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Abstract. We consider contractible spaces and the corresponding C∗-algebras to
show that contractible spaces are classifiable or not (up to homeomorphisms) by the
C∗-algebras and their K-theory.

1 Introduction We consider contractible spaces and the corresponding C∗-algebras to
show that contractible spaces in some cases are classifiable or not (up to homeomorphism
classes or manifold classes with some operations like jointed sums) by the C∗-algebras or
their K-theory. Note that contractible spaces are homotopically identified with a point.

For the classification program in our sense, we introduce several notions for C∗-algebras
and spaces and also do for several examples. As a summary, we obtain several tables as
classification results as collections, and the overview obtained from these tables as maps
would be useful for further study in this topic.

Refer to several textbooks [1], [2], [4], or [8] about C∗-algebras and their K-theory and in
particular, contractible C∗-algebras. Beyond or extending several facts on them, we further
go into studying targeted ones in details in a way this time.

See also [7] for another classification result for some topological manifolds by C∗-algebras
and their K-theory, with the same sprit as in this paper.

Let us begin with some notations as follows.
For a compact Hausdorff sapce X, we denote by C(X) the C∗-algebra of all continu-

ous, complex-valued functions on X with the uniform (or supremum) norm and pointwise
operations.

For a non-compact, locally compact Hausdorff sapce X, we denote by C0(X) the C∗-
algebra of all continuous, complex-valued functions on X, vanishing at infinity. We denote
by X+ = X ∪ {∞} the one-point compactification of X. We may say that a non-compact,
locally compact Hausdorff space X− is the one-point un-compactification of a compact
Hausdorff space X if X− ∪ {∞} = X.

We write A ∼= B if two C∗-algebras A and B are ∗-isomorphic. We write X ≈ Y if
two spaces X and Y are homeomorphic. Use the same symbol ∼= for (K-theory) group
isomorphisms as well.

2 Contractible, spaces and C∗-algebras A topological space X is said to be con-
tractible (in X) if there is a point p in X such that the identity map idX : X → X is
homotopic to the constant map idp on X, which sends elements of X to the point p. Namely,
there is a continuous path of continuous maps (ft) of X (to X) for t ∈ [0, 1] = I the interval
such that f0 = idX and f1 = idp and the map F (t, x) = ft(x) is continuous on the product
space I × X. The map F is called a homotopy for X.
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Note that a contractible space may or may not be compact. For instance, the Euclidean
space Rn as well as any convex subspace are all contractible by convexity. Note also that a
contractible space is path-connected by definition.

We may say that a topological space X is identically contractible if X is contractible
by a continuous path of homeomorphisms (ft)0≤t<1 of X and f1 = idp.

A C∗-algebra A is said to be contractible (to zero) if the identity map idA : A → A
is homotopic to the zero map id0 = 0 : A → A by a (norm or uniform) continuous path of
∗-homomorphisms (ϕt) of A (to A) for t ∈ [0, 1] = I such that ϕ0 = idA and ϕ1 = id0 and
the map Φ(t, a) = ϕt(a) is continuous on the product space I ×A. We may call the map Φ
a (norm or uniform) C∗-homotopy for A.

We also say that a C∗-algebra A is identically contractible (to zero) if A is contractible
(to zero) by a continuous path of ∗-isomorphisms (ϕt)0≤t<1 of A and ϕ1 = id0.

We say that a C∗-algebra A is contractible to C if the identity map idA : A → A is
homotopic to a 1-dimensional representation (or character) χ : A → C1 in A by a continuous
path of ∗-homomorphisms of A.

We also say that a C∗-algebra A is identically contractible to C if A is contractible
to C by a continuous path of ∗-isomorphisms (ϕt)0≤t<1 of A and ϕ1 = χ.

Note that a non-trivial C∗-algebra contractible to C is not simple.
Furthermore, we say that a C∗-algebra A (especially when A = C(X) or C0(X)) is

weakly contractible (to zero), weakly identically contractible (to zero), weakly con-
tractible to C, and weakly identically contractible to C, respectively, if A is contractible
(to zero), identically contractible (to zero), contractible to C, and identically contractible
to C, by a pointwise continuous C∗-homotopy Φ for A (with respect to X), respectively. In
these cases, we may call such a homotopy Φ either a weak homotopy, a weakly continuous
path, or a pointwise continuous path for A.

A homotopy (ft) for a space X induces directly a homotopy (ϕt) for C(X) (or C0(X))
as the composition as ϕt(g) = g ◦ ft ∈ C(X), which we call the induced homotopy.

Indeed, as a summary, with (1) below certainly known ([2]),

Proposition 2.1. (1) A unital C∗-algebra is not contractible. Equivalently, if a C∗-algebra
is contractible, then it is non-unital.

(2) If a compact Hausdorff space X is contractible (in X) by a homotopy, then C(X) is
contractible to C by the induced homotopy.

(3) Similarly, if a compact Hausdorff space X is identically contractible by a homotopy,
then C(X) is identically contractible to C by the induced homotopy. The converse in this
case also holds.

(4) Moreover, if a non-compact, locally compact Hausdorff space X is contractible (in
X) by a homotopy, then C0(X) is weakly contractible to C by the induced homotopy.

(5) Similarly, if a non-compact, locally compact Hausdorff space X is identically con-
tractible by a homotopy, then C0(X) is weakly identically contractible to C by the induced
homotopy. The converse in this case also holds.

Proof. For (1). Note that ∗-homomorphisms ϕt of a unital C∗-algebra A (to A) are always
unital, which can not be homotopic to the zero map on A. Because the constant map
1 = ϕt(1) ∈ A on [0, 1) converges continuously to 1 ∈ A at 1 ∈ [0, 1].

For (2). Let (ft) be a continuous path between idX and idp for some p ∈ X. Define a
continuous path of ∗-homomorphisms of C(X) by ϕt(g) = g ◦ft for g ∈ C(X) and t ∈ [0, 1].
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Indeed,

ϕt(λg + h) = (λg + h) ◦ ft = (λg ◦ ft) + (h ◦ ft) = λϕt(g) + ϕt(h),
ϕt(g · h) = (g · h) ◦ ft = (g ◦ ft) · (h ◦ ft) = ϕt(g) · ϕt(h),

ϕt(g)∗ = (g ◦ ft)∗ = g ◦ ft = g∗ ◦ ft = ϕt(g∗)

for g, h ∈ C(X) and λ ∈ C, where the overline is the complex conjugate. Note that ϕ0(g) =
g ◦ idX = g and ϕ1(g)(x) = (g ◦ idp)(x) = g(p) for any x ∈ X, so that ϕ1(g) = g(p)1 ≡ χp(g)
the character as the evaluation map at p ∈ X. Note also that the following norm estimate
holds:

‖Φ(t, g) − Φ(s, h)‖ = ‖ϕt(g) − ϕs(h)‖
≤ ‖ϕt(g) − ϕs(g)‖ + ‖ϕs(g) − ϕs(h)‖
≤ ‖g ◦ ft − g ◦ fs‖ + ‖g − h‖,

which can be small enough when (t, g) and (s, h) are close enough on [0, 1] × A. Because
X is compact, so that a continuous function g ∈ C(X) is uniformly continuous on X. In
particualr, when s = 1, note that

‖g ◦ ft − g ◦ f1‖ = sup
x∈X

|g(ft(x)) − g(p)|,

which goes to zero as t → 1.
For (3). The same as above shows that if X is identically contractible, then C(X) is

identically contractible to C.
Conversely, let (ϕt)0≤t<1 be a continuous path of ∗-isomorphisms of C(X) between

ϕ0 = idC(X) and a character ϕ1 = χp for some p ∈ X, by the Gelfand transform (see [4]).
In fact, it is a well known fact that the space C(X)∧ of all 1-dimensional represetations
of C(X) is identifed with the space X. Define a continuous path of homeomorphisms
ft : X → X, induced from the following diagram to make it commutaive:

C(X) ∼= ϕt(C(X))
χx−−−−→ C

ϕt

x ∥∥∥
C(X)

χft(x)−−−−→ C,

since χx ◦ ϕt for any x is written as χy for some y ∈ X, and set y = ft(x). Note that
χft(x) → χfs(y) as (t, x) → (s, y) ∈ I × X in weak ∗-topology, if and only if for any
g ∈ C(X),

|χfs(y)(g) − χft(x)(g)| = |(χy ◦ ϕs)g − (χx ◦ ϕt)(g)|
= |ϕs(g)(y) − ϕt(g)(x)|,

which certainly goes to zero as (t, x) → (s, y), by continuity for the homotopy (ϕt). Note
also that

(g ◦ ft)(x) = χft(x)(g) = ϕt(g)(x).

