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Abstract. In re�exive Frechet spaces an unbounded closed convex set C has the
quasi drop property if and only if i) int(C) 6= ∅ and ii) C has the Mackey (α)-property.

1 Introduction. Let (X, ‖·‖) be a Banach space and BX its closed unit ball. By the
drop D(x,BX) de�ned by an element x ∈ X \BX we mean the set conv ({x} ∪ BX). Danes
[2] proved that, for any Banach space (X, ‖·‖) and every non-empty closed set A ⊂ X
at positive distance from BX , there exists an x0 ∈ A such that D(x0, BX) ∩ A = {x0}.
Motivated by Danes theorem, Rolewicz [23] introduced the notion of drop property for the
norm of a Banach space: the norm ‖·‖ in X has the drop property if for every non-empty
closed set A disjoint from BX there exists x0 ∈ A such that D(x0, BX) ∩ A = {x0}. He
proved that if the norm has the drop property then (X, ‖·‖) is re�exive (see [23] Theorem
5). Later, Montesinos (see [15] Theorem 4) proved that a Banach space is re�exive if and
only if it can be renormed to have the drop property.

Let B be a subset of a Banach space (X, ‖·‖). The Kuratowski index of noncompactness
of B, α(B), is the in�mum of all positive numbers r such that B can be covered by a �nite
number of sets of diameter less than r. Given f ∈ X∗ such that ‖f‖ = 1 and 0 < δ ≤ 2,
consider the slice S(f,BX , δ) = {x ∈ BX : f(x) ≥ 1 − δ}. The norm ‖·‖ in a Banach space
X has property (α), if lim

δ→0
α(S(f,BX , δ)) = 0 for every f ∈ X∗, ‖f‖ = 1. Also, Rolewicz

([23] Theorem 4), proved that if the norm has the drop property then it has property (α),
and Montesinos ([15] Theorem 3) established that these two properties are equivalent.

Giles, Sims and Yorke [4] said that the norm has the weak drop property if for every
non-empty weakly sequentially closed set A disjoint from BX , there exists an x0 ∈ A such
that D(x0, BX) ∩ A = {x0}, and they proved that this property is equivalent to (X, ‖·‖)
being re�exive. Kutzarova [10] and Giles and Kutzarova [5] extended the discussion of these
drop properties to closed bounded convex sets in Banach spaces. Cheng, Zhou and Zang
[1], Zheng [26] and other authors studied those drop properties in locally convex spaces: a
bounded, convex and closed subset B of a locally convex space (E, τ) is said to have the
drop property if it is non-empty and for every non-empty sequentially closed subset A ⊂ E
disjoint from B there exists a ∈ A such that D(a,B) ∩ A = {a}.

Qiu in [19] and Monterde and Montesinos in [14], introduced another drop properties in
locally convex spaces: a non-empty closed bounded convex subset B of a locally convex space
(E, τ) is said to have the quasi weak drop (resp. quasi drop) property if for every non-empty
weakly closed (resp. closed) subset A ⊂ E disjoint from B, there exists an x0 ∈ A such that
D(x0, B) ∩ A = {x0}. In [19] and [20], Qiu established a number of equivalences for the
quasi weak drop property in Frèchet spaces and in quasi-complete locally convex spaces. He
characterized re�exivity of those spaces by the condition that every closed bounded convex
subset of the space must satisfy the quasi weak drop property. Concerning drop properties
and their applications, see for example [1]-[6], [10]-[16], [18]-[23] and [25]. In [13] can be
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found a extensive compilation of extensions and equivalent variational principles to drop
properties.

In [11], Kutzarova and Rolewicz have dropped the boundedness assumption for the drop
property in Banach spaces and proved

Theorem 1. Let C be an unbounded closed convex set in a re�exive Banach space. The
following conditions are equivalent:

i) C has the drop property;

ii) int(C) 6= ∅ and C has the property (α).

They asked if the existence of such a closed convex unbounded set C with the drop
property forces the space to be re�exive. In [16], Montesinos proved that this is the case.
Later, in [12], Lin and Yu proved that if C is an unbounded closed convex set with the weak
drop property in a Banach space, then C has nonempty interior and the Banach spece is
re�exive.

