
Scientiae Mathematicae Japonicae 00, No. 0(0000), 000–000 1

MULTIPLIERS WITH CLOSED RANGE ON FRÉCHET ALGEBRAS
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Abstract. In this paper, we determine several equivalent conditions pertaining to
closed range multipliers defined on a semisimple Fréchet locally m-convex algebra. More-
over, we give a complete description of the point spectrum and the residual spectrum of 
multipliers.

1. Introduction

The investigation of closed range multipliers, in the context of commutative semisimple 
Banach algebras was initiated by Glicksberg [8] in 1971, whereby he raised the following 
question: If T is a multiplier on a commutative semisimple Banach algebra A, whether a 
factorization T = PB, where P is an idempotent and B an invertible multiplier, is necessary 
and sufficient to ensure the closedness of T A? This problem was partially resolved by Host 
and Parreau [12] for a particular situation of the group algebra L1 (G), where G is a locally 
compact abelian group. Various equivalent conditions have been determined in [17] for a 
multiplier T defined on a semisimple Banach algebra to have closed range.

It is quite natural to ask whether the above characterization of closed range multipliers 
holds for a semisimple Fréchet locally m-convex algebra A. In this paper, we consider this 
problem and establish several equivalent conditions pertaining to closed range multipliers 
on A. Precisely, we prove that if A has a bounded approximate identity, then T A is a 
closed ideal with a bounded approximate identity if and only if T admits a factorization 
T = PB with P an idempotent and B an invertible multiplier. Moreover, if A is also a 
Fréchet locally C∗-algebra then T has closed range if and only if T 2A = T A. Also, in this 
case, T is injective if and only if it is surjective.

Finally, we discuss the spectral properties of multipliers defined on a simisimple com-
mutative Fréchet locally m-convex algebra A. The investigation of spectral properties of 
a multiplier T defined on L1 (G) was initiated by Zafran [22]. Successively this problem 
was studied by several other authors in the framework of commutative semisimple Banach 
algebras. We study this problem in the more abstract situation of (non-normed) topological 
algebras. We show that if the maximal ideal space ∆(A) is discrete, then the point spectrum 
is completely characterized by σp (T ) = µT (∆ (A)). Under the assumption that socle of A 
is dense in A, we establish that the residual spectrum of T is empty.

2. Closed range multipliers

Before investigating certain features of a multiplier with closed range, we need to establish 
our preliminaries. A Hausdorff topological algebra A whose topology is generated by a 
family {pα : α ∈ Λ} of seminorms is called a locally convex algebra. Moreover, if each 
seminorm pα is also submultiplicative, i.e.,

pα (xy) ≤ pα (x) pα (y) , for all x, y ∈ A,
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then A is called a locally m-convex algebra. Usually, a complete metrizable locally convex
(resp. locally m-convex) algebra is called a Fréchet locally convex (resp. Fréchet locally
m-convex ) algebra.

Given a semisimple Fréchet locally convex algebra A, then following [13], a mapping
T : A → A is said to be a multiplier if x (Ty) = (Tx)y holds for all x, y ∈ A. We denote
the set of all multipliers on A by M(A). Since A is semisimple, any T ∈ M(A) turns out to
be linear and the identity x (Ty) = T (xy) holds for any x, y ∈ A. Using the closed graph
theorem, the definition of a multiplier, and the semisimplicity of A, one can show that all
multipliers are necessarily continuous and hence bounded (see for instance, [13], Corollary
2.3). Moreover, M(A) is a closed subalgebra of B(A) with respect to the strong operator
topology, where B(A) denotes the algebra of all continuous (or bounded) linear operators
on A. Also, M(A) is commutative (see for instance, [13], Theorem 2.4) and has an identity
element. An application of the identity x (Ty) = T (xy) for all x, y ∈ A, yields that both
TA and kerT are two sided ideals of A, where TA and kerT denote the range and kernel
of T , respectively.

