorphism from K onto K is called an automorphism of K. We denote
by Aut(K) the set of all automorphisms of K. Then Aut(K) becomes a topological group
equipped with the weak topology of M b(K). We call α an action of a locally compact group
G on a hypergroup H if α is a continuous homomorphism from G into Aut(H). Associated
with the action α of G on H one can define a semi-direct product hypergroup K = H oα G,
see [HK1].

If the given hypergroup K is commutative, its dual K̂ can be introduced as the set of
all bounded continuous functions χ 6= 0 on K satisfying∫

K

χ(z)(δ−x ∗ δy)(dz) = χ(x)χ(y)

for all x, y ∈ K. This set of characters K̂ of K becomes a locally compact space with
respect to the topology of uniform convergence on compact sets, but generally fails to be
a hypergroup. When K̂ is a hypergroup K is called a strong hypergroup. When the dual

K̂ of a strong hypergroup K is also strong and ̂̂
K ∼= K holds K is called a Pontryagin

hypergroup.

3. Hypergroups related to admissible pairs

Let G be a compact group which satisfies the second axiom of countability and let Ĝ
be the set of all equivalence classes of irreducible representations of G. Then Ĝ is (at most
countable) discrete space which we write explicitly as

Ĝ = {π0, π1, · · · , πn, · · · },

where π0 is the trivial representation of G. We denote by Repf(G) the set of equivalence
classes of finite-dimensional representations of G. For π ∈ Repf(G) we consider the normal-
ized character of π given by

ch(π)(g) =
1

dim π
tr(π(g)),

for all g ∈ G.
Put

K(Ĝ) = {ch(π) : π ∈ Ĝ}.

Then K(Ĝ) is known to be a discrete commutative hypergroup with unit ch(π0) = π0.

Let G0 be a closed subgroup of G such that the index [G : G0] is finite. We write
Ĝ0 = {τ0, τ1, · · · , τn, · · · }, where τ0 is the trivial representation of G0.
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The following is well-known fact.

Lemma 3.1

(1) ch(πi ⊗ πj) = ch(πi)ch(πj) for πi, πj ∈ Repf(G).

(2) ch(resG
G0

π) = resG
G0

ch(π) for π ∈ Repf(G).

Lemma 3.2

(1) [Character formula ] (see Hirai [H]) For τ ∈ Repf(G0),

ch(indG
G0

τ)(g) =
∫

G

ch(τ)(sgs−1)1G0(sgs−1)ωG(ds).

(2) [Frobenius’ reciprocity theorem] (see Folland [F]) For τ ∈ Ĝ0 and for π ∈ Ĝ,

[indG
G0

τ : π] = [τ : resG
G0

π],

where [ : ] denotes the multiplicity of representations.

Remark ch(indG
G0

τ) = indG
G0

ch(τ), see [HKY], where

indG
G0

ch(τ) :=
∫

G

ch(τ)(sgs−1)1G0(sgs−1)ωG(ds).

Definition On the set

K(Ĝ ∪ Ĝ0) := {(ch(π), ◦), (ch(τ), •) : π ∈ Ĝ, τ ∈ Ĝ0}

we define a convolution ∗ as follows. For πi, πj , π ∈ Ĝ and τi, τj , τ ∈ Ĝ0,

(ch(πi), ◦) ∗ (ch(πj), ◦) := (ch(πi)ch(πj), ◦),
(ch(π), ◦) ∗ (ch(τ), •) := (ch(resG

G0
π)ch(τ), •),

(ch(τ), •) ∗ (ch(π), ◦) := (ch(τ)ch(resG
G0

π), •),
(ch(τi), •) ∗ (ch(τj), •) := (ch(indG

G0
(τi ⊗ τj)), ◦).

We want to check the associativity relations of the convolution in the following cases. When-
ever reference to a particular representation π is not needed, we abbreviate (ch(π), •) by •
and (ch(π), ◦) by ◦. Hence our task will be to verify the subsequent formulae :

(A1) (◦ ∗ ◦) ∗ ◦ = ◦ ∗ (◦ ∗ ◦),
(A2) (• ∗ ◦) ∗ ◦ = • ∗ (◦ ∗ ◦),
(A3) (• ∗ •) ∗ ◦ = • ∗ (• ∗ ◦) and
(A4) (• ∗ •) ∗ • = • ∗ (• ∗ •).