In [6], the author considered locally convex spaces with the strict Mackey convergence
condition (sMc, see below) and studied the relation between the quasi drop property and
the de�ned Mackey (α)-property (see below). Then he characterized quasi drop property
for bounded disks in Frechet spaces. Now, based on techniques of Kutzarova-Rolewicz
[11], Montesinos [16] and Lin-Yu [12] the Kutzarova-Rolewicz's Theorem is extended to
the family of re�exive Fréchet spaces, i.e. in a re�exive Fréchet space an unbounded closed
convex subset C has the quasi drop property if and only if int(C) 6= ∅ and C has the Mackey
(α)-property.

2 Preliminaries. A closed, bounded and absolutely convex subset is called a disk. If D
is a disk in the locally convex space (E, τ) then we let ED denotes the linear span of D,
equipped with the topology given by ρD the gauge (Minkowski's functional) of D. This
topology has a base of zero neighborhoods of the form {aD : a > 0}, and makes ED into
a normed space such that τ |ED

≤ ρD |ED
, for τ the original topology of E. And (E, τ)

is said to be locally complete if every disk D ⊂ E, is a Banach disk, that is (ED, ρD) is
a Banach space. Note that for metrizable spaces, completeness and local completeness are
equivalent. For local completeness, see [8] and [17].

According to Grothendieck (see [7]), we have that a space (E, τ) satis�es the strict
Mackey convergence condition (sMc) if for every bounded subset B ⊂ (E, τ), there exists a
disk D ⊂ E containing B such that the topologies of E and ED agree on B, i.e. τ |B = ρD |B
and so on every subset of B. Note that every metrizable space satis�es the sMc (see [17],
5.1.27(ii)). So, every Fréchet space (E, τ) is locally complete and satis�es the sMc.

>From now, throughout this paper (E, τ) will be a Fréchet space over R. Consider a
family of τ -continuous seminorms {ρn : E → R}n∈N, where ρn ≤ ρn+1 for every n ∈ N,
which de�ne the topology τ . Following Rudin (see [24]), the function d : E × E → R given

by d(x, y) =
∞∑

n=1

2−nρn(x−y)
1+ρn(x−y) de�nes an invariant metric compatible with the topology τ , i.e.

τ = τd.
For a τ -closed convex set C ⊂ E, denote by F (C) the set of all τ -continuous linear

functionals f ∈ (E, τ)′ \ {0} which are bounded above on C. For f ∈ F (C) let Mf =
sup {f(x) : x ∈ C}, and for δ > 0 consider the slice S(f, C, δ) = {x ∈ C : f(x) ≥ Mf − δ}.
The set C is said to have the (α)-property with respect to τ if for every f ∈ F (C) and for
every neighborhood U of 0 in τ , there exists δ > 0 such that S(f, C, δ) can be covered by a
�nite number of translates of U .
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If a slice S(f, C, δ0) is τ -bounded, since the Fréchet space (E, τ) satis�es the sMc, there
exists a disk D ⊂ E containing S(f, C, δ0) such that τ

∣∣
S(f,C,δ0) = ρD

∣∣
S(f,C,δ0) . In this

case, the Kuratowski index of noncompactness of S(f, C, δ0) associated to the disk D is
αD(S(f, C, δ0)) the in�mum of all positive numbers r such that S(f, C, δ0) is covered by a
�nite number of sets of ρD-diameter less than r. The τ -closed convex set C ⊂ E is said to
have the Mackey (α)-property if for every f ∈ F (C) and D as above lim

δ→0
αD(S(f, C, δ)) = 0.

In this case, due to the fact that ρD and τ induce the same topology on the slice, we get
that C has the (α)-property with respect to τ . Obviously, if (E, ‖·‖) is a normed space both
(α)-properties coincide.

3 Results.

Proposition 1. Let C be a non-empty closed convex (unbounded) subset of the Fréchet
space (E, τ). Suppose that C has the quasi drop property. Then every C-stream in E has a
τ -convergent subsequence.