In this work, we want to study closed range multipliers on A. In [12], Host and Parreau
have established that if A = L1(G), where G is a locally compact abelian group, and if T is
a multiplier on L1(G), then TA is closed if and only if T = PB, where P is an idempotent
and T an invertible multiplier. Thus they partially resolved the interesting problem due
to Glicksberg [8] whether the factorization T = PB is necessary and sufficient to ensure
the closedness of TA for any multiplier T on a semisimple commutative Banach algebra
A. Various equivalent conditions have been determined in [1] , [17] and [21] under which
a multiplier T has closed range. Our aim is to consider this problem for a more general
situation in (non-normed) topological algebras.

We recall that an operator T ∈ B(A) has a generalized inverse (abbreviated as g-inverse),
if there is an operator S ∈ B(A) such that T = TST and S = STS. The operator T is also
called relatively regular [10]. We want to make a few observations about these operators.

Remark 1. (i) There is no loss of generality in requiring only that T = TST . In fact, if
T = TST , then S′ = STS will satisfy T = TS′T , as well as S′ = S′TS′.

(ii) If T = TST and S = STS, then TS and ST are idempotents and hence projections
for which TS (A) = T (A) and kerT = kerST . Indeed, (TS)2 = TSTS = TS and (ST )2 =
STST = ST . Moreover, from T (A) = TST (A) ⊆ TS(A) ⊆ T (A) and kerT ⊆ ker(ST ) ⊆
ker(TST ) = kerT , we obtain TS(A) = T (A) and ker(ST ) = (I − ST )A = kerT , where I
denotes the identity element in B(A).

(iii) Generally speaking, a generalized inverse of T is rarely uniquely determined. For
instance, if T = TST , then S can be anything on ker(T ). But there is at most one general-
ized inverse which commutes with the given T ∈ B(A). In fact, if S and S′ are g-inverses
of T , both commuting with T , then TS′ = TSTS′ = ST, and hence S′ = S′TS′ = S′TS =
STS = S.

The following result has been proved in [21].

Theorem 2.1. Let A be a semisimple Fréchet locally m-convex algebra and T ∈ M(A).
Then the following statements are equivalent.

(1) T has a g-inverse S ∈ B(A) such that ST = TS.
(2) T has a g-inverse S ∈ B(A) such that TS ∈ M(A).
(3) T has a g-inverse S ∈ B(A) such that TS commutes with T .
(4) T has a g-inverse S ∈ M(A).
(5) TA ⊕ ker T = A.
(6) T 2A = TA and ker T 2 = kerT .
(7) T = PB = BP , where B ∈ M(A) is invertible and P ∈ M(A) is idempotent.
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(8) T is decomposably regular in M(A), i.e., T = TCT , where C is an invertible multi-
plier.

We see from the preceding theorem that if T∈ M(A) has a commuting g-inverse then
this must be a multiplier. One fact about multipliers on semisimple algebras that we
shall use below is that they satisfy the relation ker T 2 = ker T . In fact, if T 2x = 0 then
0=T 2x2 = T (xTx) = (Tx)2, hence Tx = 0. An immediate consequence of this is that
TA ∩ kerT = {0}.
Corollary 2.2. Let A be a semisimple Fréchet locally m-convex algebra and T ∈ M(A). If
T 2A = TA, then TA is closed.

Proof. For the proof see [21]. ¤
We remark that the converse of Corollary 2.2 may not be true even in the case of general

Banach algebras. For instance, consider the disc algebra A = A(D) of all complex valued
continuous functions on the closed unit disc D which are analytic in the interior of D.
Let g ∈ A(D) be such that g(z) = z for each z ∈ D, and let Tg be the corresponding
multiplication operator. Clearly, Tg ∈ M(A) and TgA = {f ∈ A : f(0) = 0}, T 2

g A = {f ∈
A : f(0) = f ′(0) = 0}. Obviously TgA is closed, but TgA 6= T 2

g A.
Let A be a Fréchet locally m-convex algebra whose topology is generated by a family

{pn : n ∈ N} of submultiplicative seminorms. A net {eα : α ∈ I} in A is called a bounded
approximate identity (abbreviated as bai) if pn (eα) ≤ 1 for all n ∈ N and for all α ∈ I,
lim
α

eαx = lim
α

xeα = x for all x ∈ A. Following Inoue [15], A is called a Fréchet locally

C ∗-algebra if it has an involution ∗ satisfying pn (x∗x) = (pn (x))2 for all n ∈ N and x ∈ A.
It is well-known that every Fréchet locally C*-algebra has a bai (see [15, Theorem 2.6] and
[6, Theorem 4.5]).