For (4) and (5). Even if X is a non-compact, Hausforff space, the proof for this case is
the similar as given above. Note that the space C0(X)∧ of all 1-dimensional representations
of C0(X) is identified with X. Note also that for any x ∈ X,

|[Φ(t, g) − Φ(s, h)](x)| = |[ϕt(g) − ϕs(h)](x)|
≤ |[ϕt(g) − ϕs(g)](x)| + |[ϕs(g) − ϕs(h)](x)|
≤ |(g(ft(x)) − g(fs(x))| + ‖g − h‖,
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which can be small enough when (t, g) and (s, h) are close enough on [0, 1]×A. In particualr,
when s = 1, note that

|[g ◦ ft − g ◦ f1](x)| = |g(ft(x)) − g(p)|,

which goes to zero as t → 1. Note that the uniform continuity for Φ is not expected from
the assumption because the norm for the difference above can be non-zero constant, but the
difference converges to zero pointwise (see the examples below). It is always assumed from
the assumption in this case that only the pointwise continuity for Φ holds, which implies
that the estimate above evaluated at x ∈ X goes to zero, pointwise on X.

Remark. More generally, when (ϕt) is a continuous path of ∗-homomorphisms of C(X)
between idC(X) and χp for some p ∈ X, each image ϕt(C(X)) as a quotient of C(X) is a
commutative C∗-subalgebra of C(X), so that ϕt(C(X)) is isomorphic to C(Xt) for some
compact Hausdorff space Xt, which can be viewed as a closed subspace of X, from which,
one can define a continuous path of continuous maps ft : Xt → Xt in X, induced from the
following diagram to make it commutative (only on Xt):

ϕt(C(X)) ∼= C(Xt)
χx−−−−→ C

ϕt

x ∥∥∥
C(X) ⊃ ϕt(C(X))

χft(x)−−−−→ C.

If each ft extends to X, then the extension of (ft) to X gives a continuous path of continuous
maps of X between idX and idp.

Furthermore, since a compact Hausdorff space X is normal, there is a continuous exten-
sion to X of a 1-dimensional closed interval valued, continuous function on a closed subset
such as Xt of X, by Tietze-Urysohn extension theorem in general topology.

Example 2.2. • The C∗-algebra C(I) on the closed interval I = [0, 1] is unital (so that
not contractible) but weakly identically contractible to C, by the C∗-homotopy induced by
a homotopy in [0, 1].

If we define ϕt(g)(x) = g((1 − t)x) ∈ C for g ∈ C(I) and t, x ∈ I. Then (ϕt) is a
continuous path of ∗-isomorphisms of A = C(I) between idA and χ0, so that A is weakly
identically contractible to C. Also, define ht(x) = (1− t)x ∈ [0, 1− t] ≈ [0, 1] for t, x ∈ I, so
that ϕt(A) ∼= A for t ∈ [0, 1). Then (ht) is a continuous path of homeomorphisms of [0, 1]
such that f0 = idX and id0, so that [0, 1] is identically contractible (to 0).

• The (interval) C∗-algebra IA = C(I, A) over a C∗-algebra A, of all A-valued, con-
tinuous functions on I, viewed as the C∗-tensor product C(I) ⊗ A, is weakly identicallty
contractible to C. In particular, IC = C(I). If A is unital, then C(I)⊗A is unital and not
contractible.

Note that ‖f ⊗ a‖ = ‖f‖‖a‖ for f ⊗ a ∈ IC ⊗ A. Hence, the (norm) homotopy (ϕt) for
IC to C is extended trivially as ϕt(f ⊗ a) = ϕt(f) ⊗ a.

• The C∗-algebra C0([0, 1)) on the half open interval [0, 1) (non-compact), viweded as
the cone CC ∼= C0([0, 1), C) ∼= C0([0, 1)) ⊗ C over C, is non-unital and weakly identically
contractible to C by the induced C∗-homotopy by a homotopy in [0, 1) (and is certainly
contractible, but soon later discussed in the example given below).

Indeed, if we define ψt(g)(x) = g( x
1−t ) for g ∈ C0([0, 1)), t ∈ [0, 1), and x ∈ [0, 1−t), and

ψ1(g)(x) = g(0). Then (ψt) is a weakly continuous path of ∗-isomorphisms of A = C0([0, 1))
between idA and χ0, so that A is weakly identically contractible to C. Also, define ht(x) =

x
1−t ∈ [0, 1) for t ∈ [0, 1) and x ∈ [0, 1 − t) ≈ [0, 1), and h1(x) = 0, so that ψt(A) ∼= A for
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t ∈ [0, 1). Then (ht) is a continuous path of homeomorphisms of [0, 1) such that f0 = idX

and f1 = id0, so that [0, 1) is identically contractible (to 0).
Furthermore, now let g(x) = x for x ∈ [0, 1

2 ] and g(x) = 1 − x for x ∈ [12 , 1) and
g ∈ C0([0, 1)). Then the norm ‖ψt(g)‖ = ‖g‖ = 1, but χ0(g) = g(0) = 0.

If a (compact or non-compact) space X is contractible to a point p ∈ X, then we define
Ip to be the closed ideal of all continuous functions of (C(X) or C0(X)) on X vanishing at
the point p. Note that Ip is isomorphic to C0(X \ {p}).

As a generalization from the case of C0([0, 1)) as a closed ideal of C([0, 1]),

Proposition 2.3. If a compact Hausdorff space X is contractible to a point p ∈ X, then
the closed ideal Ip = C0(X \ {0}) is contractible to zero.

As well, in this case, Ip ⊗ A for any C∗-algebra A is contractible to zero.

Proof. As shown above, it follows that C(X) is contractible to C (at p ∈ X). Therefore, Ip

is contractible to zero (at p ∈ X).
Since Ip is contractible, so is Ip ⊗ A by the same reason as in the example above.

Remark. Even if a non-compact, Hausdorff space X is contractible to a point p ∈ X,
the closed ideal Ip is not necessarily contractible. For instance, let X = [0, 1). Then X
is contractible to {0}, but I0 = C0((0, 1)) is not contractible. However, I0 in this case
is weakly contractible to C since (0, 1) is contractible and non compact. Note also that
(0, 1)+ ≈ T the one-dimensional torus, which is not contractible.

We now define that a non-compact topological space X is extended contracible (in
the one-point compactification X+ = X ∪{∞} of X) if the identity map idX+ : X+ → X+

is homotopic to the constant map id∞ on X+, which sends elements of X+ to the point ∞.
We write F+ for the corresponding homotopy on I×X+ and call it the extended homotopy
for X+.

Possibly, the most important thing to notice at this moment is that

Proposition 2.4. (1) Let X be a non-compact, locally compact Hausdorff space. Then X
is extended contractible in X+ in our sense if and only if X+ is contractible.

(2) If X is extended contractible in X+ in our sense, in other words, if X is a one-point
un-compactification of a contractible space, then C0(X) is contractible to zero.

(3) The direct product of finitely many, extended contractible, non-compact locally com-
pact Hausdorff spaces is also extended contractible.

Proof. By definition, the first statement (1) holds.
The second statement (2) follows from that C0(X) ∼= I∞ in C(X+).
For the third (3), if X1, · · · , Xn are extended contractible, non-compact locally compact

Hausdorff spaces, then (Πn
i=1Xi)+ is contractible because the coordinante homotopy in X+

i

extends in (Πn
i=1Xi)+ as a product of the homotopies

Example 2.5. • Let A = C0([0, 1)). Then A is contractible (to zero) as in the references
([2], [4], and [8]).

