Scientiae Mathematicae Japonicae 1

ON QUASI DROP PROPERTY OF UNBOUNDED SETS
IN FRECHET SPACES

ARMANDO GARCIA

Received September 13, 2016

ABSTRACT. In reflexive Frechet spaces an unbounded closed convex set C' has the
quasi drop property if and only if i) int(C) # @ and ii) C has the Mackey («)-property.

1 Introduction. Let (X, |-||) be a Banach space and Bx its closed unit ball. By the
drop D(z, Bx) defined by an element x € X \ Bx we mean the set conv ({z} U Bx). Danes
[2] proved that, for any Banach space (X, |-||) and every non-empty closed set A C X
at positive distance from Bx, there exists an o € A such that D(xo,Bx) N A = {zo}.
Motivated by Danes theorem, Rolewicz [23] introduced the notion of drop property for the
norm of a Banach space: the norm |- in X has the drop property if for every non-empty
closed set A disjoint from By there exists 9 € A such that D(zo,Bx) N A = {z0}. He
proved that if the norm has the drop property then (X, ||-||) is reflexive (see |23] Theorem
5). Later, Montesinos (see [15] Theorem 4) proved that a Banach space is reflexive if and
only if it can be renormed to have the drop property.

Let B be a subset of a Banach space (X, ||-||). The Kuratowski index of noncompactness
of B, a(B), is the infimum of all positive numbers r such that B can be covered by a finite
number of sets of diameter less than r. Given f € X* such that ||f] =1 and 0 < ¢ < 2,
consider the slice S(f, Bx,d) = {z € Bx : f(z) > 1—4}. The norm ||-|| in a Banach space
X has property («), if gii%oz(S(f, Bx,9)) =0 for every f € X*, ||f]| = 1. Also, Rolewicz

([23] Theorem 4), proved that if the norm has the drop property then it has property (),
and Montesinos ([15] Theorem 3) established that these two properties are equivalent.

Giles, Sims and Yorke [4] said that the norm has the weak drop property if for every
non-empty weakly sequentially closed set A disjoint from By, there exists an xg € A such
that D(xzo,Bx) N A = {z0}, and they proved that this property is equivalent to (X, ||]|)
being reflexive. Kutzarova [10] and Giles and Kutzarova [5] extended the discussion of these
drop properties to closed bounded convex sets in Banach spaces. Cheng, Zhou and Zang
[1], Zheng [26] and other authors studied those drop properties in locally convex spaces: a
bounded, convex and closed subset B of a locally convex space (E,7) is said to have the
drop property if it is non-empty and for every non-empty sequentially closed subset A C F
disjoint from B there exists a € A such that D(a, B) N A = {a}.

Qiu in [19] and Monterde and Montesinos in [14], introduced another drop properties in
locally convex spaces: a non-empty closed bounded convex subset B of a locally convex space
(E, 7) is said to have the quasi weak drop (resp. quasi drop) property if for every non-empty
weakly closed (resp. closed) subset A C E disjoint from B, there exists an z¢ € A such that
D(zo,B) N A = {z0}. In [19] and [20], Qiu established a number of equivalences for the
quasi weak drop property in Fréchet spaces and in quasi-complete locally convex spaces. He
characterized reflexivity of those spaces by the condition that every closed bounded convex
subset of the space must satisfy the quasi weak drop property. Concerning drop properties
and their applications, see for example [1]-[6], [10]-[16], [18]-[23] and [25]. In [13] can be
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found a extensive compilation of extensions and equivalent variational principles to drop
properties.

In [11], Kutzarova and Rolewicz have dropped the boundedness assumption for the drop
property in Banach spaces and proved

Theorem 1. Let C' be an unbounded closed convex set in a reflexive Banach space. The
following conditions are equivalent:

i) C has the drop property;
ii) int(C) # 0 and C has the property ().

They asked if the existence of such a closed convex unbounded set C' with the drop
property forces the space to be reflexive. In [16], Montesinos proved that this is the case.
Later, in [12], Lin and Yu proved that if C' is an unbounded closed convex set with the weak
drop property in a Banach space, then C' has nonempty interior and the Banach spece is
reflexive.