Theorem 2.3. Let A be a semisimple Fréchet locally m-convex algebra with a bounded
approximate identity and T ∈ M(A). Then TA is a closed ideal with a bounded approximate
identity if and only if T admits a factorization T = PB, where P is an idempotent multiplier
and B an invertible multiplier.

Proof. Let {eα} be a bounded approximate identity of A. Assume that T ∈ M(A) has a
factorization T = PB, where P ∈ M(A) is idempotent and B ∈ M(A) is invertible. Since
TA = PA, it follows immediately that TA is a closed ideal. Also, the bounded net {Peα}
is subset of TA. Hence xPeα = P (xeα) → Px = x, for all x ∈ TA.

Conversely assume that TA is a closed ideal with a bounded approximate identity. Then
using the generalized version of the Cohen’s factorization theorem ([5], p. 610), for each x ∈
TA, there exist y, z in TA such that x = yz, i.e., TA = (TA)2 which implies T 2A ⊆ TA =
(TA)2. On the other hand, for any x, y ∈ A, we have (Tx)(Ty) = T (xTy) = T 2(xy) ∈ T 2A,
and so (TA)2 ⊆ T 2A. Hence TA = T 2A. The desired factorization T = PB follows from
the preceding theorem. ¤
Corollary 2.4. Let A be a semisimple Fréchet locally m-convex algebra with a bounded
approximate identity and T ∈ M(A). Then the conditions (1) to (8) of Theorem 2.1 are
equivalent to the following condition: (9) TA is a closed ideal with a bounded approximate
identity.

Note that every Fréchet locally C ∗-algebra is semisimple (cf. [6, Corollary 5.6] and [7,
Lemma 8.14(ii)]). Now we remark that Theorem 3.6 [21] follows immediately as a simple
corollary of the preceding theorem. Precisely, we have:

Corollary 2.5. Let A be a Fréchet locally C ∗-algebra and T ∈ M(A). Then TA is closed
if and only if T 2A = TA.
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Corollary 2.6. Let A be a semisimple Fréchet locally m-convex algebra and T ∈ M(A). If
T 2A = TA, then T is injective if and only if it is surjective.

Proof. Let T be surjective. Since TA ∩ kerT={0}, it follows that kerT = {0}, that is, T
is injective. Conversely, assume that ker T = {0}. Since, by assumption, T 2A = TA, it
follows from Theorem 2.1 that TA⊕kerT = A. Hence TA = A, that is, T is surjective. ¤

Now we see, by virtue of Corollary 2.4, that if T is a multiplier on a semisimple Fréchet
locally m-convex algebra with a bounded approximate identity such that TA is a closed
ideal with a bounded approximate identity, then T is injective if and only if it is surjective.
In particular, we obtain a result of [20] which states that a closed range multiplier on a
Fréchet locally C ∗-algebra is injective if and only if it is surjective.

3. Spectral Properties of Multipliers

In this section we investigate certain spectral properties of multipliers defined on a
semisimple commutative Fréchet locally m-convex algebra A. Denote the set of all non-zero
continuous multiplicative linear functionals on A by ∆(A). In what follows, we assume that
∆(A) is non-empty and point-separating, without mentioning it explicitly. For any x ∈ A,
define the Gelfand transform x̂ of x by x̂(f) = f(x) for each f ∈ ∆(A). The space ∆(A)
is equipped with the Gelfand topology, i.e., the induced topology inherited from the weak∗

topology of A∗. We shall use the following result of [13] frequently.