Lemma 3.3 The equalities (A1), (A2) and (A3) hold without further assumptions. For
πi, πj , πk, π ∈ Ĝ and τi, τj , τ ∈ Ĝ0,

(A1) ((ch(πi), ◦) ∗ (ch(πj), ◦)) ∗ (ch(πk), ◦) = (ch(πi), ◦) ∗ ((ch(πj), ◦) ∗ (ch(πk), ◦)).
(A2) ((ch(τ), •) ∗ (ch(πi), ◦)) ∗ (ch(πj), ◦) = (ch(τ), •) ∗ ((ch(πi), ◦) ∗ (ch(πj), ◦)).
(A3) ((ch(τi), •) ∗ (ch(τj), •)) ∗ (ch(π), ◦) = (ch(τi), •) ∗ ((ch(τj), •) ∗ (ch(π), ◦)).
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Proof (A1) is clear because K(Ĝ) has a hypergroup structure.

(A2) For τ ∈ Ĝ0 and πi, πj ∈ Ĝ,

((ch(τ), •) ∗ (ch(πi), ◦)) ∗ (ch(πj), ◦)
=(ch(τ)ch(resG

G0
πi), •) ∗ (ch(πj), ◦)

=(ch(τ)ch(resG
G0

πi)ch(resG
G0

πj), •)
=(ch(τ)(resG

G0
ch(πi))(resG

G0
ch(πj)), •).

On the other hand,

(ch(τ), •) ∗ ((ch(πi), ◦) ∗ (ch(πj), ◦))
=(ch(τ), •)) ∗ ((ch(πi)ch(πj), ◦)
=(ch(τ)resG

G0
(ch(πi)ch(πj)), •)

=(ch(τ)(resG
G0

ch(πi))(resG
G0

ch(πj)), •).

(A3) For τi, τj ∈ Ĝ0 and π ∈ Ĝ,

((ch(τi), •) ∗ (ch(τj), •)) ∗ (ch(π), ◦)
=(ch(indG

G0
(τi ⊗ τj)), ◦) ∗ (ch(π), ◦)

=(ch(indG
G0

(τi ⊗ τj))ch(π), ◦).

For every g ∈ G,

(ch(indG
G0

(τi ⊗ τj))ch(π))(g)

=ch(indG
G0

(τi ⊗ τj)(g)ch(π)(g)

=
∫

G

ch(τi ⊗ τj)(sgs−1)1G0(sgs−1)ωG(ds)ch(π)(g)

=
∫

G

(ch(τi)ch(τj))(sgs−1)ch(π)(g)1G0(sgs−1)ωG(ds)

=
∫

G

ch(τi)(sgs−1)ch(τj)(sgs−1)ch(π)(sgs−1)1G0(sgs−1)ωG(ds).

On the other hand,

(ch(τi), •) ∗ ((ch(τj), •) ∗ (ch(π), ◦))
=(ch(τi), •) ∗ (ch(τj)ch(resG

G0
π), •)

=(ch(indG
G0

(τi ⊗ τj ⊗ resG
G0

π)), ◦).

For each g ∈ G,

ch(indG
G0

(τi ⊗ τj ⊗ resG
G0

π))(g)

=
∫

G

ch(τi ⊗ τj ⊗ resG
G0

π)(sgs−1)1G0(sgs−1)ωG(ds)

=
∫

G

(ch(τi)ch(τj)ch(resG
G0

π))(sgs−1)1G0(sgs−1)ωG(ds)

=
∫

G

ch(τi)(sgs−1)ch(τj)(sgs−1)ch(π)(sgs−1)1G0(sgs−1)ωG(ds).
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[Q.E.D.]

Definition Let (G,G0) be a pair of consisting of a compact group G and a closed subgroup
G0 of G. For g ∈ G0

X(g) := {s ∈ G : sgs−1 ∈ G0}.

We call (G, G0) an admissible pair if for any τ ∈ Ĝ0, any g ∈ G0 and any s ∈ X(g),

ch(τ)(sgs−1) = ch(τ)(g)

holds.

Lemma 3.4 If a compact group G together with a subgroup G0 of G with [G : G0] < +∞
forms an admissible pair, then the associativity relation (A4) holds.