Indeed, define ϕt(g)(x) = g(t + x(1 − t)) ∈ C for x ∈ [0, 1) and t ∈ [0, 1]. Then
ϕ0(g)(x) = g(x) and ϕ1(g)(x) = g(1) = 0, and ϕt for t ∈ [0, 1) are ∗-isomorphisms of
A. Also the space [0, 1) is contractible (but to 1 6∈ [0, 1), however in [0, 1]), because the
maps on [0, 1) defined by ft(x) = t + x(1 − t) ∈ [t, 1) ≈ [0, 1) give a continuous path of
homeomorphisms of [0, 1) such that f0 = idX and f1 = id1.

Therefore, [0, 1) is extended contractible in [0, 1)+ = [0, 1] and C0([0, 1)) is identically
contractible.



Remark. Note that a contractible space in the 1-dimensional closed interval I = [0, 1]
is always identically contractible. Moreover, any 1-dimensional contractible space in I is
homeomorphic to either I = [0, 1], I1 = [0, 1), or I0,1 = (0, 1). Furthermore, I = [0, 1] is a 1-
dimensional compact manifold with boundary ∂I = {0, 1}, and I1 = [0, 1) is a 1-dimensional
non-compact manifold with boundary ∂I1 = {0}, and I0,1 = (0, 1) is a 1-dimensional non-
compact (or open) manifold without boundary.

On the other hand, an extended contractible space may or may not be connected.

Example 2.6. Let X = [0, 1
2 ) ∪ ( 1

2 , 1] be a union of half open intervals. Then X is non-
connected and is viewed as the one-point un-compactification of [0, 1] a contractible space.
Hence C0(X) is contractible to zero. Note that C0(X) ∼= C0([0, 1

2 ]) ⊕ C0((1
2 , 1]) with both

components contractible to zero.

Just as the 1-dimensional case of connected sums of topological manifolds, one can
define (but) a non-connected sum of two contractible spaces X and Y in [0, 1], denoted
as X#pY , for a point p viewed in the interiors X◦ and Y ◦ of X and Y respectively, where
X is viewed in the line of a Euclidean space and the boundary ∂X is X \ X◦. More
precisely, X#pY is defined by removing a point in the interiors X◦ and Y ◦ of X and Y
respectively, each identified with a point p, to make disjoint unions X \ {p} = X1

p t X2
p

and Y \ {p} = Y 1
p t Y 2

p and by gluing X1
p and Y 1

p together with p and gluing X2
p and Y 2

p

together with p to make two lines X1
p ∪ {p} ∪ Y 1

p and X2
p ∪ {p} ∪ Y 2

p , where each p in these
unions are assumed to be distinct. By definition, the non-connected sum X#pY is a disjoint
union of two contractible line segments Lj (j = 1, 2) in [0, 1], so that X#pY = L1 t L2.
Note that X#pY is not contractible, and C(X#pY ) ∼= C(L1) ⊕ C(L2), and C0(X#pY ) ∼=
C0(L1) ⊕ C0(L2) where L1 or L2 may be compact and that X#pY is compact if and only
if X and Y are compact.

Example 2.7. We have [0, 1]#p[0, 1] ≈ [0, 1] t [0, 1] ≡ t2[0, 1], and [0, 1)#p[0, 1) ≈ [0, 1] t
(0, 1), and (0, 1)#p(0, 1) ≈ t2(0, 1), and [0, 1]#p[0, 1) ≈ [0, 1] t [0, 1), and [0, 1]#p(0, 1) ≈
t2[0, 1), and [0, 1)#p(0, 1) ≈ [0, 1)#p(0, 1).

Note that only the case X = [0, 1]#p(0, 1) ≈ t2[0, 1) is extended contractible, with
X+ ≈ [0, 1].

Moreover, we can define inductively a successive non-connected sum of n contractible
spaces X1, · · · , Xn in [0, 1] as

#n
pi

Xi ≡ (· · · ((X1#p1X2)#p2X3) · · ·#pn−1Xn,

where each point pk is identified with both a point of the interior of #k−1
pi

Xi and a point
of the interior of Xk+1. The operation taking a non-connected sum is associative. Namely,
for example, (X1#p1X2)#p2X3 ≈ X1#p1(X2#p2X3), where for this we may assume that
p2 ∈ X2. Note that the points p1 and p2 and the points pk in more general may or may not
be the same. Even if pi = pj in [0, 1] with i 6= j, the attached points corresponding to pi

and pj are assumed to be distinct. Therefore, we always have

#n
pi

Xi ≈ L1 t L2 t · · · t Ln ≡ tn
i Li,

where each Li is a contractible space in [0, 1].

Proposition 2.8. Let X1, · · · , Xn be contractible spaces in [0, 1]. Then a disconnected sum
#n

pi
Xi is a non-contractible, locally compact Hausforff space, and is compact if and only if

each Xi is compact. We have ∂(#n
pi

Xi) = ∪i∂Xi.
A non-compact #n

pi
Xi is extended contractible if and only if #n

pi
Xi is homeomorphic to

the disjoint union tn[0, 1). Hence, C0(tn[0, 1)) ∼= ⊕nC0([0, 1)) is contractible to zero.
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Proof. The first part is clear.
For the second, note that if a non-compact #n

pi
Xi contains a Xi, homeomorphic to (0, 1),

then the one-point compactification (#n
pi

Xi)+ contains a circle embedded as a subset, so
that it can not be contractible.

Recall that the connected sum M#N of two topological manifolds M and N of dimension
d ≥ 2 is obtained by removing the d-dimensional closed unit ball B viewed in M and N
and attaching M \ B and N \ B together with the boundary ∂B of B along. Note that
∂B is not contractible. Hence M#N is always not contractible even when M and N are
contractible.

On the other hand, one can also define a pointed jointed sum of two spaces X and Y ,
denoted as X tp Y , for a point p viewed in X and Y . More precisely, X#pY is defined by
joining X and Y at p in the disjoint union XtY . By definition, if X and Y are contractible,
then the pointed jointed sum X tp Y is contractible.

Moreover, we can define inductively a successive pointed jointed sum of n spaces
X1, · · · , Xn as

tn
pi

Xi ≡ (· · · ((X1 tp1 X2) tp2 X3) · · · tpn−1 Xn,

where each point pk is identified with both a point of tk−1
pi

Xi and a point of Xk+1. By
definition, if X1, · · · , Xn are contractible, then a successive pointed jointed sum tn

pi
Xi is

contractible. To have associativity for successive pointed jointed sums, such as

(X1 tp1 X2) tp2 X3 ≈ X1 tp1 (X2 tp2 X3),

we may assume that each pi is in Xi. We assume this associativity in what follows.
Note that homeomorphism classes of pointed jointed sums do depend on both the way of
arrangement (or permutation with respect to i) of Xi and the choice (distinct or not) of
the points pi in general. For instance,

([0, 1] t 1
3

(0, 1)) t 1
2

[0, 1] 6≈ ((0, 1) t 1
3

[0, 1]) t 1
2

[0, 1].

Proof. Indeed, consider the interval [ 13 , 1
2 ] viewed in the middle intervals. The jointed points

1
3 and 1

2 emit three intervals closed or open at the other end points respectively (2 closed
and 1 open at 1

3 and 1
2 and 2 open and 1 closed at 1

3 and 3 closed at 1
2 ), whose respective

parts in the jointed sums are not homeomorphic respectively.

Proposition 2.9. Let X1, · · · , Xn be contractible spaces. A pointed jointed sum tn
pi

Xi is
a contractible, locally compact Hausforff space, and is compact if and only if each Xi is
compact, and ∂(tn

pi
Xi) = ∪i∂Xi.

A non-compact tn
pi

Xi is extended contractible if and only if its boundary has only one
point.

Moreover, if each Xi is identically contractible, then tn
pi

Xi is identically contractible.