Theorem 3.1. There is a continuous function µT : ∆(A) → C corresponding to each T ∈
M(A) defined by µT (f) = f ◦ T (x), where x is chosen such that f(x)=1, satisfying the
relation (T̂ y)(f) = ŷ(f)µT (f), for all y ∈ A and all f ∈ ∆(A).

Now we need to recall the definition of the socle of a semisimple commutative Fréchet
locally m-convex algebra A, an ideal that plays an important role in our subsequent dis-
cussion. A minimal idempotent of A is a non-zero idempotent e such that eAe is a division
algebra. Note that if e is a minimal idempotent element, then eAe = Ce ([3], p. 292). The
set of all minimal idempotents of A is denoted by EA. It is well-known that an ideal J of
A is a minimal ideal if and only if J = eA for some e ∈ EA (see for instance, [4]). The socle
of A, denoted by soc(A), is defined as the sum of all minimal ideals of A, or (0) if there are
none. In what follows, we assume that the ideal soc(A) does exist, without mentioning it
explicitly. The socle of A can be characterized in a simple way as:

soc(A) =

{
n∑

k=1

ekA : ek ∈ EA, n ∈ N

}
= span(EA).

An important class of topological algebras consists of those which have a dense socle. For
instance, consider the algebra A = H(D) of all holomorphic functions defined on the open
disc D = {z ∈ C : |z| < 1} with point-wise addition and scalar multiplication. With the
Cauchy-Hadamard product and the compact-open topology, it is a semisimple commutative
Fréchet locally m-convex algebra possessing an orthogonal basis {en : n ≥ 0}, where en (z) =

zn for z ∈ D. The element e (z) =
∞∑

n=0
zn is the identity element of H(D). Note that enA is

a minimal ideal of A, for all n ∈ N. Moreover, A is the direct sum of these minimal ideals,
i.e., soc(A) is dense in A (see [14], Chapter III, p. 97).

Similarly, the algebra A = s of all complex sequences with coordinate-wise operations
is a semisimple commutative Fréchet locally m-convex algebra with identity and possessing
an orthogonal basis {en : n ≥ 1}(see [14], Example 3.4, Chapter II). In this case, soc(A) is
also dense in A. In fact, the socle is dense in every Hausdorff topological algebra possessing
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an orthogonal basis. Moreover, ∆(A) is homeomorphic with the discrete space of natural
numbers N (see [14], Theorem 3.12, Chapter III). We now prove the following:

Theorem 3.2. Let A be a semisimple commutative Fréchet locally m-convex algebra. If
soc(A) = A, then ∆(A) is discrete.

Proof. First we observe that Â = {â : a ∈ A} separates the points of ∆ (A). In fact, if
f, g ∈ ∆(A) such that f 6= g, then there exists x0 ∈ A with f(x0) 6= g(x0). Therefore,
it implies that x̂0(f) 6= x̂0(g). Hence there is no h ∈ ∆ (A) at which x̂ vanishes for
all x ∈ soc(A). Thus if f0 ∈ ∆(A), then there exists an element x ∈ soc(A) for which
x̂ (f0) = 1. Therefore, {h ∈ ∆(A) : |x̂ (h) − x̂ (f0)| < 1

2} = {f0} is a weak*-neighborhood
of f . This implies that ∆ (A) is discrete. ¤

We denote by Cc(∆(A)) the algebra of all C-valued continuous functions on ∆(A) en-
dowed with the topology of compact convergence. Now by combining Theorem 3.2 with [9,
Theorem 4.2 ], we get:

Corollary 3.3. Let A be a unital semisimple commutative Fréchet locally m-convex algebra.
If soc(A) = A, then A = Cc(∆(A)), with respect to a topological algebraic isomorphism.