Proof. Suppose there exists a sequence (xn)n ∈ E such that xn+1 ∈ D(xn, C) \C, for every
n ∈ N, but (xn)n does not have any τ -convergent subsequence. So, for every subsequence
(xnk

)k ⊂ (xn)n we have that A = {xnk
: k ∈ N} is a closed set and C does not have the

quasi drop property.

Remark 1. Note that if (E, τ) is a Fréchet space, A ⊂ E is σ(E,E′)-sequentially closed and
(xn)n ∈ A is τ -convergent to some x0 ∈ E, then xn → x0 respect to σ(E,E′). So, x0 ∈ A
and A is τ -closed. Now, suppose that C ⊂ E is τ -closed, convex and has the quasi drop
property, then C has the weak drop property. Note also that in this case, as in Proposition
1, every C-stream has a weakly convergent subsequence.

Proposition 2. Let C be a non-empty closed convex (unbounded) subset of the Fréchet
space (E, τ). Let f ∈ F (C) and Mf := sup {f(x) : x ∈ C}. Suppose that C has the quasi
drop property. Then for every δ > 0, the slice S(f, C, δ) = {x ∈ C : f(x) ≥ Mf − δ} is a
bounded set.

Proof. Suppose this is not true. Then there exist f0 ∈ F (C), δ0 > 0 and U0 ∈ τ an open
convex and simetric zero neighborhood such that for every R > 0 we have that S(f0, C, δ0)
is not contained in RU0; or equivalently, for every R > 0 there exists xR ∈ S(f0, C, δ0) such
that ρU0(xR) > R, where ρU0(·) is the τ -continuous Minkowski's seminorm generated by
U0.

Let M := sup {|f(x)| : x ∈ S(f0, C, δ0)} ≥ Mf0 . Let x1 ∈ E be such that f0(x1) > Mf0 .
Find 0 < λ < 1 such that (1 − λ)f0(x1) − λM > Mf0 .

Take x2 ∈ S(f0, C, δ0) satisfying ρU0 (λx2 + (1 − λ)x1 − x1) ≥ 1. Let x2 := λx2 + (1 −
λ)x1. So, ρU0(x2 − x1) ≥ 1 and

f0(x2) = λf0(x2) + (1 − λ)f0(x1) ≥ (1 − λ)f0(x1) − λ |f0(x2)|
≥ (1 − λ)f0(x1) − λM > Mf0

Suppose now, we have found x1, x2, ..., xn ∈ E such that xi+1 ∈ D(xi, C) \ C, for i =
1, 2, ..., (n−1), with f0(xi) > Mf0 , for i = 1, 2, ..., n and ρU0(xi −xj) ≥ 1 for i, j = 1, 2, ..., n
and i 6= j. In order to �nd xn+1, �nd 0 < λ < 1 such that (1 − λ)f(xn) − λM > Mf0 and
take xn+1 ∈ S(f0, C, δ0) satisfying ρU0(λxn+1 + (1 − λ)xn − xi) ≥ 1, for all i = 1, 2, ..., n.
Let xn+1 := λxn+1 + (1 − λ)xn. So, ρU0(xn+1 − xi) ≥ 1, for all i = 1, 2, ..., n; and

f0(xn+1) = λf0(xn+1) + (1 − λ)f0(xn) ≥ (1 − λ)f0(xn) − λ |f0(xn+1)|
≥ (1 − λ)f0(xn) − λM > Mf0
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Then the sequence (xn)n is a C-stream in E with no convergent subsequences. This is a
contradiction.

Proposition 3. Let C be a closed convex unbounded subset of the Fréchet space (E, τ).
Suppose that C has the quasi-drop property. Then C has the Mackey (α)-property, and C

has the (α)̇-property respect to τ , too.