Proof. Note that for a non-compact tn
pi

Xi, if ∂(tn
pi

Xi) has more than one point, then the
one-point compactfication (tn

pi
Xi)+ contains a circle embedded as a subset and thus the

compactification is not contractible.
Since each Xi is identically contractible by a homotopy, so is the jointed sum tn

pi
Xi by

taking the (simultaneous) homotopy induced by the homotopies of Xi

Let M and N be topological manifolds of dimension d ≥ 1 (or greater than d). We
define a d-dimensional balled jointed sum of M and N to be obtained by identifying the
d-dimensional closed unit balls B viewed in M and N , and to be denoted by M tB N .
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Note that the 1-dimensional closed unit ball is the closed interval [−1, 1]. Also, a pointed
jointed sum may be defined to be a zero-dimensional jointed sum. Moreover, one can
define inductively a successive d-dimensional (or at most) balled jointed sum of topological
manifolds M1, · · · ,Mn of dimension d (or greater than d) by

tn
Bi

Mi ≡ (· · · ((M1 tB1 M2) tB2 M3) · · · ) tBn−1 Mn,

where each Bi is a d-dimensional (or at most) closed unit ball viewed in Mi and Mi+1. Note
that the dimension d may not be constant as dim Bi = di for i. By definition, if M1, · · · ,Mn

are contractible, then tn
Bi

Mi is also contractible, but only a space, not a manifold in general.
To have associativity for successive balled jointed sums, such as

(M1 tB1 M2) tB2 M3 ≈ M1 tB1 (M2 tB2 M3),

we may assume that each Bi is in Mi. We assume this associativity in what follows.
Note that homeomorphism classes of balled jointed sums do depend on both the way of
arrangement (or permutation with respect to i) of Mi and the choice (distinct or not) of
the balls Bi in general.

As a collection, we obtain

Table 1: Classification for contractible spaces and examples by C∗-algebras

C∗-algebras \ Spaces Compact Non-compact, contractible
Contractible No Extended contractible:

to zero I1 = [0, 1), Id
1 = ΠdI1,

(non-unital) (tn−1
pi

I) tpn−1 I1,
(tn−1

Bi
Id) tBn−1 Id

1

Non-contractible Contractible: Non-extended contractible:
to zero I = [0, 1], Id I0,1 = (0, 1), Id

0,1 ≈ Rd,
(unital or non-unital) tn

pi
I, tn

Bi
Id tn+m+l

pi
Xi,

tn+m+l
Bi

Xd
i (m + l ≥ 2)

(Xi = I, I1, I0,1 n,m, l copies)

Remark. There are non-contractible spaces whose C∗-algebras are contractible to zero, such
as disjoint unions of extended contractible, non-compact locally compact Hausdorff spaces
like tn[0, 1).

It follows from the Table 1 that

Corollary 2.10. The being or not being contractible to zero for C∗-algebras (together with
unitalness or non-unitalness for C∗-algebras) classifies contractible spaces to be compact or
non-compact and to be extended contractible or not.

Remark. Note that compactness and non-compactness for spaces just correspond to unital-
ness and non-unitalness for C∗-algebras, respectively.

Now let X be a topological space. Denote by ∂X the boundary of X, which is equal to
X \ (X)◦, where X is the closure of X in a suitable topology (or a suitable compactification
of X along ∂X) and (X)◦ is the interior of X, where note that we mostly deal with topo-
logical spaces X viewed as (homeomorphically bounded) subsets with relative topology in
Euclidean spaces and take their closures X in there. We may say that ∂X \ X = X \ X is
the attached boundary of X and X is the flat compactification of X.
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Example 2.11. Let I = [0, 1]. Then ∂I = {0, 1} and ∂I \ I = ∅, and also ∂(Id) \ Id = ∅.
Let I1 = [0, 1). Then I1 = [0, 1], ∂I1 = {0, 1} and ∂I1 \ I1 = I1 \ I1 = {1}.
Let I0,1 = (0, 1). Then I0,1 = [0, 1], ∂I0,1 = {0, 1} and ∂I0,1 \ I0,1 = {0, 1}.
We have I2

1 = [0, 1]2, and ∂(I2
1 ) \ I2

1 = ({1} × [0, 1]) ∪ ([0, 1] × {1}) ≈ [0, 1], which is
contractible and has covering dimension one.

We have I2
0,1 = [0, 1]2, and ∂(I2

0,1) \ I2
0,1 ≈ S1 the 1-dimensional sphere, which is not

contractible and has covering dimension one.

Table 2: Classification for examples of contractible spaces by boundaries

Attached boundaries Contractible spaces
No Compact: I = [0, 1], Id, tn

pi
I, tn

Bi
Id

One point Non-compact: I1 = [0, 1),
(tn−1

pi
I) tpn−1 I1 (n ≥ 2)

Contractible, dimension d − 1 Non-compact: Id
1 , (tn−1

Bi
Id) tBn−1 Id

1

Two points Non-compact: I0,1 = (0, 1),
m + 2l points tn+m+l

pi
Xi, tn+m+l

Bi
Xi (m + 2l ≥ 2)

(Xi = I, I1, I0,1 n,m, l copies, resp)
Non-contractible, dim d − 1 Id

0,1 ≈ Rd (d ≥ 2)
Non-contractible, dim d − 1, tn+m+l

Bi
Xd

i (m + l ≥ 2, d ≥ 2)
m + l components (Xi = I, I1, I0,1 n,m, l copies, resp)

It follows from the Tables 1 and 2 that

Corollary 2.12. The being contractible and being unital or not for C∗-algebras, together
with attached boundaries for spaces as similar invariants, and with dimension and pointed
or balled jointedness for spaces or manifolds classify (up to homeomorphisms in part) 1-
dimensional, contractible manifolds and d-dimensional, jointed sums of d-dimensional con-
tractible, their product manifolds, as in the collection lists above.

Remark. The homeomorphism classes of the spaces tn+m+l
pi

Xi with Xi = I, I1, or I0,1

n,m, l copies respectively do depend on how to take the points pj . For instance, all pj may
be the unique point, like pj = 1

2 . Namely, the homeomorphism classes depend on that pj

are mutually, the same or different and as well their positions, in general. The similar things
hold for tn+m+l

Bi
Xd

i .
It follows from the Table 3 

Corollary 2.13. The being either unital and identically contractible to C or being non-
unital and weakly identically contractible to C for C∗-algebras classifies contractible spaces
to be compact or not to be.

3 K-theory We now consider K-theory (abelian) groups for C∗-algebras.
It is known that if a C∗-algebra A is contractible to zero, then the K-theory groups

K0(A) and K1(A) both are zero, Note that the K-theory groups are homotopy invariant.
In fact, the zero C∗-algebra {0} has K0 zero and the unitization {0}+ = C has K1 zero, so
that the zero C∗-algebra has K1 zero.

In particular,

(at the top of the next page) that



　　　　　　　　　　　　　　　　　TAKAHIRO SUDO

Table 3: Classification for identically contractible spaces and examples by C∗-algebras

C∗-algebras \ Spaces Compact Non-compact, contractible
Unital, identically Contractible: No
contractible to C Id, tn

pi
Id, tn

Bi
Id

Non-unital, No Extended: Id
1 ,

weakly identically (tn−1
pi

Id) tpn−1 Id
1 , (tn−1

Bi
Id) tBn−1 Id

1

contractible to C Non-extended: Id
0,1,

tn+m+l
pi

Xi, tn+m+l
Bi

Xd
i (m + 2l ≥ 2)

(Xi = I, I0, I0,1 n,m, l copies)

Example 3.1. Since C0([0, 1)) = CC the cone over C is contractible, it follows that
K0(C0([0, 1))) ∼= 0 and K1(C0([0, 1))) ∼= 0. The same holds by replacing [0, 1) with
(tn−1

pi
I) tpn−1 I1 and also by CC with CA ∼= C0([0, 1)) ⊗ A for any C∗-algebra A.

As a contrast, with (1) below certainly known ([8]),

Proposition 3.2. (1) Let X be a contractible, compact space. Then

K0(C(X)) ∼= Z and K1(C(X)) ∼= 0.

(2) For a non-comapct space X, we have

K0(C0(X)) ∼= K0(C(X+))/Z and K1(C0(X)) ∼= K1(C(X+)).

