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Abstract. For each irrational number α ∈ (0, 1) \Q, there is a unique Ducci matrix
sequence Mjα(1),Mjα(2), . . . associated with it. We first consider the function j that
maps each α ∈ (0, 1) \ Q to the sequence j(α) := 〈jα(1), jα(2), . . . 〉 of indexes of its
Ducci matrix sequence expansion. While continuity of j and j−1 is easily checked, we
show that j−1 is moreover uniformly continuous. We then study the distribution of
Ducci matrices in the Ducci matrix sequence expansion of a given irrational number
α ∈ (0, 1) \Q by considering the following three conditions on the sequence j(α):

lim
n→∞

| {i ≤ n | jα(i) + 1 ≡ jα(i+ 1) (mod 6)} |
n

= 1;

lim
n→∞

| {i ≤ n | jα(i) = } |
n

=
1

6
for every  ∈ {1, 2, . . . , 6};

lim
n→∞

p

√
Σni=1 jα(i)p

n
=

p

√
1p + 2p + · · ·+ 6p

6
.

We prove that the top implies the middle and the middle implies the bottom. We
also give examples witnessing that the converse to these two implications are not true
in general. In addition, various equivalent statements to the first condition will be
presented. Furthermore, we shall give measure theoretic treatment of the subject: We
prove that for almost every α, each Ducci matrix appears in the Ducci matrix sequence
expansion of α infinitely often. We then ask if the second (and also the third) condition
above holds almost everywhere. Related questions as well as several partial results will
be presented.

1 Introduction. A Ducci sequence is a sequence of vectors generated by iterating the
following Ducci map D to a starting vector:

(v1, v2, . . . , vn)
D7−→ (|v1 − v2|, |v2 − v3|, . . . , |vn − v1|)

Ciamberlini and Marengoni attributed a question about the limiting behavior of such
sequences to E. Ducci in their paper [4]. Since then, a substantial amount of literature on
various generalizations as well as the dynamics of the Ducci map has appeared ([2] provides
a large list of references.)

Due to the simplicity of the definition, one can consider the Ducci map on various domains.
While more works can be found on the Ducci map on Zn, there are several important results
in the real setting, i.e. Rn. For n = 4, though every vector in Z4 is known to converge to the
zero vector in finite time [1, 4], Lotan [8] constructed vectors in R4 whose Ducci sequence
never reach the zero vector. However, not many vectors exhibit such asymptotic behavior —
A vector does not reach the zero vector if and only if it reaches a trivial transformation of the
vector (1, q, q2, q3) after finite time, where 1 < q < 2 is the unique positive solution of the
equation x3 − x2 − x− 1 = 0 [8]. For n = 3, Brockman and Zerr [2] proved that if a starting
vector v is heterogeneous, i.e. λ(v + (x, x, x)) /∈ Q3 holds for all λ, x ∈ R with λ 6= 0, then
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its Ducci sequence will never become periodic and approaches the zero vector asymptotically.
For a non-heterogeneous starting vector, it was also proved in [2] that its Ducci sequence is
eventually periodic. (An alternative proof can be found in [5].) For a general n, it is known
[3] that any starting vector in Rn converges asymptotically to a periodic sequence, but not
necessarily to the sequence of zero vectors. Indeed, a vector which converges asymptotically
to a non-trivial periodic sequence is constructed in [3] for n = 7.

Hogenson et al. [6] made a new approach to the subject by introducing the concept Ducci
matrix sequences. For each vector in Rn, one can find an n× n matrix whose application
to the vector is equivalent to the application of the Ducci map. This matrix depends, of
course, on the chosen vector. Thus, one may associate with a vector v not a single matrix
but a sequence Mj1 ,Mj2 , . . . of matrices such that the matrix Mjn implements the n-th
application of the Ducci map to v. By considering those starting vectors in R3 that lead to
unique Ducci matrix sequences, Hogenson et al. [6] established a connection between the
Ducci map, the process of forming mediants of rational numbers and the Stern-Brocot tree.

In this paper, we focus on the Ducci map on R3. After presenting necessary concepts
and their properties in Section 2, we consider in Section 3 the function j that maps each
α ∈ (0, 1) \ Q to the sequence j(α) := 〈jα(1), jα(2), . . . 〉 of indexes of its Ducci matrix
sequence expansion. While continuity of j and j−1 is easily checked, we show that j−1 is
moreover uniformly continuous. We then study the distribution of Ducci matrices in the
Ducci matrix sequence expansion of a given irrational number α ∈ (0, 1) \Q by considering
the following three conditions on the sequence j(α):

lim
n→∞

| {i ≤ n | jα(i) + 1 ≡ jα(i+ 1) (mod 6)} |
n

= 1;

lim
n→∞

| {i ≤ n | jα(i) = } |
n

=
1

6
for every  ∈ {1, 2, . . . , 6};

lim
n→∞

p

√
Σni=1 jα(i)p

n
=

p

√
1p + 2p + · · ·+ 6p

6
.

In Section 4, we prove that the top implies the middle and the middle implies the bottom.
We also give examples witnessing that the converse to these two implications are not true in
general. In addition, various equivalent statements to the first condition will be presented.
In the final section, we shall provide measure theoretic treatment of the subject: We prove
that for almost every α, each Ducci matrix appears in the Ducci matrix sequence expansion
of α infinitely often. We then ask if the second (and the third) condition above holds almost
everywhere. We have not succeeded in solving these questions; We will however see the
following partial result:

lim sup
n→∞

| {i ≤ n | jα(i) = } |
n

≥ 1

6
for every  ∈ {1, 2, . . . , 6} holds a.e.

Related questions as well as some other partial results will be presented.