A locally m-convex (resp. Fréchet locally m-convex) algebra A whose topology is gen-
erated by a family {pα : α ∈ Λ} of submultiplicative seminorms is called a uniform locally
m-convex (resp. uniform Fréchet locally m-convex) algebra if pα

(
x2

)
= (pα (x))2, for all

x ∈ A, α ∈ Λ. Every uniform locally m-convex algebra is commutative and semisimple (see
[18, p. 275, Lemma 5.1]). Moreover, from [9, Corollary 5.4(ii)] and Theorem 3.2, we get:

Corollary 3.4. A unital uniform Fréchet locally m-convex algebra with dense socle is a
Banach algebra.

We showed in Section 2 that the converse of Corollary 2.2 may not be true even in the
case of Banach algebras, but it is true for Fréchet locally C ∗-algebras (see Corollary 2.5).
A similar result proved in [2] states that if A is a semisimple commutative Fréchet locally
m-convex algebra and T ∈ M(A), then T 2A is closed if and only if TA ⊕ kerT is closed.
Note that a Fréchet locally m-convex algebra is simply called a Fréchet algebra in [2]. Now
we remark that Theorem 5 [2] follows directly from Theorem 2.1. More precisely, we have:

Corollary 3.5. Let A be a semisimple commutative Fréchet locally m-convex algebra with
T ∈ M(A) and soc(A) = A. Then T is a product of an idempotent multiplier and an
invertible multiplier if and only TA ⊕ kerT = A.

Observe that two conditions on A, it being a commutative algebra and having the dense
socle, in Theorem 5 [2] can be relaxed by virtue of Theorem 2.1.

In the sequel, we denote by σp (T ) and σr (T ) the point spectrum and the residual
spectrum of T, respectively. Recall that A is said to be regular if for each closed subset E
of ∆ (A) in the Gelfand topology and f0 ∈ ∆(A) \E, there exists an element x in A such
that x̂(f0) = 1 and x̂(f) = 0 for all f ∈ E (see for instance, [18], p. 332). We remark
that if ∆ (A) is discrete, then clearly A is regular. We recall that the ascent p(T ) of an
operator T is defined as the smallest non-negative integer p, whenever it exists, such that
kerT p = kerT p+1.

Theorem 3.6. Let A be a semisimple commutative Fréchet locally m-convex algebra and
T∈ M(A). Then

(1) σp (T ) ⊆ µT (∆ (A)) ⊆ σp (T ) ∪ σr (T ).
(2) For any λ ∈ σ (T ) we have p (λI − T ) ≤ 1.
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Proof. (1) Let λ ∈ σp (T ). Then there exists a none-zero element x of A such that
(λI − T ) (x) = 0. Therefore, ( ̂(λI − T )(x)) =

(
λ − µT

)
x̂ = 0̂. Since A is semisimple

and x̂ 6= 0̂ there exists f0 ∈ ∆ (A) such that x̂ (f0) 6= 0. Thus it follows, from above that(
λ − µT

)
f0 = 0, and so µT (f0) = λ. That is, λ ∈ µT (∆ (A)).

To prove the second inclusion, let T ∗ denote the topological dual of T . Then for each
f ∈ ∆ (A), we have (T ∗f)x = f (Tx) = (T̂ x) (f) = µT (f) x̂ (f) = µT (f) f (x), (using
Theorem 3.1), for all x∈ A . Therefore, T ∗f = µT (f) f, and hence µT (f) is an eigenvalue
of T ∗. Since the inclusion σp (T ∗) ⊆ σp (T )∪ σr (T ) holds by virtue of Theorem 2.16.5 [11],
the desired inclusion follows immediately.