Proof Assume that (G,G0) is an admissible pair. For τi, τj , τk ∈ Ĝ0 and g ∈ G0

((ch(τi), •) ∗ (ch(τj), •)) ∗ (ch(τk), •)
=(ch(indG

G0
(τi ⊗ τj)), ◦) ∗ (ch(τk), •)

=(indG
G0

ch(τi ⊗ τj)), ◦) ∗ (ch(τk), •)
=(resG

G0
(indG

G0
(ch(τi)ch(τj)))(ch(τk), •).

For g ∈ G0,

(indG
G0

(ch(τi)ch(τj)))(g)ch(τk))(g)

=
(∫

G

ch(τi)(sgs−1)ch(τj)(sgs−1)1G0(sgs−1)ωG(ds)
)

ch(τk)(g)

=
(∫

G

ch(τi)(g)ch(τj)(g)1G0(sgs−1)ωG(ds)
)

ch(τk)(g)

=
(∫

G

1G0(sgs−1)ωG(ds)
)

ch(τi)(g)ch(τj)(g)ch(τk)(g).

This implies the associativity relation (A4). [Q.E.D.]

Lemma 3.5 If the associativity relation (A4) holds for a compact group G and a subgroup
G0 of G with [G : G0] < +∞, then (G,G0) is an admissible pair.

Proof Assume that the associativity relation (A4) holds. Let τ0 be the trivial representa-
tion of Ĝ0. For τ ∈ Ĝ0 the associativity relation

((ch(τ0), •) ∗ (ch(τ0), •)) ∗ (ch(τ), •) = (ch(τ0), •) ∗ ((ch(τ0), •) ∗ (ch(τ), •))

holds.

((ch(τ0), •) ∗ (ch(τ0), •)) ∗ (ch(τ), •) = (ch(resG
G0

(indG
G0

τ0))ch(τ), •)

and
(ch(τ0), •) ∗ ((ch(τ0), •) ∗ (ch(τ), •)) = (ch(resG

G0
(indG

G0
τ)), •).

Then for g ∈ G0

ch(indG
G0

τ0)(g)ch(τ)(g) = ch(indG
G0

τ)(g).

Now
ch(indG

G0
τ0)(g) ≥ ωG(G0) > 0.
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Indeed by the character formula

ch(indG
G0

τ0)(g) =
∫

G

1G0(sgs−1)ωG(ds) = ωG(X(g)).

Since X(g) ⊃ G0, we see that ωG(X(g)) ≥ ωG(G0). By the assumption [G : G0] < +∞ we
obtain ωG(G0) = 1/[G : G0] > 0. Hence

ch(τ)(g) = (ch(indG
G0

τ0)(g))−1ch(indG
G0

τ)(g).

For s ∈ X(g)

ch(τ)(sgs−1) = (ch(indG
G0

τ0)(sgs−1))−1ch(indG
G0

τ)(sgs−1)

= (ch(indG
G0

τ0)(g))−1ch(indG
G0

τ)(g)
= ch(τ)(g).

Then (G,G0) is an admissible pair. [Q.E.D.]

Theorem Let G0 be a closed subgroup of a compact group G such that [G : G0] < +∞.
Then K(Ĝ ∪ Ĝ0) is a hypergroup if and only if (G,G0) is an admissible pair.

Proof The associativity relations (A1), (A2) and (A3) are a consequence of Lemma 3.3,
and (A4) holds if and only if (G,G0) is an admissible pair by Lemma 3.4 and Lemma
3.5. It is easy to check the remaining axioms of a hypergroup for K(Ĝ ∪ Ĝ0). The desired
conclusion follows. [Q.E.D.]

Remark 3.6

(1) The above K(Ĝ ∪ Ĝ0) is a discrete commutative (at most countable) hypergroup
such that the sequence :

1 −→ K(Ĝ) −→ K(Ĝ ∪ Ĝ0) −→ Z2 −→ 1

is exact.

(2) If G0 = G, then K(Ĝ ∪ Ĝ0) is the hypergroup K(Ĝ) × Z2.

(3) If G is a finite group and G0 = {e}, then K(Ĝ∪Ĝ0) is the hypergroup join K(Ĝ)∨Z2.