2 Preliminaries. In this preparatory section, we recapitulate materials presented in [5].
For more details, we refer the reader to [5].

2.1 Ducci map and continued fractions. Let us start by fixing certain terminology
on continued fractions (as taken from Khinchin’s book [7]). We write [a0; a1, a2, . . . ] and
[a0; a1, . . . , al] for the following infinite and finite continued fraction, respectively:
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a0 +
1

a1 +
1

a2 + .. .

and a0 +
1

a1 +
1

. . . +
1

al

.

We assume that a0 is an integer and a1, a2, . . . are positive integers. We call a0, a1, . . .
the elements of a continued fraction. For an infinite continued fraction α = [a0; a1, a2, . . . ],
we call sk := [a0; a1, . . . , ak] and rk := [ak; ak+1, . . . ] a segment and a remainder of α,
respectively. Obviously, remainders satisfy the relation rk = r−1

k+1 + ak. For finite continued
fractions, segments and remainders are defined analogously.

Another important concept in the theory of continued fractions is that of convergent. For
a given α = [a0; a1, a2, . . . ], we write pk/qk for the k-th order convergent, i.e. pk and qk are
non-negative relatively prime integers such that pk/qk = sk. It is customary to set p−1 := 1
and q−1 := 0. A folklore theorem gives us the rule for the formation of the convergents: For
any k ≥ 1, it holds that pk = akpk−1 + pk−2 and qk = akqk−1 + qk−2.

It is well-known that continued fraction can be used as an apparatus for representing
real numbers (A proof of the next theorem can be found in, e.g. [7, Theorem 14]):

Theorem 1. Assume that the last element of any finite continued fraction is greater than 1.
Then, to every real number α, there corresponds a unique continued fraction with value equal
to α. This fraction is finite if α is rational, and is infinite if α is irrational.

Using continued fraction expansion, one can completely describe the orbit of (0, α, 1)
under the Ducci map D for irrational α > 0 as follows. Observe that α > 0 implies that the
first element a0 of α’s continued fraction expansion is non-negative.

Theorem 2 ([5]). Let α = [a0; a1, a2, . . . ] > 0. For a given positive integer n ≥ 1, let
k = k(n) be the least integer satisfying the relation n ≤ Σki=0 ai. Then

Dn(0, α, 1) =
α

r0 · · · rk
τn,k ·

 1
r−1
k+1 + Σki=0 ai − n

r−1
k+1 + Σki=0 ai − n+ 1

T

,

where τn,k ∈ S3 is a permutation that depends only on n if k = 0, and n and a segment
sk−1 if k > 0.

(We put τ · v := (vτ(1), vτ(2), vτ(3)) for a permutation τ ∈ S3 and a vector v =
(v1, v2, v3) ∈ R3.) It is not hard to check the validity of this theorem also for finite
continued fractions. More precisely, for a finite continued fraction α = [a0; a1, . . . , al], the
formula is correct for n = 1, 2, . . . ,Σl−1

i=0 ai. For n with Σl−1
i=0 ai < n ≤ Σl

i=0 ai, we obtain a
correct formula by deleting all the occurrences of the term r−1

l+1 in the entries of the vector.

Specifically, we have Dn(0, α, 1) = (α/r0 · · · rl) τn,l · (1,Σli=0 ai − n,Σli=0 ai − n+ 1) in this
case.

For convenience, let us introduce one more concept here:

Definition 1. We say that a real vector v ∈ R3 is of

• type 1 if it is of the form v1〈c;x;n〉 := c(1, x+ n, x+ n+ 1) for some c > 0, 0 < x < 1
and a natural number n ≥ 1;

• type 2 if it is of the form v2〈c;x;n〉 := c(x+ n, 1, x+ n+ 1) for some c > 0, 0 < x < 1
and a natural number n ≥ 1;



4

• type 3 if it is of the form v3〈c;x;n〉 := c(x+ n, x+ n+ 1, 1) for some c > 0, 0 < x < 1
and a natural number n ≥ 1;

• type 4 if it is of the form v4〈c;x;n〉 := c(1, x+ n+ 1, x+ n) for some c > 0, 0 < x < 1
and a natural number n ≥ 1;

• type 5 if it is of the form v5〈c;x;n〉 := c(x+ n+ 1, 1, x+ n) for some c > 0, 0 < x < 1
and a natural number n ≥ 1;

• type 6 if it is of the form v6〈c;x;n〉 := c(x+ n+ 1, x+ n, 1) for some c > 0, 0 < x < 1
and a natural number n ≥ 1.

In any of these cases, we call n the integer part of the vector vi〈c;x;n〉.
Let an irrational number α be given. Observe that its reminders ri satisfy 0 < r−1

i < 1,
and that we have

α

r0 · · · rk
τn,k ·

 1
r−1
k+1

r−1
k+1 + 1

T

=
α

r0 · · · rkrk+1
τn,k ·

 r−1
k+2 + ak+1

1
r−1
k+2 + ak+1 + 1

T

with ak+1 ≥ 1. It is then not hard to see from Theorem 2 that for every n ≥ 1, the vector
Dn(0, α, 1) is of some type.

An easy computation shows the following

Proposition 1 ([5]). Let α = [a0; a1, a2, . . . ] > 0 be irrational. Then for any positive real
number c > 0 and a natural number n > 1, it holds that D(vi〈c; r−1

k ;n〉) = vi+1〈c; r−1
k ;n−1〉

for every k ≥ 0 and i = 1, 2, . . . , 6, where any subscript greater than 6 is to be understood by
modulo 6.