Proof. Let f ∈ F (C). Find x0 ∈ E such that f(x0) > Mf . We may assume that Mf >
1, then by proposition 2, the slice S1 := S(f, C, 1) is a τ -bounded closed set and B :=
cvx {S1 ∪ {x0}} is a bounded closed convex subset of E. Since (E, τ) is a Fréchet space,
by the sMc, there exists D ⊂ E a Banach disk such that B ⊂ D and τ |B = ρD |B . In
particular, τ |S1 = ρD |S1 . If inf {αD (S(f, C, ε) : 1 > ε > 0} > 2δ0, for some δ0 > 0, then
(see [21], Theorem 4) for every �nite dimensional subspace L ⊂ ED we have:

(1) sup
x∈S(f,C,ε)

( inf
y∈L

ρD(x − y)) ≥ 1
2

inf
ε>0

αD(S(f, C, ε)) > δ0

Take ε1 < f(x0) − Mf . And choose x1 ∈ S(f, C, ε1) such that

inf {ρD(x1 − z) : z ∈ span {x0}} > δ0.

Let x1 = x0+x1
2 , then

f(x1) = f(
x0 + x1

2
) =

f(x0)
2

+
f(x1)

2
>

Mf + ε1

2
+

Mf − ε1

2
= Mf .

Moreover

inf {ρD(x1 − z) : z ∈ span {x0}} =
1
2

inf {ρD(x1 − z) : z ∈ span {x0}} >
δ0

2

Now, suppose we have {x0, x1, ..., xn}, such that xi 6= xj if i 6= j ≤ n, and
i) f(xi) > Mf

ii) inf {ρD(xi − z) : z ∈ span {x0, ..., xi−1}} > δ0
2

iii) xi ∈ D(xi−1, C)
for every i ≤ n. Take εn+1 < f(xn) − Mf and by (1) �nd xn+1 ∈ S(f, C, εn+1) such that

inf {ρD(xn+1 − z) : z ∈ span {x0, x1, ..., xn}} > δ0.

Let xn+1 = xn+xn+1
2 then, in an analogous way to x1, f(xn+1) > Mf and

inf {ρD(xn+1 − z) : z ∈ span {x0, ..., xn}}

=
1
2

inf {ρD(xn+1 − z) : z ∈ span {x0, ..., xn}} >
δ0

2
.

Then the sequence (xn)n satis�es (i,ii,iii) and the set A = {x0, x1, ..., xn, ...} ⊂ B is ρD-
closed. Since the topologies τ and ρD agree on B, A is τ -closed and A ∩ C = ∅. Hence C,
does not have the quasi drop property. This is a contradiction.

Recall a generalization of Cantor's intersection theorem due to Kuratowski [9].

Lemma 1. Given a complete metric space and a sequence of non-empty closed sets {Fn}n∈N,
F1 ⊇ F2 ⊇ · · · ⊇ Fn ⊇ · · · with the property that, for α the Kuratowski index of noncom-

pactness, lim
n

α(Fn) = 0, then
∞⋂

n=1
Fn is non-empty and compact.
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Remark 2. a) Suppose that C has the Mackey (α)-property, let f ∈ F (C) and (εn)n ∈ R+

convergent to zero. Then for every sequence (xn)n ∈ C such that xn ∈ S(f, C, εn) there is
a subsequence (xnk

)k ⊂ (xn)n convergent in C.
b) In particular, under the assumptions of Proposition 3, every f ∈ F (C) attains its

supremum on C.

Proposition 4. Let C be a closed convex unbounded subset of the Fréchet space (E, τ).
Suppose that C has the quasi-drop property. Then int(C) 6= ∅.
Proof. Since C is not bounded, there exists (xn)n ∈ C such that does not have any conver-

gent subsequence. For every x /∈ C, de�ne yn := 1
2n x+

n∑
i=1

1
2n−i+1 xi. So, (yn)n is a sequence

which has non-empty intersection with C. If this is not true, then we have two possibilities:
i) There exists a subsequence (ynk

)k ⊂ (yn)n which does not have weakly convergent
subsequences. Then A := {ynk

: k ∈ N} is closed disjoint to C, and contradicts the quasi
drop property of C (see Remark 1).