Lemma 3.7 If G is a compact Abelian group and G0 a closed subgroup of G with [G :
G0] < +∞. Then (G,G0) is always an admissible pair.

Proof The desired assertion clearly follows from the fact that sgs−1 = g for g ∈ G0 and
s ∈ G. [Q.E.D.]

Corollary 3.8 Let G be a compact Abelian group and G0 a closed subgroup of G with
[G : G0] < +∞. Then K(Ĝ ∪ Ĝ0) is a hypergroup.

Proof This assertion follows directly from the Theorem and Lemma 3.7. [Q.E.D.]

Lemma 3.9 If for each τ ∈ Ĝ0 there exists a representation τ̃ of G such that resG
G0

τ̃ = τ ,
then (G,G0) is an admissible pair.

Proof For τ ∈ Ĝ0, g ∈ G0 and s ∈ X(g),

ch(τ)(sgs−1) = ch(τ̃)(sgs−1) = ch(τ̃)(g) = ch(τ)(g).
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[Q.E.D.]

Corollary 3.10 Let G be a semi-direct product group H oα G0, where H is a finite group
and G0 is a finite group. Then K(Ĝ ∪ Ĝ0) is a hypergroup.

Proof For τ ∈ Ĝ0, put
τ̃((h, g)) = τ(g)

for (h, g) ∈ HoαG0 = G. Then τ̃ is a finite dimensional representation of G and resG
G0

τ̃ = τ.
By the Theorem and Lemma 3.9 we arrive at the desired conclusion.

[Q.E.D.]

Lemma 3.11 If for g ∈ G0 and s ∈ X(g) there exists t ∈ G0 such that tgt−1 = sgs−1,
then (G, G0) is an admissible pair.

Proof For τ ∈ Ĝ0, g ∈ G0 and s ∈ X(g),

ch(τ)(sgs−1) = ch(τ)(tgt−1) = ch(τ)(g).

[Q.E.D.]

Let Sn be the symmetric group of degree n.

Corollary 3.12 K(Ŝn ∪ Ŝn−1) (n ≥ 2) is a hypergroup.

Proof For g ∈ Sn−1, s ∈ X(g) such that s−1(n) = a,

sgs−1(n) = s(g(s−1(n))) = s(g(a)).

Since sgs−1 ∈ Sn−1, sgs−1(n) = n and s(g(a)) = n. Then g(a) = s−1(n) = a.
Put t = ss1 where s1 is a transposed permutation (a, n). Then we see that

tgt−1 = sgs−1

by the fact that for b such that b 6= a, s−1(b) 6= a and g(s−1(b)) 6= a hold. By the Theorem
and Lemma 3.11 we get the desired conclusion. [Q.E.D.]

Lemma 3.13 Let G0 and G1 be closed subgroups of G such that G0 ⊂ G1 ⊂ G. If (G1, G0)
and (G, G1) are admissible pairs, then (G,G0) is an admissible pair.

Proof Since (G1, G0) is an admissible pair, for τ ∈ Ĝ0 and g ∈ G0,

ch(indG1
G0

τ)(g) =
∫

G1

ch(τ)(sgs−1)1G0(sgs−1)dωG1(s)

=
∫

G1

ch(τ)(g)1G0(sgs−1)dωG1(s)

=
∫

G1

1G0(sgs−1)dωG1(s)ch(τ)(g)

= ch(indG1
G0

τ0)(g)ch(τ)(g),

where τ0 is the trivial representation of G0. Since

ch(resG1
G0

τ0)(g) ≥ ωG1(G0) > 0,
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we see that
ch(τ)(g) = (ch(indG1

G0
τ0)(g))−1ch(indG1

G0
τ)(g).

Since (G,G1) is an admissible pair and indG1
G0

τ0 ∈ Repf(G1), indG1
G0

τ ∈ Repf(G1), we have
for g ∈ G0 ⊂ G1 and s ∈ X(g),

ch(indG1
G0

τ0)(sgs−1) = ch(indG1
G0

τ0)(g)

and
ch(indG1

G0
τ)(sgs−1) = ch(indG1

G0
τ)(g).