In [6], the author considered locally convex spaces with the strict Mackey convergence
condition (sMc, see below) and studied the relation between the quasi drop property and
the defined Mackey (a)-property (see below). Then he characterized quasi drop property
for bounded disks in Frechet spaces. Now, based on techniques of Kutzarova-Rolewicz
[11], Montesinos [16] and Lin-Yu [12] the Kutzarova-Rolewicz’s Theorem is extended to
the family of reflexive Fréchet spaces, i.e. in a reflexive Fréchet space an unbounded closed
convex subset C has the quasi drop property if and only if int(C') # 0 and C has the Mackey

(c0)-property.

2 Preliminaries. A closed, bounded and absolutely convex subset is called a disk. If D
is a disk in the locally convex space (E,7) then we let Ep denotes the linear span of D,
equipped with the topology given by pp the gauge (Minkowski’s functional) of D. This
topology has a base of zero neighborhoods of the form {aD : a > 0}, and makes Fp into
a normed space such that 7|g, < pp|Ep, for 7 the original topology of E. And (E,T)
is said to be locally complete if every disk D C E, is a Banach disk, that is (Fp,pp) is
a Banach space. Note that for metrizable spaces, completeness and local completeness are
equivalent. For local completeness, see [8] and [17].

According to Grothendieck (see [7]), we have that a space (F,T) satisfies the strict
Mackey convergence condition (sMc) if for every bounded subset B C (E, 7), there exists a
disk D C F containing B such that the topologies of E and Fp agree on B, i.e. T|g = pp |B
and so on every subset of B. Note that every metrizable space satisfies the sMc (see [17],
5.1.27(ii)). So, every Fréchet space (E,7) is locally complete and satisfies the sMc.

>From now, throughout this paper (E,7) will be a Fréchet space over R. Consider a
family of 7-continuous seminorms {p, : E — R}, .y, where p, < ppy1 for every n € N,
which define the topology 7. Following Rudin (see [24]), the function d : E x £ — R given

o) —n
by d(z,y) = 21 157((5_2’)) defines an invariant metric compatible with the topology 7, i.e.
n—=

T = Td-

For a 7-closed convex set C' C E, denote by F(C) the set of all 7-continuous linear
functionals f € (E,7)" \ {0} which are bounded above on C. For f € F(C) let My =
sup{f(z): x € C}, and for ¢ > 0 consider the slice S(f,C,0) = {z € C: f(z) > M; — 6}
The set C' is said to have the (a)-property with respect to 7 if for every f € F(C) and for
every neighborhood U of 0 in 7, there exists 6 > 0 such that S(f,C,d) can be covered by a
finite number of translates of U.



If a slice S(f,C,dp) is 7-bounded, since the Fréchet space (E, ) satisfies the sMc, there
exists a disk D C E containing S(f,C,dp) such that ‘S(f,C,éo) = pp ls(f’C,go). In this
case, the Kuratowski index of noncompactness of S(f,C,dp) associated to the disk D is
ap(S(f,C,d)) the infimum of all positive numbers r such that S(f,C,dp) is covered by a
finite number of sets of pp-diameter less than r. The 7-closed convex set C' C F is said to
have the Mackey («)-property if for every f € F(C) and D as above }iir(l) ap(S(f,C,d)) =0.

In this case, due to the fact that pp and 7 induce the same topology on the slice, we get
that C has the («)-property with respect to 7. Obviously, if (E, ||-||) is a normed space both
(«)-properties coincide.

3 Results.

Proposition 1. Let C be a non-empty closed convexr (unbounded) subset of the Fréchet
space (E, 7). Suppose that C has the quasi drop property. Then every C-stream in E has a
T-convergent subsequence.

Proof. Suppose there exists a sequence (z,,), € E such that z,+1 € D(z,,C)\C, for every
n € N, but (z,), does not have any 7-convergent subsequence. So, for every subsequence
(n )k C (xn)n we have that A = {x,, : k € N} is a closed set and C does not have the
quasi drop property. O

Remark 1. Note that if (E,T) is a Fréchet space, A C E is o(E, E')-sequentially closed and
(zn)n € A is T-convergent to some xo € E, then x,, — xo respect to o(E,E'). So, zp € A
and A is T-closed. Now, suppose that C C E is 7-closed, convex and has the quasi drop
property, then C' has the weak drop property. Note also that in this case, as in Proposition
1, every C-stream has a weakly convergent subsequence.