If the integer part of vi is 1, then we have the following:

• D(v1〈c; r−1
k ; 1〉) = v1〈c/rk; r−1

k+1; ak〉 holds for every c > 0;

• D(v2〈c; r−1
k ; 1〉) = v4〈c/rk; r−1

k+1; ak〉 holds for every c > 0;

• D(v3〈c; r−1
k ; 1〉) = v3〈c/rk; r−1

k+1; ak〉 holds for every c > 0;

• D(v4〈c; r−1
k ; 1〉) = v6〈c/rk; r−1

k+1; ak〉 holds for every c > 0;

• D(v5〈c; r−1
k ; 1〉) = v5〈c/rk; r−1

k+1; ak〉 holds for every c > 0;

• D(v6〈c; r−1
k ; 1〉) = v2〈c/rk; r−1

k+1; ak〉 holds for every c > 0.

Therefore, an application of the Ducci map D to a vector of the form vi〈c; r−1
k ;n〉 with

n ≥ 1 yields the increment of the type by 1 (modulo 6) if and only if the integer part n is
greater than 1. This property will play a key role later on.

The above proposition will bring the reader clearer understanding of the computation of
the permutation τn,k(n).

2.2 Ducci matrix sequence.

Definition 2. The regions R1, . . . ,R6 ⊂ R3 are defined as follows:

• R1 := {(x1, x2, x3) ∈ R3 | x1 ≤ x2 ≤ x3};

• R2 := {(x1, x2, x3) ∈ R3 | x2 ≤ x1 ≤ x3};
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• R3 := {(x1, x2, x3) ∈ R3 | x3 ≤ x1 ≤ x2};

• R4 := {(x1, x2, x3) ∈ R3 | x1 ≤ x3 ≤ x2};

• R5 := {(x1, x2, x3) ∈ R3 | x2 ≤ x3 ≤ x1};

• R6 := {(x1, x2, x3) ∈ R3 | x3 ≤ x2 ≤ x1}.

We say that a matrix M implements the action of the Ducci map D on v ∈ R3 if
Dv = vM holds. Matrices M1, . . . ,M6 are defined so that Mi implements the application
of the Ducci map to any vector in the region Ri uniformly, i.e. Dv = vMi holds for every
v ∈ Ri. For instance,

M1 =

−1 0 −1
1 −1 0
0 1 1

 , M2 =

 1 0 −1
−1 −1 0
0 1 1

 , M3 =

−1 0 1
1 1 0
0 −1 −1

 .

Observe that two distinct regions can overlap each other. For example, R1 ∩ R2 =
{(x1, x2, x3) | x1 = x2 ≤ x3} 6= ∅. Consequently, either M1 or M2 serves as an implementa-
tion of an application of the Ducci map to any vector v ∈ R1 ∩R2. It is also easy to observe
that if all entries of a vector v are pairwise distinct, then v belongs to a unique region, and
hence has only one implementation.

It would be interesting to consider a sequence of implementations of applications of the
Ducci map to a given starting vector. To make this precise, let us introduce one more piece
of terminology.

Definition 3 ([6]). For a given vector v ∈ R3, a Ducci matrix sequence associated with
v is a sequence Mj1 ,Mj2 , . . . of matrices with j1, j2, . . . ∈ {1, 2, . . . , 6} such that Dnv =
vMj1 · · ·Mjn holds for all n ≥ 1.

For a real number α ∈ R, we define a Ducci matrix sequence associated with α to be a
Ducci matrix sequence associated with the vector (0, α, 1).

One may naturally ask which α have a unique Ducci matrix sequence. This question has
been answered in [6] as follows (A different proof can be found in [5].):

Theorem 3 ([6]). α is irrational if and only if there is only one Ducci matrix sequence
associated with α.

Thus, for a given α, we call the unique Ducci matrix sequence associated with it the
Ducci matrix sequence expansion of α.

3 Uniform continuity. At the end of the last section, we mentioned the result that
α is irrational if and only if there is only one Ducci matrix sequence associated with α.
This gives us a function j that sends an irrational number α ∈ (0, 1) to the sequence
j(α) = 〈jα(1), jα(2), . . . 〉 ∈ {1, 2, . . . , 6}ω of indexes of the Ducci matrix sequence expansion
Mjα(1),Mjα(2), . . . of α. In this section, we shall study (uniform) continuity of j and its
inverse j−1.

Before proceeding any further, it will be useful to summarize the relationship among
relevant concepts defined so far:

Proposition 2. For irrational α > 0 and n ≥ 1, we have the following relations:

Dn(0, α, 1) is of type t⇐⇒ Dn(0, α, 1) ∈ Rt ⇐⇒ jα(n+ 1) = t.
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Remark 1. Actually, the second equivalence in the above proposition holds for n = 0. We
have formulated the above proposition in this way because the type of vector D0(0, α, 1) is
undefined.

The uniqueness of the continued fraction expansion (Theorem 1) and Theorem 2 entail
the injectivity of j. Thus, considered as a function from (0, 1) \ Q to j((0, 1) \ Q), j is
bijective.

In order to see that j is continuous, the following result plays a key role:

Theorem 4 ([5]). Let two distinct positive irrational numbers α, α′ > 0 be given, and
consider their infinite continued fraction expansions: [a0; a1, a2, . . . ] and [a′0; a′1, a

′
2, . . . ]. If

we have al < a′l for l = min{ l | al 6= a′l }, then the length of the maximal common initial
segment of Ducci matrix sequence expansions of α and α′ is Σli=0 ai.

For a given irrational α ∈ (0, 1), take an irrational α′ sufficiently close to α so that the
first n elements of their continued fraction expansions coincide. Then, by virtue of this
theorem, the sequences j(α) and j(α′) are identical up to the first min{Σni=0 ai,Σ

n
i=0 a

′
i} ≥ n

segments. Given the definition of the standard metric on {1, 2, . . . , 6}ω, i.e. the distance of
two sequences is set to be 2−m, where m is the first place at which the sequences differ, it is
easily observed that continuity of j follows from this argument.