(3) If a non-compact space X is extended contractible, then we have

K0(C0(X)) ∼= 0 and K1(C0(X)) ∼= 0.

Proof. The first statement (1) holds because Kj(C(X)) ∼= Kj(C) for j = 0, 1.
For the second (2), there is the short exact sequence of C∗-algebras:

0 → C0(X) → C(X+) → C → 0

that splits, where the section from C to C(X+) is given by sending 1 ∈ C to 1 ∈ C(X+).
The associated six-term exact sequence of K-theory groups implies that

Kj(C(X+)) ∼= Kj(C0(X)) ⊕ Kj(C)

for j = 0, 1, with K0(C) ∼= C and K1(C) = 0.
The third (3) follows from (1) and (2) above.

Example 3.3. We have K0(C([0, 1])) ∼= Z and K0(C([0, 1])) ∼= 0. Since a compact, pointed
or balled, jointed sums J = tn

pi
I or J = tn

Bi
Id contractible, thus K0(C(J)) ∼= Z and

K1(C(J)) ∼= 0.
There is the following short exact sequence of C∗-algebras:

0 → C0((0, 1)) → C0([0, 1)) → C → 0,

which is not splitting, but the six-term exact sequence of K-theory groups, associated,
becomes:

K0(C0((0, 1))) −−−−→ 0 −−−−→ Z

∂

x y∂

0 ←−−−− 0 ←−−−− K1(C0((0, 1)))
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with the maps ∂ as the up and down arrows in the left and right, respectively, the index
map and the exponential map (as a dual of the index map), and hence K0(C0((0, 1))) ∼= 0
and K1(C0((0, 1))) ∼= Z.

The converses of (1) and (3) in the proposition above do not hold for contractible spaces.

Example 3.4. Let X = R2n be the 2n-dimensional Euclidean space, for n ≥ 1, which is
contractible but non-compact. Then

K0(C0(R2n)) ∼= K0(C) ∼= Z and K1(C0(R2n)) ∼= K1(C) ∼= 0

by Bott periodicity of K-theory groups. Also, X+ is homeomorphic to S2n the 2n-dimensional
sphere, which is not contractible, because K0(C(S2n)) ∼= Z2 and K1(C(S2n)) ∼= 0, so that
X is not extended contractible.

Let X = R2n × [0, 1) the product space. Then

Kj(C0(X)) ∼= Kj(C0(R2n) ⊗ C0([0, 1))) ∼= Kj(C0([0, 1))) ∼= 0

for j = 0, 1. Also, X+ is homeomophic to S2n t1 I1, which is not contractible, because
S2n t1 I1 is homotopic to S2n, so that X is not extended contractible.

Proposition 3.5. Let #pi
Xi be the successive non-connected sum of n contractible spaces

X1, · · · , Xn in [0, 1], with #piXi ≈ tn
i=1Li. Then

Kj(C0(#piXi)) ∼= ⊕n
i=1Kj(C0(Li))

for j = 0, 1.

Proposition 3.6. Let X tp Y be the (pointed) jointed sum of two spaces X,Y . If X tp Y
is compact, then

K0(C(X tp Y )) ∼= K0(C0(X \ {p})) ⊕ K0(C0(Y \ {p})) ⊕ Z,

K1(C(X tp Y )) ∼= K1(C0(X \ {p})) ⊕ K1(C0(Y \ {p})),

and if X tp Y is not compact, then

K0(C0(X tp Y )) ∼= K0(C0(X \ {p})) ⊕ K0(C0(Y \ {p})),
K1(C0(X tp Y )) ∼= [K1(C0(X \ {p})) ⊕ K1(C0(Y \ {p}))]/Z.

Proof. There is the following short exact sequence of C∗-algebras:

0 → C0(X \ {p}) ⊕ C0(Y \ {p}) → C0(X tp Y ) → C → 0,

which splits only when X tp Y is compact, where the quotient map is the evaluation map
at p. It follows that if X tp Y is compact, then

Kj(C(X tp Y )) ∼= Kj(C0(X \ {p})) ⊕ Kj(C0(Y \ {p})) ⊕ Kj(C)

for j = 0, 1. If Xtp Y is not compact, then the induced quotient map from K0(C0(Xtp Y ))
to K0(C) is zero, so that it follows from exactness of the six-term exact sequences of K-
theory groups that

K0(C0(X tp Y )) ∼= K0(C0(X \ {p})) ⊕ K0(C0(Y \ {p}))

and
K1(C0(X tp Y )) ∼= [K1(C0(X \ {p})) ⊕ K1(C0(Y \ {p}))]/K1(C).



Moreover

Proposition 3.7. Let tn
pi

Xi be the successive (pointed) jointed sum of n path-connected
spaces X1, · · · , Xn. If tn

pi
Xi is compact, then

K0(C(tn
pi

Xi)) ∼= ⊕n
i=1K0(C0(Xi \ {pi−1})) ⊕ Z,

K1(C(tn
pi

Xi)) ∼= ⊕n
i=1K1(C0(Xi \ {pi−1})).

If tn
pi

Xi is not compact, then

K0(C0(tn
pi

Xi)) ∼= ⊕n
i=1K0(C0(Xi \ {pi−1})),

K1(C0(tn
pi

Xi)) ∼= [⊕n
i=1K1(C0(Xi \ {pi−1}))]/Z.

Proof. There is a homotopy between X = tn
pi

Xi and the jointed sum Y = tn
pXi with the

common point p as in the case where pi = pi+1 (identified) for 1 ≤ i ≤ n − 2. Then there
is the following short exact sequence of C∗-algebras:

0 → ⊕n
i=1C0(Xi \ {pi−1}) → C0(Y ) → C → 0,

which splits only when Y is compact, where the quotient map is the evaluation map at the
common point p and Xi \ {p} ≈ Xi \ {pi−1}. It follows that if Y is compact (if and only if
X is compact), then

Kj(C(Y )) ∼= [⊕n
i=1Kj(C0(Xi \ {pi−1}))] ⊕ Kj(C)

for j = 0, 1. If Y is not compact, then the induced quotient map from K0(C0(Y )) to K0(C)
is zero, so that it follows from exactness of the six-term exact sequences of K-theory groups
that

K0(C0(Y )) ∼= ⊕n
i=1K0(C0(Xi \ {pi−1}))

and K1(C(Y )) ∼= [⊕n
i=1K1(C0(Xi \ {pi−1}))]/K1(C).

As examples,

Example 3.8. Let X = tn
pi

I1 be a (pointed) jointed sum of n copies of I1 = [0, 1) (n ≥ 2).
Then

K0(C0(tn
pi

I1)) ∼= 0 and K1(C0(tn
pi

I1)) ∼= Zn−1.

This also holds for n = 1, with t1I1 = I1 and Z0 = 0.

Proof. There is a homotopy between X and tn
0 I1 the jointed sum of n copies of I1 at the

common zero point 0. Because if I1 = [0, pi) ∪ [pi, 1) and [0, pi) does not contain other pj ,
then it is homotopic to [pi, 1) in X. We continue this process inductively and finitely to
obtain the required homotopy.

When n = 2, X is homotopic to (0, 1) ≈ t2
0I1.

When n = 3, there is the following short exact sequence:

0 → C0((0, 1)) → C0(t3
0I1) → C0(t2

0I1) → 0,

where t2
0I1 in the quotient is homeomoprhic to (0, 1) and closed in t3

0I1, and its complement
is (0, 1) in the ideal. The six-term exact sequence of K-theory groups, associated, becomes:

0 −−−−→ K0(C0(t3
0I1)) −−−−→ 0

∂

x y∂

Z ←−−−− K1(C0(t3
0I1)) ←−−−− Z.

 TAKAHIRO SUDO
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It follows that K0(C0(t3
0I1)) ∼= 0 and K1(C0(t3

0I1)) ∼= Z2.
By induction, we assume that K0(C0(tn

0 I1)) ∼= 0 and K1(C0(tn
0 I1)) ∼= Zn−1. Then

there is the following short exact sequence:

0 → C0((0, 1)) → C0(tn+1
0 I1) → C0(tn

0 I1) → 0

since tn
0 I1 is closed in tn+1

0 I1 and its complement is (0, 1). The six-term exact sequence of
K-theory groups, associated, becomes:

0 −−−−→ K0(C0(tn+1
0 I1)) −−−−→ 0

∂

x y∂

Zn−1 ←−−−− K1(C0(tn+1
0 I1)) ←−−−− Z.