Proposition 2. Let C be a non-empty closed convex (unbounded) subset of the Fréchet
space (E,T). Let f € F(C) and My := sup{f(z): z € C}. Suppose that C has the quasi
drop property. Then for every 6 > 0, the slice S(f,C,0) = {x € C: f(x) > My -0} is a
bounded set.

Proof. Suppose this is not true. Then there exist fo € F(C), do > 0 and Uy € 7 an open
convex and simetric zero neighborhood such that for every R > 0 we have that S(fo, C, do)
is not contained in RUy; or equivalently, for every R > 0 there exists zr € S(fo, C,dp) such
that py,(rr) > R, where py,(-) is the 7-continuous Minkowski’s seminorm generated by
Up.

Let M :=sup{|f(z)|: z € S(fo,C,d0)} > My,. Let z1 € E be such that fo(x1) > My,.
Find 0 < A < 1 such that (1 — X)fo(x1) — AM > My, .

Take T3 € S(fo,C, do) satisfying py, (ATz + (1 — A)zy —x1) > 1. Let a2 := Az3 + (1 —
A)z1. So, py,(x2 —x1) > 1 and

fo(za) = Mo(T2) + (1 =N fo(x1) > (1 = A)fo(z1) — M| fo(F2)]
> (1 — )\)f()(wl) — M > ]\/[fo

Suppose now, we have found x1,xo,...,x, € E such that ;11 € D(z;,C) \ C, for i =
1,2,...,(n—1), with fo(z;) > My, fori =1,2,...,n and py,(x; —x;) > 1fori,j =1,2,...,n
and 7 # j. In order to find z,41, find 0 < A < 1 such that (1 — ) f(z,) — AM > Mjy, and
take Tn11 € S(fo,C, do) satisfying py,(A\Trni1+ (1 — Ny —x;) > 1, for all i = 1,2, ..., n.
Let zpy1 = AThy1 + (1 — Nay. So, pu, (Tny1 — ;) > 1, for all i = 1,2, ...,n; and

Jo@ni1) = Ao@ngz) + (1 = N folzn) 2 (1= N)fo(zn) = Al fo(@Tnt1)|
> (1 — )\)f()(ln) — M > Mfo



Then the sequence (x,), is a C-stream in E with no convergent subsequences. This is a
contradiction. O

Proposition 3. Let C be a closed convex unbounded subset of the Fréchet space (E,T).
Suppose thgt C' has the quasi-drop property. Then C has the Mackey («)-property, and C
has the (a)-property respect to T, too.

Proof. Let f € F(C). Find z¢ € E such that f(zo) > M;. We may assume that M; >
1, then by proposition 2, the slice S; := S(f,C,1) is a 7-bounded closed set and B :=
cvz {S1U{zo}} is a bounded closed convex subset of E. Since (E,7) is a Fréchet space,
by the sMe, there exists D C E a Banach disk such that B C D and 7|p = pp|p. In
particular, 7|s, = ppls,. If inf {ap (S(f,C,e):1>¢e > 0} > 2§, for some Jy > 0, then
(see [21], Theorem 4) for every finite dimensional subspace L C Ep we have:

1
1 < inf — > — inf 1)
e xeggj‘%,s)(ynelL po(r—y)) = 2 :%0 p(S(f,C,¢)) > dg

Take 1 < f(xo) — M. And choose T1 € S(f,C,¢e1) such that
inf {pp(T1 — 2) : 2 € span{xo}} > do.

Let 1 = 107'571, then

To + T1 f(xo)+f(571) >Mf+51+Mf_51

R e - = M.

Moreover

. 1. _ ]
inf {pp(x1 — 2) : 2 € span{xp}} = B inf {pp(xT1 — 2) : z € span {xp}} > 50

Now, suppose we have {z, 21, ..., 2y}, such that z; # z; if i # j <n, and

i) f(x;) > My

ii) inf {pp(z; — 2) : z € span {zg, ..., x;_1}} > %

111) x; € D(l‘i_l,C)

for every ¢ < n. Take e,41 < f(2n) — My and by (1) find To,77 € S(f, C,en41) such that

inf {pp(Tnt1 — 2) : 2z € span {xg, 1, ..., Tp } } > do.
Let 2,11 = L;”“ then, in an analogous way to x1, f(z,41) > My and
inf {pp(xnt1 — 2) : z € span{zg, ..., Tn}}

1 )
= 3 inf {pp(Tri1 — 2) : 2z € span{xg,...,xn}} > 50.