Uniform continuity however does not hold for j, as witnessed by the example below:

Example 1. Take a positive irrational number ε < 1/6 and consider two irrational numbers
1/2 − ε and 1/2 + ε. The first element of the continued fraction expansion of the former
is 2, while the latter is 1. This means that, no matter how small ε is, and consequently no
matter how close the numbers 1/2− ε and 1/2 + ε are, the second coordinates of j(1/2− ε)
and j(1/2 + ε) are different.

When it comes to the inverse j−1 : j((0, 1) \Q)→ (0, 1) \Q, not only continuity but also
uniform continuity holds. Let us prove this assertion.

Theorem 5. j−1 : j((0, 1) \Q)→ (0, 1) \Q is uniformly continuous.

Proof. Let ε > 0 be given. Since j((0, 1) \Q) is considered as a subspace of {1, 2, . . . , 6}ω,
in view of the definition of the standard metric on {1, 2, . . . , 6}ω, it suffices to show that
there exists an n such that |α − α′| < ε holds for any α, α′ ∈ (0, 1) \ Q whenever j(α) =
〈jα(1), jα(2), . . . 〉 and j(α′) = 〈jα′(1), jα′(2), . . . 〉 agree up to first n elements.

We claim that any natural number n greater than 1/ε has the desired property. To see
this, take α, α′ ∈ (0, 1) \Q so that the initial segments of j(α) and j(α′) are identical up
to n. Let k = k(n) and k′ = k′(n) be as in the statement of Theorem 2, i.e. k ≥ 1 (resp.
k′ ≥ 1) is the least integer satisfying that n ≤ Σki=0 ai (resp. n ≤ Σki=0 a

′
i). It is not difficult

to see from Theorem 4 that k and k′ are equal and that we have a0 = a′0, . . . , ak−1 = a′k−1.
Now let pl/ql and p′l/q

′
l denote the k-th order convergent of α and α′, respectively:

pl/ql = sl and p′l/q
′
l = s′l. It is known [7, pp. 8] that α and α′ can be expressed in terms of

their convergents and remainders as follows:

α =
pl−1rl + pl−2

ql−1rl + ql−2
and α′ =

p′l−1r
′
l + p′l−2

q′l−1r
′
l + q′l−2

for every l ≥ 1.

Note that a0 = a′0, . . . , ak−1 = a′k−1 imply pl = p′l and ql = q′l for l ≤ k. Therefore, by
writing f(x) = (pk−1x+ pk−2)/(qk−1x+ qk−2), we have α = f(rk) and α′ = f(r′k).

Since qk−1 ≥ 1 and qk−2 ≥ 0, the function f(x) is monotone on (0,∞). As we have
rk ≥ brkc = ak ≥ n− Σk−1

i=0 ai > 0 and similarly r′k ≥ n− Σk−1
i=0 ai > 0, this monotonicity of
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f(x) proves that α = f(rk) and α′ = f(r′k) lie between f(n− Σk−1
i=0 ai) and limx→∞ f(x) =

pk−1/qk−1. Hence it holds that

|α− α′| ≤
∣∣∣f(n− Σk−1

i=0 ai)− lim
x→∞

f(x)
∣∣∣

=

∣∣∣∣∣pk−1(n− Σk−1
i=0 ai) + pk−2

qk−1(n− Σk−1
i=0 ai) + qk−2

− pk−1

qk−1

∣∣∣∣∣
=

|pk−2qk−1 − pk−1qk−2|
qk−1{qk−1(n− Σk−1

i=0 ai) + qk−2}

=
1

qk−1{qk−1(n− Σk−1
i=0 ai) + qk−2}

.

(The well-known identity pk−2qk−1 − pk−1qk−2 = (−1)k−1 was used in the last step.)
Since n is greater than 1/ε, if k = 1, then q0 = 1 and q−1 = 0 proves that |α − α′| ≤

1/n < ε. In order to deal with the case that k ≥ 2, we need the following lemma, which is
easily proved via induction.

Lemma 1. qk−1 ≥ Σk−1
i=0 ai.

Using this lemma, we resume the evaluation of the difference |α− α′|:

|α− α′| ≤ 1

qk−1{qk−1(n− Σk−1
i=0 ai) + qk−2}

≤ 1

Σk−1
i=0 ai{Σ

k−1
i=0 ai(n− Σk−1

i=0 ai) + qk−2}

≤ 1

Σk−1
i=0 ai(n− Σk−1

i=0 ai) + 1

≤ 1

n
< ε.

This makes the proof of the theorem complete.

Remark 2. If the domain of a continuous function is compact, then uniform continuity
follows automatically from continuity. This time, however, we had to prove the above theorem
directly because the domain j((0, 1)\Q) ⊂ {1, 2, . . . , 6}ω of the continuous function j−1 is not
compact. Indeed, there is a Cauchy sequence {j([0;n, 1, 1, 1, . . . ])}n≥1 in j((0, 1) \Q) with its
limit 〈1〉_〈1, 2, . . . , 6〉ω ∈ {1, 2, . . . , 6}ω outside j((0, 1) \Q). (Here and in what follows, we
use the symbol _ for the concatenation of two sequences: 〈x1, x2, . . . , xn〉_〈y1, y2, . . . 〉 :=
〈x1, x2, . . . , xn, y1, y2, . . . 〉.)