It follows that K0(C0(tn+1
0 I1)) ∼= 0 and K1(C0(tn+1

0 I1)) ∼= Zn.
There is also the following short exact sequence:

0 → C0(tnI0,1) → C0(tn
0 I1) → C → 0,

which is not splitting, with C0(tn
0 I1) ∼= ⊕nC0((0, 1)). The six-term exact sequence of

K-theory groups, associated, becomes:

⊕n0 −−−−→ K0(C0(Z)) −−−−→ Z

∂

x y∂

0 ←−−−− K1(C0(Z)) ←−−−− ⊕nZ

and K0(C0(Z)) ∼= 0 and K1(C0(Z))) ∼= Zn−1.

Example 3.9. Let X = tn
pi

I0,1 be a (pointed) jointed sum of n copies of I0,1 = (0, 1) ≈ R
(n ≥ 2). Then

K0(C0(tn
pi

I0,1)) ∼= 0 and K1(C0(tn
pi

I0,1)) ∼= Z2n−1.

This also holds for n = 1, with t1I0,1 = I0,1.

Proof. There is a homotopy between X and t2n
0 I1 the jointed sum at the common zero

point 0. By Proposition 3.7 above, we obtain the conclusion.

Example 3.10. Let X = tn+m+l
pi

Xi be a (pointed) jointed sum of Xi = I, I1, or I0,1, with
n copies of I, m copies of I1, and l copies of I0,1. Then

K0(C0(tn+m+l
pi

Xi)) ∼= 0 and K1(C0(tn+m+l
pi

Xi)) ∼= Zm+2l−1.

Proof. There is a homotopy between X and tm+2l
0 I1 the jointed sum at the common zero

point 0, as considered above. By Proposition 3.7 above, we obtain the conclusion.

As 2-dimensional analogues as examples,

Example 3.11. Let X = tn
pi

(I2)− be a (pointed) jointed sum of n copies of (I2)− the
one-potint uncompactification of the 2-direct product of I = [0, 1]. Then

K0(C0(X)) ∼= 0 and K1(C0(X)) ∼= Zn−1.
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Proof. To determine Kj(C0(X)), it is enough to compute Kj(C0((I2)− \ {pi})). Then one
can show that the space (I2)− \ {pi} is homotopic to (0, 1). Because pi is different from
the removed point (say qi) of each I2 to make (I2)−, and that I2 is homotopic to a 1-
dimensional closed interval with end points identified with pi and qi, so that (I2)− \ {pi} is
homotopic to the interior of the interval.

Quite similarly, as higher-dimensional analogues as examples,

Example 3.12. Let m be a positive integer with m ≥ 2. Let X = tn
pi

(Im)− be a (pointed)
jointed sum of n copies of (Im)− the one-potint uncompactification of the m-direct product
of I = [0, 1]. Then

K0(C0(X)) ∼= 0 and K1(C0(X)) ∼= Zn−1.

Moreover,

Example 3.13. Let X = tn
pi

R2 be a (pointed) jointed sum of n copies of R2. Then

K0(C0(X)) ∼= Zn and K1(C0(X)) ∼= Zn−1.

Proof. Note that R2 is viewed as (S2)−, so that (S2)− \ {pi} is homeomorphic to S1 × R,
where the removed two points from S2 may be assumed to be north and south poles in S2.
Then we have Kj(C0(S1 × R)) ∼= Kj+1(C(S1)) ∼= Z for j = 0, 1 (mod 2).

Similarly,

Example 3.14. Let X = tn
pi

R2m be a (pointed) jointed sum of n copies of R2m. Then

K0(C0(X)) ∼= Zn and K1(C0(X)) ∼= Zn−1.

Proof. Note that R2m is viewed as (S2m)−, so that (S2m)− \ {pi} is homeomorphic to
S2m−1 × R, where we may assume that the removed two points from S2m are north and
south poles in S2m. Then we have Kj(C0(S2m−1 ×R)) ∼= Kj+1(C(S2m−1)) ∼= Z for j = 0, 1
(mod 2).

On the other hand,

Example 3.15. Let X = tn
pi

R2m+1 be a (pointed) jointed sum of n copies of R2m+1. Then

K0(C0(X)) ∼= 0 and K1(C0(X)) ∼= Z2n−1.

Proof. Note that R2m+1 is viewed as (S2m+1)−, so that (S2m+1)− \ {pi} is homeomorphic
to S2m ×R, where we may assume that the removed two points from S2m+1 are north and
south poles in S2m+1. Then we have Kj(C0(S2m × R)) ∼= Kj+1(C(S2m)) for j = 0, 1 (mod
2) and K0(C(S2m)) ∼= Z2 and K1(C(S2m)) ∼= 0.

Furthermore,

Example 3.16. Let X = tn+m
pi

Xi be a (pointed) jointed sum of Xi of n Euclidean spaces
with dimensions even and m Euclidean spaces with dimensions odd. Then

K0(C0(X)) ∼= Zn and K1(C0(X)) ∼= Zn+2m−1.

Next, we consider the balled case.
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Proposition 3.17. Let MtB N be the d-dimensional (balled) jointed sum of two topological
manifolds M,N of dimension d (or greater than d). If M tB N is compact, then

K0(C(M tB N)) ∼= K0(C0(M \ B)) ⊕ K0(C0(N \ B))) ⊕ Z,

K1(C(M tB N)) ∼= K1(C0(M \ B))) ⊕ K1(C0(N \ B))),

and if M tB N is not compact, then

K0(C0(M tB N)) ∼= K0(C0(M \ B))) ⊕ K0(C0(N \ B))),
K1(C0(M tB N)) ∼= [K1(C0(M \ B)) ⊕ K1(C0(N \ B))]/Z.

Proof. The proof is exactly the same as that for Proposition 3.6. Note that Kj(C(B)) ∼=
Kj(C) for j = 0, 1 and the d-dimensional closed ball B is contractible.

Moreover,

Proposition 3.18. Let tn
Bi

Mi be the successive d-dimensional (balled) jointed sum of path-
connected, topological manifolds M1, · · · ,Mn of dimension d (or greater than d). If tn

Bi
Mi

is compact, then

K0(C(tn
Bi

Mi)) ∼= ⊕n
i=1K0(C0(Mi \ Bi−1)) ⊕ Z,

K1(C(tn
Bi

Mi)) ∼= ⊕n
i=1K1(C0(Mi \ Bi−1)).

If tn
Bi

Mi is not compact, then

K0(C0(tn
Bi

Mi)) ∼= ⊕n
i=1K0(C0(Mi \ Bi−1)),

K1(C0(tn
Bi

Mi)) ∼= [⊕n
i=1K1(C0(Mi \ Bi−1))]/Z.

Proof. The proof is exactly the same as that for Proposition 3.7.

Example 3.19. Let M = tn
Bi

Id
1 , with I1 = [0, 1) and n ≥ 2. Then

K0(C0(M)) ∼= 0 and K1(C0(M)) ∼= Zn−1.

If M = Id
1 , then K0(C0(M)) ∼= 0 ∼= K1(C0(M)).

Proof. We compute Kj(C0(Id
1 \Bi)). Since each ball Bi is contractible, there is the following

short exact sequence of C∗-algebras:

0 → C0(Id
1 \ Bi) → C0(Id

1 ) → C → 0.

Since C0(Id
1 ) ∼= ⊗dC0(I1) is a contractible C∗-algebra, hence Kj(C0(Id

1 )) ∼= 0 for j = 0, 1.
Note also that the space Id

1 is extended contractible since (Id
1 )+ is contractible. It follows

from the six-term exact sequence of K-theory groups that

K0(C0(Id
1 \ Bi)) ∼= 0 and K1(C0(Id

1 \ Bi)) ∼= Z.