Then we obtain

ch(τ)(sgs−1) = (ch(indG1
G0

τ0)(sgs−1))−1ch(indG
G0

τ)(sgs−1)

= (ch(indG1
G0

τ0)(g))−1ch(indG1
G0

τ)(g)

= ch(τ)(g)

[Q.E.D.]

Corollary 3.14 For natural numbers m and n such that m > n ≥ 1, K(Ŝm ∪ Ŝn) is a
hypergroup.

Proof This statement follows from the Theorem and Lemma 3.13 combined with Corollary
3.12. [Q.E.D.]

Let G0 be a closed normal subgroup of G. Then the coadjoint action α̂ of G on Ĝ0 is
defined by

α̂s(τ)(g) := τ(sgs−1)

for τ ∈ Ĝ0, g ∈ G0 and s ∈ G. If α̂s = id for all s ∈ G, we say that α̂ is trivial.

Lemma 3.15 Let G0 be a closed normal subgroup of G. The pair (G,G0) is an admissible
pair if and only if the coadjoint action α̂ is trivial.

Proof Assume that (G,G0) is an admissible pair. For g ∈ G0 it is clear that X(g) = G.
Then for τ ∈ Ĝ0

ch(τ)(sgs−1) = ch(τ)(g)

for all s ∈ G. This implies that

ch(α̂s(τ))(g) = ch(τ)(g)

for all g ∈ G0. Hence we obtain
α̂s(τ) ∼= τ

for τ ∈ Ĝ0. In fact α̂s is the identity on Ĝ0 which means that α̂ is trivial.
The converse is clear. [Q.E.D.]

Lemma 3.16 Let G0 be a closed normal commutative subgroup of G. The pair (G,G0)
is an admissible pair if and only if G ∼= G0 × (G/G0).

Proof Assume that (G, G0) is an admissible pair and sgs−1 6= g for g ∈ G0 and s ∈ X(g) =
G. Since Ĝ0 separates G0, there exists τ ∈ Ĝ0 such that

τ(sgs−1) 6= τ(g).
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This contradicts the assumption that (G,G0) is an admissible pair. But then for g ∈ G0

and s ∈ G
sgs−1 = g,

namely
sg = gs

holds. For g1, g2 ∈ G0 and s1, s2 ∈ G

(g1s1)(g2s2) = g1(s1g2)s2 = g1(g2s1)s2 = (g1g2)(s1s2).

This implies that G ∼= G0 × (G/G0).
The converse is clear by Lemma 3.15. [Q.E.D.]

Corollary 3.17 Let G be a semi-direct product group H oα G0 where H is a compact
Abelian group and G0 is a finite group. K(Ĝ∪ Ĥ) is a hypergroup if and only if the action
α is trivial, i.e. G = H × G0.

Proof We note that H is a closed normal subgroup of G and G/H ∼= G0. Then the
assertion follows from the Theorem together with Lemma 3.16. [Q.E.D.]

4. Examples

Associated with a pair (G, G0) of finite groups such that G ⊃ G0, we obtain a certain
finite graph D(Ĝ ∪ Ĝ0) by Frobenius’ reciprocity theorem. The set of vertices is

{(π, ◦), (τ, •) : π ∈ Ĝ, τ ∈ Ĝ0}

and the edge between (π, ◦) and (τ, •) is given by the multiplicity

mπ,τ := [indG
G0

(τ) : π] = [τ : resG
G0

π] 6= 0.

We call this graph D(Ĝ ∪ Ĝ0) a Frobenius diagram. Frobenius diagrams D(Ĝ ∪ Ĝ0) some-
times appear as Dynkin diagrams and sometimes as Coxter graphs ([GHJ]). V. S. Sunder
and N. J. Wildberger constructed in [SW] fusion rule algebras F(D) and hypergroups K(D)
associated with certain Dynkin diagrams of type An, D2n and so on. We give some examples
of K(Ĝ ∪ Ĝ0) which are compatible with Frobenius diagrams D(Ĝ ∪ Ĝ0).

4.1 The case that G = Z2 = {e, g} (g2 = e) and G0 = {e}.

χ0 χ1

τ0

K(Ĝ∪Ĝ0) = {(ch(χ0), ◦), (ch(χ1), ◦), (ch(τ0), •)}. Put γ0 = (ch(χ0), ◦), γ1 = (ch(χ1), ◦)
and ρ0 = (ch(τ0), •). Then the structure equations are

γ1γ1 = γ0, ρ0ρ0 =
1
2
γ0 +

1
2
γ1, γ1ρ0 = ρ0.