4 Distribution of Ducci matrices. For a given irrational number α ∈ (0, 1) \ Q, we
are interested in the distribution of indexes in the sequence j(α) = 〈jα(1), jα(2), . . . 〉. In
this section, we consider several statements regarding the distribution of Ducci matrices
in a given sequence j(α) and examine their relationships. Note that, since we shall deal
with irrational numbers only from (0, 1) \Q, we always have a0 = 0 from now on. Also, the
index i of the sequence {jα(i)}i starts from 1. For notational convenience, we thus make
the following convention: Throughout this and the next section, any index and subscript
start from 1 unless otherwise stated.

To begin with, let us prove the following
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Lemma 2. For any α ∈ (0, 1) \Q and l ≥ 1, we have

| {i ≤ n | jα(i) + l ≡ jα(i+ 1) + l − 1 ≡ · · · ≡ jα(i+ l) (mod 6)} |

≥ n− l · | {m ∈ Z>0 | Σms=1 as ≤ n} | −
l(l − 1)

2
.

Equality holds if l = 1.

Proof. It is not hard to check that for any i ≥ 2, we have

jα(i) + 1 6≡ jα(i+ 1) (mod 6)
(1)⇐⇒ i is of the form Σms=1 as for some m ≥ 1

(2)⇐⇒ The integer part of Di−1(0, α, 1) is 1.

(Actually, Equivalence (1) holds for i = 1; We wrote i ≥ 2 above because the integer part of
Dn(0, α, 1) for n = 0 is undefined. See Remark 1.)

The assertion for l = 1 follows at once from Equivalence (1), which holds for any i ≥ 1.
In order to deal with a general l > 1, let us put

Înp := {i ≤ n | jα(i) + l ≡ jα(i+ 1) + l − 1 ≡ · · ·
≡ jα(i+ p− 1) + l − p+ 1 6≡ jα(i+ p) + l − p (mod 6)} and

Inp := {i ≤ n | The integer part of Di(0, α, 1) is p}

for 1 ≤ p ≤ l.
If p = 1, then (1) implies that | În1 | = | {m ∈ Z>0 | Σms=1 as ≤ n} |.
If p > 1, then (1), (2) and Proposition 1 tell us that Înp = Inp−1. Now we evaluate the

size | Inp−1 | of Inp−1. If p > 2, then i ∈ Inp−1 implies i+ 1 ∈ Inp−2 for any i < n. Note however
that the converse is in general not true. (For example, it can happen that an i ∈ In1 satisfies
i+ 1 ∈ Inp−2.) Therefore, we have | Inp−1 | ≤ | Inp−2 |+ 1. Applying this inequality repeatedly,
we obtain | Inp−1 | ≤ | In1 |+ p− 2 for any p > 1. Using (2), we thus see that

| Înp | = | Inp−1 |
≤ | {i ≤ n | i+ 1 is of the form Σms=1 as for some m ≥ 1} |+ p− 2

≤ | {i ≤ n | i is of the form Σms=1 as for some m ≥ 1} |+ p− 1

= | {m ∈ Z>0 | Σms=1 as ≤ n} |+ p− 1,

for any p > 1.
Putting these arguments together, we get

| {i ≤ n | jα(i) + l ≡ jα(i+ 1) + l − 1 ≡ · · · ≡ jα(i+ l) (mod 6)} |
= n− Σlp=1 | Înp |
≥ n− | {m ∈ Z>0 | Σms=1 as ≤ n} | − Σlp=2 (| {m ∈ Z>0 | Σms=1 as ≤ n} |+ p− 1)

= n− l · | {m ∈ Z>0 | Σms=1 as ≤ n} | −
l(l − 1)

2
,

as desired.

We are interested in the relation jα(i)+1 ≡ jα(i+1) (mod 6), especially in the frequency
that this happens in a given sequence j(α). In some situations, this relation between jα(i)
and jα(i+ 1) can be equivalently expressed using only elements ai of α. Specifically, we have



9

Theorem 6. For any α ∈ (0, 1) \Q, the following are equivalent:

1. lim
n→∞

| {i ≤ n | jα(i) + 1 ≡ jα(i+ 1) (mod 6)} |
n

= 1;

2. lim
n→∞

| {m ∈ Z>0 | Σms=1 as ≤ n} |
n

= 0;

3.
Σni=1 ai
n

diverges.

Proof. 1⇔ 2: This follows easily from Lemma 2 (for the case l = 1).
2 ⇒ 3: Let us temporarily put A(n) := | {m ∈ Z>0 | Σm

s=1 as ≤ n} |. It is then clear that
n = A(Σni=1 ai). Since Σni=1 ai →∞ as n→∞, 2 implies A(Σni=1 ai)/Σ

n
i=1 ai converges to 0.

Hence Σni=1 ai/n = Σni=1 ai/A(Σni=1 ai) diverges.

3 ⇒ 2: From the definition of A(n), it follows that Σ
A(n)
s=1 as ≤ n. Hence we have 0 ≤

A(n)/n ≤ A(n)/Σ
A(n)
s=1 as. Since A(n) diverges as n→∞, 3 implies A(n)/Σ

A(n)
s=1 as converges

to 0. Therefore A(n)/n also converges to 0.

Corollary 1. No α ∈ (0, 1)\Q with bounded elements satisfies limn→∞ | {i ≤ n | jα(i)+1 ≡
jα(i+ 1) (mod 6)} |/n = 1.

Proof. Let M be such that ai ≤M holds for all i ∈ Z>0. This implies that Σni=1 ai/n ≤M ,
in particular, Σni=1 ai/n is not divergent. Theorem 6 now proves our assertion.

Corollary 2. The set of all α satisfying limn→∞ | {i ≤ n | jα(i)+1 ≡ jα(i+1) (mod 6)} |/n =
1 is dense.

Proof. The set of all α with Σni=1 ai/n divergent is dense. The assertion again follows from
Theorem 6.