Example 3.20. Let M = tn
Bi

Id
0,1, with I0,1 = (0, 1). If d is even, then

K0(C0(M)) ∼= Zn and K1(C0(M)) ∼= Zn−1,

and if d is odd, then K0(C0(M)) ∼= 0 K1(C0(M)) ∼= Z2n−1.
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Proof. We compute Kj(C0(Id
0,1 \ Bi)). Since each ball Bi is contractible, there is the fol-

lowing short exact sequence of C∗-algebras:

0 → C0(Id
0,1 \ Bi) → C0(Id

0,1) → C → 0.

Since C0(Id
0,1) ∼= ⊗dC0(R) = SdC, we have K0(SdC) ∼= Z and K0(SdC) ∼= 0 if d is even and

K0(SdC) ∼= 0 and K0(SdC) ∼= Z if d is odd. It follows from the six-term exact sequence of
K-theory groups that if d is even, then

K0(C0(Id
0,1 \ Bi)) ∼= Z and K1(C0(Id

0,1 \ Bi)) ∼= Z,

and if d is odd, then K0(C0(Id
0,1 \ Bi)) ∼= 0 and K1(C0(Id

0,1 \ Bi)) ∼= Z2.

Furthermore, combining Examples 3.19 and 3.20 with Proposition 3.18 we obtain

Example 3.21. Let M = tn+m+l
Bi

Xd
i , where Xi are n, m, l copies of I, I1, I0,1 respectively.

If m + l ≥ 1, then M is non-compact, and if d is even, then

K0(C0(M)) ∼= Zl and K1(C0(M)) ∼= Zm+l−1

and if d is odd, then K0(C0(M)) ∼= 0 and K1(C0(M)) ∼= Zm+2l−1.

Table 4: Classification for contractible spaces by K-theory of C∗-algebras

K-theory of C∗-algebras Contractible spaces
K0 = 0, K1 = 0 Non-compact, extended contractible:

I1, (In)− ≈ In
1 (n ≥ 2),

K0 = Z, K1 = 0 Compact: In

Noncompact, non-extended:
I2n
0,1 ≈ R2n

K0 = Zn, K1 = Zn−1 tn
pi

R2m (pointed),
tn

Bi
I2m
0,1 (balled)

K0 = 0, K1 = Z Noncompact, non-extended:
I2n+1
0,1 ≈ R2n+1,

t2
pI1, t2

p(I
m)− (pointed),

t2
BId

1 (balled)
K0 = 0, K1 = Zn−1 tn

pi
I1, tn

pi
(Im)− (pointed),

tn
Bi

Id
1 (balled)

K0 = 0, K1 = Zm+2l−1, tn+m+l
pi

Xi, tn+m+l
Bi

X2d+1
i ,

(Xi = I, I1, I0,1 n,m, l copies, m, l ≥ 1),
K0 = 0, K1 = Z2n−1 tn

pi
R, tn

pi
R2m+1 (pointed),

tn
Bi

I2m+1
0,1 (balled)

K0 = Zl, K1 = Zm+2l−1, tn+m+l
Bi

X2d
i ,

(Xi = I, I1, I0,1 n,m, l copies, m, l ≥ 1),
K0 = Zn, K1 = Zn+2m−1, tn+m

pi
Xi, tn+m

Bi
Xi (dim mixed),

with Xi = R2ni (1 ≤ i ≤ n),
Xi = R2mi+1 (n + 1 ≤ i ≤ n + m)

It follows from the Table 4 that
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Corollary 3.22. The ranks of K-theory groups for C∗-algebras (together with compactness
of spaces and dimension of spaces and that of balls in (generic) jointed sums and with
jointedness (jointed or not) and with arrangement (or permutation) in jointed sums) classify
contractible spaces as in the table (up to homeomorphisms) and to be compact, non-compact
and extended, or non-compact and non-extended.

Remark. Similarly, one can obtain almost the same table for identically contractible spaces.
In the statements above and below, to obtain classification results up to homeomor-

phisms we may assume that pointed or balled jointed sums are generic, i.e., points or balls
involved are mutually distinct.

Recall ([5] or [6]) that the Euler characteristic χ(A) of a C∗-algebra A is defined to be
the (formal) difference:

χ(A) = rankZK0(A) − rankZK1(A) ∈ Z ∪ {±∞} ∪ {∞−∞}

of the Z-ranks of the free abelian direct summands of the K-theory groups of A. In particu-
lar, it is shown that χ(C(X)) = χ(X), where χ(X) is the Euler characteristic of a compact
space (or a finite cell complex) X in homology (or cohomology) for spaces.

What’s more, it is deduced from the table 4 above that

Table 5: Classification for contractible spaces by the Euler characteristic

Euler numbers of C∗-algebras Contractible spaces
Zero: χ = 0 − 0 = 0 Non-compact, extended contractible:

I1, (In)− ≈ Id
1 (n ≥ 2)

Positive: χ = 1 − 0 = 1 > 0 Compact: In

Noncompact, non-extended: (even dim):
I2n
0,1 ≈ R2n,

χ = n − (n − 1) = 1 > 0 tn
pi

R2m (pointed),
tn

Bi
I2m
0,1 (balled)

Negative: χ = 0 − 1 = −1 < 0 Noncompact, non-extended:
(odd dim): I2n+1

0,1 ≈ R2n+1,
2-fold: t2

pI1, t2
p(I

m)− (pointed),
t2

BId
1 (balled)

χ = 0 − (n − 1) = 1 − n < 0 n-fold: tn
pi

I1, tn
pi

(Im)− (pointed),
tn

Bi
Id
1 (balled)

χ = 0 − (m + 2l − 1) tn+m+l
pi

Xi, tn+m+l
Bi

X2d+1
i ,

= 1 − m − 2l < 0 (Xi = I, I1, I0,1 n,m, l copies, m, l ≥ 1),
χ = 0 − (2n − 1) n-fold (odd dim): tn

pi
R,

1 − 2n < 0 tn
pi

R2m+1 (pointed),
tn

Bi
I2m+1
0,1 (balled)

χ = l − (m + 2l − 1) tn+m+l
Bi

X2d
i ,

= 1 − m − l < 0 (Xi = I, I1, I0,1 n,m, l copies, m, l ≥ 1)
χ = n − (n + 2m − 1) tn+m

pi
Xi, tn+m

Bi
Xi (dim mixed),

= 1 − 2m < 0 with Xi = R2ni (1 ≤ i ≤ n),
Xi = R2mi+1 (n + 1 ≤ i ≤ n + m)

It follows from the Table 5 that



　　　　　　　　　　　　　　　　　　TAKAHIRO SUDO

Corollary 3.23. The numbers or signs (being positive, zero, or negative) of the Euler
characteristic for C∗-algebras (together with compactness, dimension, jointedness of spaces,
and arrangement (or permutation) in (generic) jointed sums) classify contractible spaces
as in the table (up to homeomorphisms) and to be compact, non-compact and extended, or
non-compact and non-extended.

Remark. Our classification tables obtained as collections in this paper would be useful
for further classification of contractible spaces in more general, with more examples as
representatives to be added.

Once more,

Corollary 3.24. Our classfication tables say that contractible spaces restricted to examples
viewed as representatives of equivalence classes by homeomorphisms are classifiable by their
corresponding C∗-algebras and K-theory data, plus, compactness, dimension, pointed or
balled jointedness for spaces, and arrangement (or permutation) in (generic) jointed sums,
as complete invariants.

Remark. The covering dimension for spaces as an invariant can be replaced by the real
rank for C∗-algebras ([3]). Being compact for spaces corresponds to being unital for their
corresponding C∗-algebras. Also, being jointed for spaces corresponds to being jointed for
their corresponding C∗-algebras, and arrangement (or permutation) in jointed sums for
spaces corresponds to that in jointed sums for their corresponding C∗-algebras.

Corollary 3.25. Both the ranks of K-theory groups for C∗-algebras and the Euler char-
acteristic for C∗-algebras can not classify jointedness for spaces, and as well, can not do
pointed or balled jointed sums of contractible spaces, up to arrangement (or permutation),
in general, except that all the components in jointed sums are the same.