(2) Let x ∈ ker (λI − T )2, where x 6= 0. Since (λI − T )2 ∈ M(A) and µ(λI−T )2 =(
λ − µT

)2, it follows that 0 = ( ̂(λI − T )2(x)) (f) =
(
λ − µT

)2 (f) · x̂ (f), for all f ∈ ∆(A)
(using Theorem 3.1). Hence

(
λ − µT

)
(f) · x̂ (f) = 0 for each f ∈ ∆(A). Therefore,

̂(λI − T )(x) = 0̂. Since A is semisimple, (λI − T ) (x) = 0, and so x ∈ ker (λI − T ).
Thus ker (λI − T )2 ⊆ ker (λI − T ). Since the reverse inclusion is trivial, we conclude that
p (λI − T ) ≤ 1. ¤

Remark 2. To every T ∈ M(A) the corresponding function µT may not be bounded,
in general. However, if M(A) is a Q-algebra, then the function µT is bounded since
µT (∆ (A)) ⊆ σp (T ) ∪ σr (T ) ⊆ σ (T ) and every element in a Q-algebra has compact spec-
trum [19]. Note that it would be interesting to investigating whether property Q on A could
pass onto M(A) and vice versa?

Now we give a complete description of the point spectrum of T ∈ M(A).

Theorem 3.7. Let A be a semisimple commutative Fréchet locally m-convex algebra and
T ∈ M(A). If ∆(A) is discrete, then we have σp (T ) = µT (∆ (A)).

Proof. By virtue of Theorem 3.6, it remains only to show that µT (∆ (A)) ⊆ σp (T ). Let f0

be fixed in ∆ (A). Since, by assumption ∆ (A) is discrete and hence A is regular, there exists
an element x in A such that x̂ (f◦) = 1 and x̂ vanishes identically on the set ∆ (A) \{f0}.
Therefore, ( ̂[µT (f0)I − T ]x)(f) =

(
µT (f0) − µT (f)

)
· x̂ (f) = 0 for each f ∈ ∆(A) and so

[µT (f0) I − T ]x = 0, because A is semisimple. Since x 6= 0, we obtain µT (f0) ∈ σp (T ).
Hence σp (T ) = µT (∆ (A)). ¤

Under the assumption that soc(A) = A, we now give a complete description of the
residual spectrum of T ∈ M(A).

Theorem 3.8. Let A be a semisimple commutative Fréchet locally m-convex algebra with
dense socle. Then σr (T ) = ∅.

Proof. Assume on the contrary that σr (T ) 6= ∅. Let λ ∈ σr (T ). Then by Theorem 3.7, λ /∈
σp (T ) implies that λ 6= µT (f) for each f ∈ ∆ (A). For any x ∈ EA there exists f0 ∈ ∆(A)
such that x̂(f0) = 1 and x̂ vanishes identically on ∆ (A) \{f0}. Set y =

(
λ − µT (f0)

)−1
x,

then we have [ ̂(λI − T )y] (f) = x̂(f) for all f in ∆ (A) and so (λI − T )y = x, that is,
EA ⊆ (λI − T ) (A) ⊆ A. Since, by hypothesis, we have A = span{EA} which implies
A = (λI − T ) (A) and so λ /∈ σr (T ) , a contradiction. Hence σr (T ) = ∅. ¤

Finally we give an application of our previous results: Let A denote a Hausdorff topo-
logical algebra with an orthogonal basis {xi}. Then A is commutative ([14], Corollary 1.4,
Chapter III), proper ([14], Proposition 1.6, Chapter III), semisimple ([14], Corollary 2.5,
Chapter III), and has dense socle ([14], Theorem 4.3, Chapter III). Also, each coordinate
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functional λi determined by the basis {xi} via x =
∞∑

i=1

λi(x)xi, is continuous, i.e., {xi}

is a Schauder basis ([14] Theorem 1.12, Chapter III). Further, each λi is a multiplicative
linear functional ([14], p. 79). Moreover, ∆(A) is homeomorphic with the discrete space of
natural numbers N ([14] Theorem 3.12, Chapter III). To each T ∈ M(A), there corresponds
a sequence {µT

i } of complex numbers defined by µT
i = µT (λi) for all i ≥ 1, and moreover it

is completely described by: Tx =
∞∑

i=1

λi(x)µT
i xi, for all x ∈ A ([14], p. 225).

Corollary 3.9. Let A be a locally m-convex algebra with an orthogonal basis {xi} and
T ∈ M(A). Then we have σp(T ) = {µT

i : i ≥ 1} and σr(T ) = ∅.
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