Our condition above concerns the relationship between only two indexes. Here, the
following question arises naturally: does it give rise to any difference if we require more than
two indexes, say jα(i), jα(i + 1), . . . , jα(i + l) with l > 1, to be consecutive by modulo 6?
The next theorem answers this question negatively.

Theorem 7. For any α ∈ (0, 1) \Q and l ≥ 1, we have

lim
n→∞

| {i ≤ n | jα(i) + 1 ≡ jα(i+ 1) (mod 6)} |
n

= 1⇐⇒

lim
n→∞

| {i ≤ n | jα(i) + l ≡ jα(i+ 1) + l − 1 ≡ · · · ≡ jα(i+ l) (mod 6)} |
n

= 1.

Proof. Evidently, the first condition follows from the second. So let us prove the other
direction:

Assume that the first condition is true for a given α. From Theorem 6, it then follows
that Σm

i=1 ai/m is divergent. For a given ε > 0, let M ∈ Z>0 be such that every M ′ ≥ M

satisfies ΣM ′

i=1 ai/M
′ > 2l/ε. Take an n ≥ max{ΣM

i=1 ai, l(l − 1)/ε}. Then, since we have
| {m ∈ Z>0 | Σmi=1 ai ≤ n} | ≥M , it holds that

n

| {m ∈ Z>0 | Σmi=1 ai ≤ n} |
≥ Σ

| {m∈Z>0 |Σmi=1 ai≤n} |
i=1 ai

| {m ∈ Z>0 | Σmi=1 ai ≤ n} |
>

2l

ε
.
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Using Lemma 2, we thus obtain

1 ≥ | {i ≤ n | jα(i) + l ≡ jα(i+ 1) + l − 1 ≡ · · · ≡ jα(i+ l) (mod 6)} |
n

≥ 1− l · | {m ∈ Z>0 | Σmi=1 ai ≤ n} |
n

− l(l − 1)

2n
> 1− ε.

Since ε > 0 can be chosen arbitrarily small, this completes the proof.

Now we turn to another condition on the distribution of indexes in the sequence j(α) =
〈jα(1), jα(2), . . . 〉. If the sequence j(α) is distributed uniformly, any  ∈ {1, 2, . . . , 6} will
occur with the same probability. As there are only six possible values of , the probability
should then be 1/6. Hence the following statement is to be seen as a necessary condition for
a sequence j(α) to be uniformly distributed:

lim
n→∞

| {i ≤ n | jα(i) = } |
n

=
1

6
holds for every  ∈ {1, 2, . . . , 6}.

The next theorem shows that this condition follows from our first condition.

Theorem 8. Let an α ∈ (0, 1) \ Q be given. If limn→∞ | {i ≤ n | jα(i) + 1 ≡ jα(i +
1) (mod 6)} |/n = 1 holds, then limn→∞ | {i ≤ n | jα(i) = } |/n = 1/6 holds for every
 ∈ {1, 2, . . . , 6}.

Proof. In view of Theorem 6, it suffices to prove the consequent assuming that Σni=1 ai/n is
divergent.

Fix a  ∈ {1, 2, . . . , 6} and choose an ε > 0 arbitrarily. Since Σn
i=1 ai/n diverges, there

exists a positive integer K > 1 such that Σli=1 ai/l > 3/ε holds for every l ≥ K. For this K,
we claim that the difference between | {i ≤ n | jα(i) = } |/n and 1/6 is less than ε whenever
n is greater than ΣKi=1 ai. For this purpose, fix an n > ΣKi=1 ai and let k = k(n) be as in the
statement of Theorem 2.

Using the sequence jα(1), jα(2), . . . , jα(n), we shall construct a new sequence w (of finite
length) as follows: Consider two numbers jα(1+Σpi=1 ai) and jα(Σpi=1 ai) for p = 1, . . . , k−1,
and iterate the next process from p = 1 to p = k − 1. If jα(1 + Σpi=1 ai) = jα(Σpi=1 ai), then
remove jα(Σpi=1 ai) from the initial sequence. If, on the other hand, we have jα(1+Σpi=1 ai) ≡
jα(Σpi=1 ai) + 2 (mod 6), then insert the number jα(Σpi=1 ai) + 1 (mod 6) between these two.
Call the resulting sequence w. It is then immediate from Propositions 1 and 2 that the new
finite sequence w is eventually periodic: w = 〈1, 1, 2, . . . , 6, 1, 2, . . . , 6, . . . 〉. (Periodic part
starts from the second coordinate.)

Since we have removed or inserted k−1 numbers, the length lh(w) of w is at most n+k−1
and at least n− k + 1. Eventual periodicity of w implies that at most b(lh(w)− 1)/6c+ 2
and at least b(lh(w)− 1)/6c coordinates of w are equal to . It might be the case that all
removed numbers are equal to ; it might be the case that all inserted numbers are equal to
. Taking these worst case scenarios into account, one obtains the following estimate:

bn−k6 c − (k − 1)

n
≤ | {i ≤ n | jα(i) = } |

n
≤
bn+k−2

6 c+ k + 1

n
.

As we have Σk
i=1 ai ≥ n > ΣK

i=1 ai for k = k(n), it follows that k − 1 ≥ K > 1. In view of
the definition of K, we thus see that

1

n
<
k − 1

n
<

k − 1

Σk−1
i=1 ai

<
ε

3
.
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Putting these arguments together, we compute the difference as follows:∣∣∣∣ | {i ≤ n | jα(i) = } |
n

− 1

6

∣∣∣∣ ≤ 7k + 4

6n

=
7(k − 1)

6n
+

11

6n

<
7ε

18
+

11ε

18
= ε.