However, if restricted to this exceptional case, and further restricted with dimension
fixed in spaces and balls in (generic) jointed sums, the ranks and the Euler characteristic
together with compactness and jointedness for spaces can be complete invariants to classify
the contractible spaces as in the lists above, up to homeomorphisms.

Consequently, we obtain

Corollary 3.26. Let M,N be product manifolds of finitely many 1-dimensional contractible
manifolds. Then the d and d′-dimensional (with d, d′ ≥ 0), jointed sums tn

Bi
M and tm

B′
i
N

are homeomorphic, (which is equivalent to that

C(tn
Bi

M) ∼= C(tm
B′

i
N) or C0(tn

Bi
M) ∼= C0(tm

B′
i
N),

where both M and N are compact or not), if and only if

Kj(C(tn
Bi

M)) ∼= Kj(C(tm
B′

i
N)) or Kj(C0(tn

Bi
M)) ∼= Kj(C0(tm

B′
i
N))

for j = 0, 1, and n = m (jointedness), and dim M = dim N and dimBi = d = d′ = dimB′
i

for every i.
Furthermore, the K-theory group isomorphisms can be replaced by

χ(C(tn
Bi

M)) = χ(C(tm
B′

i
N)) or χ(C0(tn

Bi
M)) = χ(C0(tm

B′
i
N)),

with the same other conditions.

Proof. As a note, suppose that there is a homeomorphism ϕ : X → Y of locally compact
Hausdorff spaces. Then there is a ∗-isomorphism ψ : C0(Y ) → C0(X) defined by ψ(f) =
f ◦ ϕ for f ∈ C0(Y ). The converse also holds by that X is the spectrum of C0(X) by the
Gelfand transform.
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4 Noncommutative jointed sums We may say that a jointed sum of two C∗-algebras
A and B with a common quotient D is defined to be the pull back C∗-algebra A ⊕D B as

A ⊕D B = {(a, b) ∈ A ⊕ B |ϕ(a) = ψ(b)} ρ−−−−→ B

π

y yψ

A
ϕ−−−−→ D

where ϕ : A → D and ψ : B → D are quotient maps and π : A⊕D B → A and ρ : A⊕DB →
B are natural projections.

The Mayer-Vietoris sequence for K-theory of C∗-algebras (see [1]) is the following six-
term diagram:

K0(A ⊕D B)
(π∗,ρ∗)−−−−−→ K0(A) ⊕ K0(B)

ψ∗−ϕ∗−−−−→ K0(D)x y
K1(D)

ψ∗−ϕ∗←−−−− K1(A) ⊕ K1(B)
(π∗,ρ∗)←−−−−− K1(A ⊕D B)

In particular, it follows that

Proposition 4.1. Let A and B be contractible C∗-algebras with a common quotient D that
is contractible to C. Then

K0(A ⊕D B) ∼= 0 and K1(A ⊕D B) ∼= Z.

Proof. Indeed, the Mayer-Vietoris sequence becomes in this case:

K0(A ⊕D B)
(π∗,ρ∗)−−−−−→ 0 ⊕ 0

ψ∗−ϕ∗−−−−→ Zx y
0

ψ∗−ϕ∗←−−−− 0 ⊕ 0
(π∗,ρ∗)←−−−−− K1(A ⊕D B).

Now suppose that the jointed sum C∗-algebra A ⊕D B and a C∗-algebra C have a
common quotient E. Then one can define a successive jointed sum of three C∗-algebras

(A ⊕D B) ⊕E C

as the successive pull back C∗-algebra. Note that the associativity for successive jointed
sums may not hold or not be defined in general. To have the associativity as

(A ⊕D B) ⊕E C ∼= A ⊕D (B ⊕E C)

we further need to assume that E is a common quotient of B, C, and A ⊕D B.

Proposition 4.2. Let (A⊕D B)⊕E C be a successive jointed sum C∗-algebra of contractible
C∗-algebras A, B, C with quotients D and E that are contractible to C. Then

K0((A ⊕D B) ⊕E C) ∼= 0 and K1((A ⊕D B) ⊕E C) ∼= Z2.
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Proof. Indeed, the Mayer-Vietoris sequence becomes in this case:

K0((A ⊕D B) ⊕E C)
(π∗,ρ∗)−−−−−→ 0 ⊕ 0

ψ∗−ϕ∗−−−−→ Zx y
0

ψ∗−ϕ∗←−−−− Z ⊕ 0
(π∗,ρ∗)←−−−−− K1((A ⊕D B) ⊕E C),

where π : (A ⊕D B) ⊕E C → A ⊕D B and ρ : (A ⊕D B) ⊕E C → C by the same symbols as
for A ⊕D B, for convenience.

Inductively, one can define a successive jointed sum of C∗-algebras A1, · · · , An with
quotients D1, · · · , Dn−1 as

⊕n
Di

Ai ≡ (· · · ((A1 ⊕D1 A2) ⊕D2 A3) · · · ) ⊕Dn−1 An.

Note that the associativity for the successive jointed sums may not hold or not be defined
in general. To have the associativity as in the 3-fold case, we further need to assume that
the quotients are more common to have this as in the 3-fold case.

Proposition 4.3. Let ⊕n
Di

Ai be a successive jointed sum C∗-algebra of contractible C∗-
algebras A1, · · · ,An with quotients D1, · · · , Dn−1 that are contractible to C. Then

K0(⊕n
Di

Ai) ∼= 0 and K1(⊕n
Di

Ai) ∼= Zn−1.

Proof. We use induction by the same way as in the proof above.

Corollary 4.4. The jointed sum of two contractible C∗-algebras with a common quotient
that is contractible to C is not contractible.

As well, the successive jointed sum of n contractible C∗-algebras with successive common
quotients that are contractible to C is not contractible.

Remark. Since a contractible C∗-algebra A has K-theory groups zero, the Künneth formula
in K-theory for C∗-algebras implies that any tensor product of A with any other C∗-algebra
B has K-theory groups zero if A or B is in the bootstrap category.

What’s more. As an interest, we obtain

Proposition 4.5. Let A be a contractible C∗-algebra. Then any C∗-tensor product A ⊗ B
with any C∗-algebra B is contractible.

It follows that Kj(A ⊗ B) ∼= 0 for j = 0, 1.

Proof. There is a continuous homotopy (ϕt) between the identity map idA : A → A and the
zero map 0 : A → A, with ϕ1 = idA and ϕ0 = 0. For any simple tensor a ⊗ b ∈ A ⊗ B, we
define maps ψt : A⊗B → A⊗B by ψt(a⊗b) = ϕt(a)⊗b, which extends to ∗-homomorphism
from A ⊗ B to A ⊗ B. Then (ψt) gives a continuous homotopy between the identity map
idA⊗B : A ⊗ B and the zero map 0 : A ⊗ B → A ⊗ B.

Indeed, any element x ∈ A⊗B is approximated by finite sums of simple tensors, so that
x = limn→∞

∑n
k=1 ak ⊗ bk ≡ limn→∞ sn. Then define

ψt(x) = lim
n→∞

ψt(sn) = lim
n→∞

ψt(
n∑

k=1

ak ⊗ bk) = lim
n→∞

n∑
k=1

ϕt(ak) ⊗ bk,

which is well defined. Then

‖ψt(x) − ψs(x)‖
≤ ‖ψt(x) − ψt(sn)‖ + ‖ψt(sn) − ψs(sn)‖ + ‖ψs(sn) − ψs(x)‖,

which is arbitrary small when n is large enough and |t − s| is small enough.
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Remark. As for examples of noncommutative jointed sums, see the commutative cases in
the previous sections. One (principal case) of noncommutaive cases can be also obtained as
taking tensor products of C∗-algebras Ai with commutative C∗-algebras C0(Xi) and taking
their jointed sums, with quotients (of Ai or C0(Xi)) involved to be assumed. If the K-theory
groups of Ai are computable, then so are the K-theory groups of the jointed sums. As the
other cases, tensor products may be replaced by other operations such as crossed products
of C∗-algebras with suitable actions and free products of C∗-algebras.
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