ii) Every subsequence (ynk
)k ⊂ (yn)n has a convergent subsequence. Let (ynk

)k ⊂ (yn)n

be convergent to y0 ∈ E. This implies that ynk+1 → y0, too. Since ynk+1 = 1
2 (ynk

+ xnk+1)
and xnk+1 = 2ynk+1 − ynk

, then (xnk+1)k converges to y0. This is not possible.
Hence, {yn : n ∈ N} ∩ C 6= ∅. Now, given z ∈ E and L 6= 0, de�ne the homeomor�sm

Tz,L : E → E given by Tz,L(x) = z + L(x − z), and the application T(x1,...,xn)(x) =
Tx1,2 ◦ Tx2,2 ◦ · · · ◦ Txn,2(x). It is easy to verify that for the elements {xn : n ∈ N} of
the original sequence we have that yn ∈ C if and only if x ∈ T(x1,x2,...,xn)(C). Then
E \ C =

⋃
n∈N

T(x1,x2,...,xn)(C). Since (E, τ) is a Fréchet space, the Baire category theorem

implies that intτ (C) 6= ∅.

Proposition 5. Let (E, τ) be a Fréchet space and C ⊂ E be a closed convex unbounded
subset with intτ (C) 6= ∅. Suppose that C has the Mackey (α)-property. Then for every
b ∈ E \ C the set D(b, C) is closed.

Proof. Suppose there is a point b ∈ E\C such that D(b, C) is not τ -closed. Then there exists

a ∈ D(b, C)
τ
such that a /∈ D(b, C). So, there are sequences (yn)n ∈ C and (λn)n ∈ [0, 1]

such that xn := λnb + (1 − λn)yn → a respect to τ . Then the sequence λn → 1 and
for every τ -continuous seminorm ρ such that distinguish a subsequence (ynk

)k ⊂ (yn)n

we have that ρ(ynk
) → ∞. By a convexity argument the ray r = {b + η(a − b) : η ≥ 1}

is contained in D(b, C)
τ
\ D(b, C). Note that r ∩ C = ∅ and intτ (C) 6= ∅ imply that

there exists f ∈ (E, τ)′ \ {0} such that Mf := sup {f(x) : x ∈ C} ≤ inf {f(x) : x ∈ r},
evenmore f(a) = f(b), so r ⊂ H = {x ∈ E : f(x) = f(a)}. Then Mf ≤ f(a). Since C has
the Mackey (α)-property, for every δ > 0 the set S(f, C, δ) is bounded. Consider the set
A := {a, b} ∪ {xn : n ∈ N} ∪ S(f, C, δ). Since A is bounded and (E, τ) has the sMc, there
exists a Banach disk B ⊂ E such that A ⊂ B and ρB |A = τ |A , evenmore if we make
CB := C ∩ EB then {yn : n ∈ N} ⊂ CB ⊂ EB and xn → a respect to ρB, so ρB(yn) → ∞.

Then we have that a ∈ D(b, CB)
ρB

but a /∈ D(b, CB). Note also that intρB
(CB) 6= ∅ and

fB := f |EB ∈ (EB , ρB)′ \ {0}, so fB ∈ F (CB) and fB separates r and CB . Hence all the
previous construction and observations remains valid in the Banach space (EB , ρB). If we
prove that a ∈ D(b, CB), which clearly is contained in D(b, C) we are done. But in these
conditions the proof continues exactly as the rest of proof at this point of Proposition 5 in
[11], where ρB substitutes ‖·‖.

Note that Proposition 1 in [11] has been proved above for Fréchet spaces. Also, Lemma
2 and Lemma 12 in [11] follow directly being true in the frame of re�exive Fréchet spaces.
Then Remark 2(iii) in [12] can be extended to
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Remark 3. Let (E, τ) be a re�exive Fréchet space and C ⊂ E an unbounded closed convex
subset. Suppose that C has the Mackey (α)-property and that int(C) 6= ∅ then C contains a
ray {c + λb : λ ≥ 0}. Moreover, for any x ∈ E there is β > 0 such that C contains the ray
{x + λb : λ ≥ β}

Theorem 2. Let (E, τ) be a re�exive Fréchet space and C ⊂ E be an unbounded closed
convex subset. Then the following conditions are equivalent:

a) C has the quasi-drop property

b) int(C) 6= ∅ and C has the Mackey (α)-property.