4.2 The case that G = Z3 = {e, g, g2} (g3 = e) and G0 = {e}.
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χ0 χ1

τ0

χ2

K(Ĝ ∪ Ĝ0) = {(ch(χ0), ◦), (ch(χ1), ◦), (ch(χ2), ◦), (ch(τ0), •)}. Put γ0 = (ch(χ0), ◦),
γ1 = (ch(χ1), ◦), γ2 = (ch(χ2), ◦) and ρ0 = (ch(τ0), •). Then the structure equations are

γ1γ1 = γ2, γ2γ2 = γ1, γ1γ2 = γ0,

ρ0ρ0 =
1
3
γ0 +

1
3
γ1 +

1
3
γ2, γ1ρ0 = ρ0, γ2ρ0 = ρ0.

4.3 The case that G is the symmetric group S3 = Z3 oα Z2 of degree 3 and G0 = Z2.

π0 π1

τ0 τ1

π2

1 12

1 1

K(Ĝ ∪ Ĝ0) = {(ch(πi), ◦), (ch(τj), •) : πi ∈ Ĝ, τj ∈ Ĝ0}. Put γi = (ch(πi), ◦) and ρj =
(ch(τj), •). Then the structure equations are

γ1γ1 = γ0, γ2γ2 =
1
4
γ0 +

1
4
γ1 +

1
2
γ2, γ1γ2 = γ2, ρ0ρ0 = ρ1ρ1 =

1
3
γ0 +

2
3
γ2,

ρ0ρ1 = ρ1ρ0 =
1
3
γ1 +

2
3
γ2, γ0ρ0 = ρ0, γ1ρ0 = ρ1, γ2ρ0 =

1
2
ρ0 +

1
2
ρ1,

γ0ρ1 = ρ1, γ1ρ1 = ρ0, γ2ρ1 =
1
2
ρ0 +

1
2
ρ1.

Remark K(Ẑ2 ∪ {̂e}) = K(A3), K(Ẑ3 ∪ {̂e}) = K(D4) and K(Ŝ3 ∪ Ẑ2) = K(A5) where
K(A3), K(D4) and K(A5) are Sunder-Wildberger’s hypergroups ([SW]) associated with
Dynkin diagrams of type A3, D4 and A5 respectively.

4.4 The case that G = Z4 = {e, g, g2, g3} (g4 = e) and G0 = Z2.

χ0 χ1

τ0 τ1

χ2 χ3
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K(Ĝ ∪ Ĝ0) = {(ch(χi), ◦), (ch(τj), •) : χi ∈ Ĝ, τj ∈ Ĝ0}. Put γi = (ch(χi), ◦) and
ρj = (ch(τj), •). Then the structure equations are

γ1γ1 = γ2, γ2γ2 = γ0, γ3γ3 = γ1, γ1γ2 = γ3, γ1γ3 = γ0, γ2γ3 = γ1,

ρ0ρ0 = ρ1ρ1 =
1
2
γ0 +

1
2
γ2, ρ0ρ1 = ρ1ρ0 =

1
2
γ1 +

1
2
γ3, γ0ρ0 = ρ0, γ1ρ0 = ρ1,

γ2ρ0 = ρ0, γ3ρ0 = ρ1, γ0ρ1 = ρ1, γ1ρ1 = ρ0, γ2ρ1 = ρ1, γ3ρ1 = ρ0.

4.5 The case that G = Z2 × Z2 = {(e, e), (e, g), (g, e), (g, g)} (g2 = e) and G0 = Z2.

χ0 χ1

τ0 τ1

χ2 χ3

K(Ĝ ∪ Ĝ0) = {(ch(χi), ◦), (ch(τj), •) : χi ∈ Ĝ, τj ∈ Ĝ0}. Put γi = (ch(χi), ◦) and
ρj = (ch(τj), •). Then the structure equations are

γ1γ1 = γ0, γ2γ2 = γ0, γ3γ3 = γ0, γ1γ2 = γ3, γ1γ3 = γ2, γ2γ3 = γ1,

ρ0ρ0 = ρ1ρ1 =
1
2
γ0 +

1
2
γ2, ρ0ρ1 = ρ1ρ0 =

1
2
γ1 +

1
2
γ3, γ0ρ0 = ρ0, γ1ρ0 = ρ1,

γ2ρ0 = ρ0, γ3ρ0 = ρ1, γ0ρ1 = ρ1, γ1ρ1 = ρ0, γ2ρ1 = ρ1, γ3ρ1 = ρ0.