Since ε > 0 and  ∈ {1, 2, . . . , 6} were chosen arbitrarily, this proves that the limit exists
and is equal to 1/6, as desired.

We note that the converse to this theorem is not true. Here is a witness:

Example 2. Consider the following eventually periodic sequence of Ducci matrices:

〈M1〉_〈M1,M2,M3,M4,M5,M6,M1,M1,M2,M3,M4,M5,M6,M2,M3,M4,M5,M6〉ω.

It is not hard to check that this is the Ducci matrix sequence expansion of an irrational
number α := [0; 8, 6, 12, 6, 12, 6, 12, 6, . . . ] ∈ (0, 1) \Q.

Since the elements of α is bounded by 12, it is clear that Σni=1 ai/n is not divergent, and
accordingly, we do not have limn→∞ | {i ≤ n | jα(i) + 1 ≡ jα(i+ 1) (mod 6)} |/n = 1.

We need to check that this α satisfies limn→∞ | {i ≤ n | jα(i) = } |/n = 1/6 for every
 ∈ {1, 2, . . . , 6}. To see this, choose an ε > 0 and a  ∈ {1, 2, . . . , 6} arbitrarily and pick
a natural number N > 4/ε. Take an arbitrary natural number n ≥ N and express it as
n = 1 + 18a+ b with non-negative integers a ≥ 0 and 0 ≤ b < 18. Note that in the Ducci
matrix sequence expansion of α, the number of occurrences of the Ducci matrix M from the
18m+ 2nd matrix to the 18(m+ 1) + 1st matrix is three for every m ≥ 0. Therefore,

| {i ≤ n | jα(i) = } |
n

≤ 3a+ 4

n
≤ 1

6
+

4

n
<

1

6
+ ε

and
| {i ≤ n | jα(i) = } |

n
≥ 3a

n
=

1

6
− 1 + b

6n
>

1

6
− 4

n
>

1

6
− ε.

Since ε > 0 was chosen arbitrarily, this proves that limn→∞ | {i ≤ n | jα(i) = } |/n = 1/6.
As we took  also arbitrarily, this proves our claim.

In studying distribution, one natural attempt is to take the average. The uniformity of
the distribution of indexes in the sequence 〈jα(1), jα(2), . . . 〉 can also be captured using the
notion of average. Specifically, we consider the following formula to be a plausible formulation
of uniformity: limn→∞

p
√

Σni=1 jα(i)p/n = p
√

(1p + 2p + · · ·+ 6p)/6. Let us investigate the
relationship of this condition to the preceding one.

Proposition 3. Let p ≥ 1 be a positive integer. For any α ∈ (0, 1) \Q, if limn→∞ | {i ≤ n |
jα(i) = } |/n = 1/6 holds for every  ∈ {1, 2, . . . , 6}, then we have

lim
n→∞

p

√
Σni=1 jα(i)p

n
=

p

√
1p + 2p + · · ·+ 6p

6
.

Proof. Let ε > 0 be given. Then there exists an N ∈ Z>0 such that | | {i ≤ n | jα(i) =
} |/n− 1/6 | < ε holds for every  and n ≥ N . This means that(

1

6
− ε
)
n < | {i ≤ n | jα(i) = } | <

(
1

6
+ ε

)
n



12

holds for every . By multiplying by p and taking the sum over all , we get

(1p+2p+· · ·+6p)

(
1

6
− ε
)
n < Σ (p| {i ≤ n | jα(i) = } |) < (1p+2p+· · ·+6p)

(
1

6
+ ε

)
n.

Since Σ (p| {i ≤ n | jα(i) = } |) is simply Σni=1 jα(i)p, this easily entails the assertion.

The reader may wonder if the converse to the above implication is true. In order to
answer this question, let us introduce the following example:

Example 3. For any given p ≥ 1, we define an infinite sequence Mp of Ducci matrices by

putting Mp := 〈M1〉_( ~M_
1
~M_

2 · · ·_ ~M5p−1)ω, where a finite sequence ~Mi (1 ≤ i ≤ 5p − 1)
is given by

~Mi :=


〈M1,M1,M2,M4,M5,M5,M6〉 (i ≤ 3p − 1)

〈M1,M1,M2,M4,M5,M6〉 (3p − 1 < i ≤ 5p − 3p)

〈M1,M2,M4,M5,M6〉 (5p − 3p < i ≤ 5p − 1)

.

With the help of Proposition 1, one can check that for each p ≥ 1, the (eventually periodic)
sequence Mp is realized as the Ducci matrix sequence expansion of some αp ∈ (0, 1) \Q. For
example, we have

M1 = 〈M1〉_〈M1,M1,M2,M4,M5,M5,M6,M1,M1,M2,M4,M5,M5,M6,

M1,M2,M4,M5,M6,M1,M2,M4,M5,M6〉ω,
α1 = [0; 2, 2, 2, 3, 2, 2, 4, 5, 4, 2, 2, 3, 2, 2, 4, 5, 4, 2, 2, 3, 2, 2, 4, 5, 4, . . . ].

By construction, M3 does not appear in the Ducci matrix sequence expansion Mp of αp.
Therefore, we have limn→∞ | {i ≤ n | jαp(i) = 3} |/n = 0 6= 1/6.