Proof. Assume that C does not have the quasi drop property. So, there is a closed set A ⊂ E
disjoint to C such that for every x ∈ A there is a ∈ A\{x} satisfying a ∈ A∩D(x,C). Take
any point x1 ∈ A. Put d′

1 := inf {d(a,C) : a ∈ A ∩ D(x1, C)} and �nd x2 ∈ A ∩ D(x1, C)
such that d2 := d(x2, C) < d′1 + 1. Choose {x1, x2, ..., xn} such that xi+1 ∈ A ∩ D(xi, C)
and xi+1 6= xi for i = 1, ..., n− 1 and if we make d′i := inf {d(a, C) : a ∈ A ∩ D(xi, C)} then
di+1 := d(xi+1, C) < d′

i + 1
i . Inductively construct, in this way, a C-stream {xn : n ∈ N}

with these characteristics, and note that (dn)n ⊂ R is a convergent sequence to some ε0 ≥ 0.
Note that this C-stream {xn : n ∈ N} does not have any convergent subsequence. In order
to see this, suppose that the C-stream possess convergent subsequences and consider two
cases:

i) ε0 = 0. This means that there is a sequence (yn)n ∈ C such that d(xn, yn) → 0.
Let A1 := cvx {xn : n ∈ N}, by the lemma in [15], A1 ∩ C = ∅ and since int(C) 6= ∅,
there exists f ∈ (E, τ)′ \ {0} which separates A1 and C. We may assume that f ∈ F (C).
For Mf := {f(x) : x ∈ C}, we have that f(yn) → Mf . By the Mackey (α)-property, the
Kuratwoski's lemma guarantees the existence of a subsequence (ynk

)k ⊂ (yn)N which is
convergent to some y0 ∈ C and f(y0) = Mf . Then d(xn, yo) → 0 and since A is closed we
get that y0 ∈ A ∩ C. This is a contradiction.

ii) If ε0 > 0 and (xn)N has a convergent subsequence to some x0 ∈ A∩
⋂

i∈N
D(xi, C), i.e.

x0 ∈ A∩D(xi, C), for every i ∈ N. Then there exists a ∈ A\{x0} satisfying a ∈ A∩D(x0, C)
and d(a,C) < d(x0, C). Find n ∈ N such that 1

n < d(x0, C) − d(a,C), then d(xn+1, C) >
d(x0, C) > d(a,C) + 1

n ≥ d′
n + 1

n . Which is a contradiction. Then the C-stream does not
have any convergent subsequence.

Now, by the Remark 3, there exists b ∈ E \ {0} such that for every x ∈ E there is β > 0
such that C contains the ray {x + λb : λ ≥ β}.

Let η := sup {β : (βb + {xn}N) ∩ C = ∅}. Note that
i) ηb + C ⊂ C
ii) if ηb + xn ∈ C, then ηb + xm ∈ C for every m > n.

So, for every convex combination
n∑

i=1

aixi where each ai ≥ 0 and
n∑

i=1

ai = 1, if ηb +
n∑

i=1

aixi ∈ int(C) then

ηb + xn+1 ∈ cvx

{(
ηb +

n∑
i=1

aixi

)
∪ (ηb + C)

}
⊂ int(C).

Which is not possible. Then (ηb + cvx {xn : n ∈ N}) + int(C) = ∅ and there exists
f ∈ (E, τ)′ \ {0} such that

inf {f(ηb + xn) : n ∈ N} = Mf = sup {f(x) : x ∈ C}
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By the de�nition of η, there exists a sequence (ynk
)k ∈ C such that

d(ηb + xnk
, ynk

) → 0 and f(ynk
) → Mf

Since C has the Mackey (α)-property there exists a subsequence (ynl
)l ⊂ (ynk

)k which is
convergent to some y0 ∈ C. Then the sequence (xn)n has a convergent subsequence. This
is a contradiction.
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