Remark We note that Frobenius diagrams of 4.4 and 4.5 are same but their hypergroup
structures are different.

4.6 The case that G = S3 = Z3 oα Z2 and G0 = Z3.

χ0 χ1

τ0 τ1

π

τ2

K(Ĝ ∪ Ĝ0) is not a hypergroup by Corollary 3.17.

4.7 The case that G is the dihedral group D4 = Z4 oα Z2 and G0 = Z2.

π0 π1

τ0

π2π4 π3

τ1

1 1 2 1 1

1 1
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K(Ĝ ∪ Ĝ0) = {(ch(πi), ◦), (ch(τj), •) : πi ∈ Ĝ, τj ∈ Ĝ0}. Put γi = (ch(πi), ◦) and
ρj = (ch(τj), •). Then the structure equations are

γ1γ1 = γ0, γ2γ2 =
1
4
γ0 +

1
4
γ1 +

1
4
γ3 +

1
4
γ4, γ3γ3 = γ0, γ4γ4 = γ0,

γ1γ2 = γ2, γ1γ3 = γ4, γ1γ4 = γ3, γ2γ3 = γ2, γ2γ4 = γ2, γ3γ4 = γ1,

ρ0ρ0 = ρ1ρ1 =
1
4
γ0 +

1
4
γ1 +

1
2
γ2, ρ0ρ1 =

1
2
γ2 +

1
4
γ3 +

1
4
γ4,

γ1ρ0 = ρ0, γ2ρ0 =
1
2
ρ0 +

1
2
ρ1, γ3ρ0 = ρ1, γ4ρ0 = ρ1,

γ1ρ1 = ρ1, γ2ρ1 =
1
2
ρ0 +

1
2
ρ1, γ3ρ1 = ρ0, γ4ρ1 = ρ0.

4.8 The case that G is the alternating group A4 = (Z2 × Z2) oα Z3 of degree 4 and
G0 = Z3.

π0 π1

τ0

π2 π3

τ2τ1

11 11 1

1 1 1

3

K(Ĝ ∪ Ĝ0) = {(ch(πi), ◦), (ch(τj), •) : πi ∈ Ĝ, τj ∈ Ĝ0}. Put γi = (ch(πi), ◦) and ρj =
(ch(τj), •). Then the structure equations are

γ1γ1 = γ2, γ2γ2 = γ1, γ3γ3 =
1
9
γ0 +

1
9
γ1 +

1
9
γ2 +

2
3
γ3, γ1γ2 = γ0, γ1γ3 = γ3,

γ2γ3 = γ3, ρ0ρ0 = ρ1ρ2 =
1
4
γ0 +

3
4
γ3, ρ0ρ1 =

1
4
γ1 +

3
4
γ3, ρ0ρ2 =

1
4
γ2 +

3
4
γ3,

γ1ρ0 = ρ1, γ2ρ0 = ρ2, γ1ρ1 = ρ2, γ2ρ1 = ρ0,

γ3ρ0 = γ3ρ1 = γ3ρ2 =
1
3
ρ0 +

1
3
ρ1 +

1
3
ρ2.

4.9 The case that G is the symmetric group S4 = A4 oα Z2 of degree 4 and G0 = Z2.

π0 π3

τ0 τ1

π2 π4 π1

1 3 2 3 1

1 1

K(Ĝ ∪ Ĝ0) = {(ch(πi), ◦), (ch(τj), •) : πi ∈ Ĝ, τj ∈ Ĝ0}. Put γi = (ch(πi), ◦) and
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ρj = (ch(τj), •). Then the structure equations are