Then the sequence (), satisfies (i,ii,iii) and the set A = {x¢,21,...,Zn,...} C B is pp-
closed. Since the topologies 7 and pp agree on B, A is T-closed and AN C = (). Hence C,
does not have the quasi drop property. This is a contradiction. O

Recall a generalization of Cantor’s intersection theorem due to Kuratowski [9].

Lemma 1. Given a complete metric space and a sequence of non-empty closed sets {F,}, .y,
Fy DF, D --- D F, D--- with the property that, for a the Kuratowski indezx of noncom-

oo
pactness, ima(F,) = 0, then () F, is non-empty and compact.
n n=1



Remark 2. a) Suppose that C' has the Mackey («)-property, let f € F(C) and (£,,), € RT
convergent to zero. Then for every sequence (zy), € C such that x,, € S(f,C,¢e,) there is
a subsequence (T, )i C (zn)n convergent in C.

b) In particular, under the assumptions of Proposition 3, every [ € F(C) attains its
supremum on C.

Proposition 4. Let C be a closed convex unbounded subset of the Fréchet space (E,T).
Suppose that C' has the quasi-drop property. Then int(C) # 0.

Proof. Since C' is not bounded, there exists (z,), € C such that does not have any conver-

n

gent subsequence. For every « ¢ C| define y,, := 2i:c+ > ﬁxl S0, (yn)n is a sequence
i=1

which has non-empty intersection with C'. If this is not true, then we have two possibilities:

i) There exists a subsequence (yn,)r C (yYn)n which does not have weakly convergent
subsequences. Then A := {y,, : k € N} is closed disjoint to C, and contradicts the quasi
drop property of C' (see Remark 1).

ii) Every subsequence (yn, )k C (yn)n has a convergent subsequence. Let (yn, )k C (Yn)n
be convergent to yo € E. This implies that y,, +1 — ¥o, too. Since y,,,, = %(ynk +Tpn,11)
and Tpn,+1 = 2Yny+1 — Yny, then (Tn, 1)k converges to yo. This is not possible.

Hence, {y, : n € N} N C # (. Now, given z € F and L # 0, define the homeomorfism
T.r : E — E given by T, 1(z) = 2z + L(z — 2), and the application T(,, . .. (z) =
Tyy20Ty00---0T, ofx). It is easy to verify that for the elements {x, : n € N} of
the original sequence we have that y, € C if and only if © € T(4, 4,,..2,)(C). Then
E\C = U Tz 2,..,2,)(C). Since (E,7) is a Fréchet space, the Baire category theorem

EN

implies that int, (C) # 0. O

Proposition 5. Let (E,7) be a Fréchet space and C C E be a closed conver unbounded
subset with int,(C) # 0. Suppose that C has the Mackey (a)-property. Then for every
be E\C the set D(b,C) is closed.

Proof. Suppose there is a point b € E\C such that D(b, C') is not 7-closed. Then there exists

a € D(b,C) such that a ¢ D(b,C). So, there are sequences (y,)n € C and (A,), € [0, 1]
such that z, = A\,b+ (1 — A\)yn — a respect to 7. Then the sequence A\, — 1 and
for every 7-continuous seminorm p such that distinguish a subsequence (yn, )k C (Yn)n
we have that p(y,,) — oco. By a convexity argument the ray r = {b+n(a —b) :n > 1}
is contained in D(b,C) \ D(b,C). Note that r N C = () and int,(C) # () imply that
there exists f € (E,7)" \ {0} such that My := sup{f(z):x € C} < inf{f(z):2er},
evenmore f(a) = f(b),sor C H={z € E: f(z) = f(a)}. Then M; < f(a). Since C has
the Mackey («)-property, for every ¢ > 0 the set S(f,C,d) is bounded. Consider the set
A:={a,b}U{x, :n e N}US(f,C,0). Since A is bounded and (E, 7) has the sMc, there
exists a Banach disk B C E such that A C B and pg|a = 7|a, evenmore if we make
Cp :=CnNEg then {y, :n € N} C Cp C Ep and z,, — a respect to pp, s0 pp(y,) — 0.
Then we have that a € D(b, CB)pB but a ¢ D(b,Cp). Note also that int,,(Cp) # 0 and
fB:=flegs € (Eg,pB)' \ {0}, so fg € F(Cg) and fp separates r and Cp. Hence all the
previous construction and observations remains valid in the Banach space (Ep, pg). If we
prove that a € D(b,Cp), which clearly is contained in D(b,C) we are done. But in these
conditions the proof continues exactly as the rest of proof at this point of Proposition 5 in
[11], where pp substitutes ||-||. O