γ1γ1 = γ0, γ2γ2 =
1
4
γ0 +

1
4
γ1 +

1
2
γ2, γ3γ3 = γ4γ4 =

1
9
γ0 +

2
9
γ2 +

1
3
γ3 +

1
3
γ4,

γ1γ2 = γ2, γ1γ3 = γ4, γ1γ4 = γ3, γ2γ3 = γ2γ4 =
1
2
γ3 +

1
2
γ4,

γ3γ4 =
1
9
γ1 +

2
9
γ2 +

1
3
γ3 +

1
3
γ4, ρ0ρ0 = ρ1ρ1 =

1
12

γ0 +
1
6
γ2 +

1
2
γ3 +

1
4
γ4,

ρ0ρ1 = ρ1ρ0 =
1
12

γ1 +
1
6
γ2 +

1
4
γ3 +

1
2
γ4, γ0ρ0 = ρ0, γ1ρ0 = ρ1,

γ2ρ0 =
1
2
ρ0 +

1
2
ρ1, γ3ρ0 =

2
3
ρ0 +

1
3
ρ1, γ4ρ0 =

1
3
ρ0 +

2
3
ρ1, γ0ρ1 = ρ1,

γ1ρ1 = ρ0, γ2ρ1 =
1
2
ρ0 +

1
2
ρ1, γ3ρ1 =

1
3
ρ0 +

2
3
ρ1, γ4ρ1 =

2
3
ρ0 +

1
3
ρ1.

4.10 The case that G is the symmetric group S4 of degree 4 and G0 is the symmetric
group S3 of degree 3.

π0 π4

τ0 τ2

π3 π1

τ1

π2

1 3 2 3 1

1 2 1

K(Ĝ ∪ Ĝ0) = {(ch(πi), ◦), (ch(τj), •) : πi ∈ Ĝ, τj ∈ Ĝ0}. Put γi = (ch(πi), ◦) and
ρj = (ch(τj), •). Then the structure equations are

γ1γ1 = γ0, γ2γ2 =
1
4
γ0 +

1
4
γ1 +

1
2
γ2, γ3γ3 = γ4γ4 =

1
9
γ0 +

2
9
γ2 +

1
3
γ3 +

1
3
γ4,

γ1γ2 = γ2, γ1γ3 = γ4, γ1γ4 = γ3, γ2γ3 = γ2γ4 =
1
2
γ3 +

1
2
γ4,

γ3γ4 =
1
9
γ1 +

2
9
γ2 +

1
3
γ3 +

1
3
γ4, ρ0ρ0 = ρ1ρ1 =

1
4
γ0 +

3
4
γ3,

ρ2ρ2 =
1
16

γ0 +
1
16

γ1 +
1
8
γ2 +

3
8
γ3 +

3
8
γ4, ρ1ρ2 =

1
4
γ2 +

3
8
γ3 +

4
8
γ4,

γ0ρ0 = ρ0, γ1ρ0 = ρ1, γ2ρ0 = ρ2, γ3ρ0 =
1
3
ρ0 +

2
3
ρ2, γ4ρ0 =

1
3
ρ1 +

2
3
ρ2,

γ0ρ1 = ρ1, γ1ρ1 = ρ0, γ2ρ1 = ρ2, γ3ρ1 =
1
3
ρ1 +

2
3
ρ2, γ4ρ1 =

1
3
ρ0 +

2
3
ρ2,

γ0ρ2 = ρ2, γ1ρ2 = ρ2, γ2ρ2 =
1
4
ρ0 +

1
4
ρ1 +

1
2
ρ2,

γ3ρ2 = γ4ρ0 =
1
6
ρ0 +

1
6
ρ1 +

2
3
ρ2.
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Germany

e-mail : herbert.heyer@uni-tuebingen.de

Satoshi Kawakami : Nara University of Education
Department of Mathematics
Takabatake-cho
Nara, 630-8528



H. HEYER, S. KAWAKAMI, T. TSURII AND S. YAMANAKA

Japan

e-mail : kawakami@nara-edu.ac.jp

Tatsuya Tsurii : Osaka Prefecture University
Graduate School of Science
1-1 Gakuen-cho, Nakaku, Sakai
Osaka, 599-8531
Japan

e-mail : dw301003@edu.osakafu-u.ac.jp

Satoe Yamanaka : Nara Women’s University
Faculty of Science
Kitauoya-higashimachi,
Nara, 630-8506
Japan

e-mail : s.yamanaka516@gmail.com