Note that Proposition 1 in [11] has been proved above for Fréchet spaces. Also, Lemma
2 and Lemma 12 in [11] follow directly being true in the frame of reflexive Fréchet spaces.
Then Remark 2(iii) in [12] can be extended to



Remark 3. Let (E,7) be a reflexive Fréchet space and C C E an unbounded closed convex
subset. Suppose that C has the Mackey (a)-property and that int(C) # 0 then C conlains a
ray {c+ Ab: A > 0}. Moreover, for any x € E there is 3 > 0 such that C contains the ray
{+Xb:X> (3}

Theorem 2. Let (E,7) be a reflexive Fréchet space and C C E be an unbounded closed
convez subset. Then the following conditions are equivalent:

a) C has the quasi-drop property
b) int(C) # O and C has the Mackey («)-property.

Proof. Assume that C does not have the quasi drop property. So, there is a closed set A C E
disjoint to C such that for every x € A thereis a € A\ {z} satisfying a € AND(z,C). Take
any point 1 € A. Put d} := inf {d(a,C) :a € AN D(z1,C)} and find zo € AN D(x1,C)
such that dy := d(x2,C) < d} + 1. Choose {z1,22,...,2,} such that x;y; € AN D(x;,C)
and x;41 # x; for i = 1,...,n — 1 and if we make d} := inf {d(a,C) : a € AN D(z;,C)} then
dit1 = d(zi41,C) < d; + %, Inductively construct, in this way, a C-stream {z,, : n € N}
with these characteristics, and note that (d,,),, C R is a convergent sequence to some g > 0.
Note that this C-stream {x,, : n € N} does not have any convergent subsequence. In order
to see this, suppose that the C-stream possess convergent subsequences and consider two
cases:

i) e0 = 0. This means that there is a sequence (yn), € C such that d(z,,y,) — 0.
Let Ay := cvx{x, :n € N}, by the lemma in [15], Ay N C = 0 and since int(C) # 0,
there exists f € (E,7)"\ {0} which separates A; and C. We may assume that f € F(C)
For My := {f(z) : « € C}, we have that f(y,) — M. By the Mackey (a)-property, the
Kuratwoski’s lemma guarantees the existence of a subsequence (yn,)r C (yn)n which is
convergent to some yo € C and f(yo) = My. Then d(z,,y,) — 0 and since A is closed we
get that yo € AN C. This is a contradiction.

ii) If &g > 0 and (z,)y has a convergent subsequence to some o € AN (| D(z;,C), i.e.

i€N
xg € AND(z;, C), for every i € N. Then there exists a € A\{zo} satisfying a € AND(zq,C)
and d(a,C) < d(zo,C). Find n € N such that L < d(z,C) — d(a,C), then d(z,11,C) >
d(zo,C) > d(a,C) + + > d/, + +. Which is a contradiction. Then the C-stream does not
have any convergent subsequence.

Now, by the Remark 3, there exists b € E'\ {0} such that for every x € F thereis 5 > 0
such that C contains the ray {z + \b: A > (}.

Let n:=sup{f: (Bb+ {zn}y) N C = 0}. Note that

hpnp+CcC

i) if nb+ z, € C, then nb + x,, € C for every m > n.

So, for every convex combination Z a;x; where each a; > 0 and Z a; = 1, if nb +

i=1 =1
n

> az; € int(C) then

i=1

nb+ xpi1 € cvm{(nb—i—Zale) nb—I—C)} C int(C).

Which is not possible. Then (nb+ cvx{z, :n € N}) + int(C) = () and there exists
fe(E,7)\{0} such that

inf {f(nb+2,) :neN} =My =sup{f(z):2e€C}



By the definition of 7, there exists a sequence (yn, ) € C such that

Since C has the Mackey (a)-property there exists a subsequence (Yn,)i C (Yn,, )r which is
convergent to some yg € C. Then the sequence (z,), has a convergent subsequence. This

is a contradiction. O
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