One can easily check that the number of occurrences of M2i (i = 1, 2, 3) in the finite

sequence ~M_
1
~M_

2 · · ·_ ~M5p−1 is 5p − 1. In this finite sequence, M1 appears 2 · 5p − 3p − 1
times and M5 appears 5p + 3p − 2 times. By the definition of Mp, it is thus clear that

Σ
6(m+1)(5p−1)+1
i=6m(5p−1)+2 jαp(i)p = (2 · 5p − 3p − 1) · 1p + (5p − 1) · 2p + (5p − 1) · 4p

+ (5p + 3p − 2) · 5p + (5p − 1) · 6p

= (5p − 1) · (1p + 2p + 3p + 4p + 5p + 6p)

= Σ
6(m+1)(5p−1)+1
i=6m(5p−1)+2 ip,

for every m ∈ Z≥0. From this, it is not hard to conclude limn→∞ p
√

Σni=1 jαp(i)p/n =
p
√

(1p + 2p + · · ·+ 6p)/6 for this αp.
For any given positive integer q, the above argument also proves that

lim
n→∞

q

√
Σni=1 jαp(i)q

n

= q

√
(2 · 5p − 3p − 1) · 1q + (5p − 1) · 2q + (5p − 1) · 4q + (5p + 3p − 2) · 5q + (5p − 1) · 6q

6(5p − 1)

= q

√
(5p − 1) · (1q + 2q + 4q + 5q + 6q) + 5p − 3p + 3p · 5q − 5q

6(5p − 1)
.
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In order for this value to be equal to

q

√
1q + 2q + · · ·+ 6q

6
= q

√
(5p − 1) · (1q + 2q + 3q + 4q + 5q + 6q)

6(5p − 1)
,

q ≥ 1 has to satisfy 5p − 3p + 3p · 5q − 5q = 5p · 3q − 3q. An elementary computation shows
that this happens only when q is equal to p. Hence for any q different from p, we have
limn→∞ q

√
Σni=1 jαp(i)q/n 6= q

√
(1q + 2q + · · ·+ 6q)/6.

From this example, we can conclude as follows:

Theorem 9. For every positive integer p ≥ 1, the condition “limn→∞
p
√

Σni=1 jα(i)p/n =
p
√

(1p + 2p + · · ·+ 6p)/6” is weaker than “limn→∞ | {i ≤ n | jα(i) = } |/n = 1/6 for every
”.

Moreover, the statements “limn→∞
p
√

Σni=1 jα(i)p/n = p
√

(1p + 2p + · · ·+ 6p)/6” for p =
p1 and for p = p2 are independent from each other whenever p1 and p2 are distinct.

Before ending this section, let us present variants to the preceding results. As in the
proof of Theorem 6, one can prove

Theorem 10. For any α ∈ (0, 1) \Q, the following are equivalent:

1. lim sup
n→∞

| {i ≤ n | jα(i) + 1 ≡ jα(i+ 1) (mod 6)} |
n

= 1;

2. lim inf
n→∞

| {m ∈ Z>0 | Σmi=1 ai ≤ n} |
n

= 0;

3.
Σni=1 ai
n

is unbounded.

Also, one can show as in the proof of Theorem 8 that

Theorem 11. If lim supn→∞ | {i ≤ n | jα(i) + 1 ≡ jα(i+ 1) (mod 6)} |/n = 1 holds for a
given α ∈ (0, 1) \Q, then this α satisfies lim supn→∞ | {i ≤ n | jα(i) = } |/n ≥ 1/6 for every
 ∈ {1, 2, . . . , 6}.

Observe that Example 2 witnesses the failure of the converse to Theorem 8 but also to
Theorem 11.

5 Measure theory. Given an irrational number α > 0, how often for a fixed index ,
does the matrix M appear in its Ducci matrix sequence expansion Mjα(1),Mjα(2), . . . ? We
shall present several measure theoretic approaches around this problem. In this section,
measure refers to the Lebesgue measure on R.

Our first result is the next

Theorem 12. The following set is of measure zero:

{α ∈ (0, 1) \Q | ∃ (jα(n) =  holds for only finitely many n)}.

Before proving this theorem, let us remind the reader of the following result (For a proof,
see, e.g. [7, Theorem 29]):

Theorem 13. The set of all numbers in the interval (0, 1) with bounded elements is of
measure zero.
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Therefore, it is sufficient to prove that every element α from the set that we are concerning
has bounded elements.

Proof of Theorem 12. Let α and  be such that only finitely many n satisfy jα(n) = .
Then there exists an N such that jα(n) 6=  holds for all n ≥ ΣN

i=1 ai. In particular, we

have jα(1 + ΣN
i=1 ai) 6= . Since the integer part of the vector DΣNi=1 ai(0, α, 1) is aN+1, if

aN+1 ≥ 2, then Proposition 1 implies that the type of D1+ΣNi=1 ai(0, α, 1) is 1 plus the type

of DΣNi=1 ai(0, α, 1) modulo 6. In view of Proposition 2, this yields that jα(2 + ΣN
i=1 ai) ≡

jα(1 + ΣNi=1 ai) + 1 (mod 6). Now, since the integer part of D1+ΣNi=1 ai(0, α, 1) is aN+1 − 1,
if aN+1 − 1 ≥ 2, the same reasoning proves jα(3 + ΣN

i=1 ai) ≡ jα(2 + ΣN
i=1 ai) + 1 (mod 6).

Repeating in this manner, we see that, for m = 1, 2, . . . , aN+1 − 1

jα(1 +m+ ΣNi=1 ai) ≡ jα(1 + ΣNi=1 ai) +m (mod 6).

These arguments, together with the assumption that jα(n) 6=  holds for all n ≥ ΣN
i=1 ai,

proves that jα(1 + ΣNi=1 ai) +m 6≡  (mod 6) for 0 ≤ m ≤ aN+1− 1. This clearly entails that
aN+1 < 6.

Continuing this way, we reach the conclusion that aN+l < 6 holds for all l ≥ 1. As every
element ai satisfies ai ≤ max{a0, a1, . . . , aN , 6}, this finishes the proof.

In the last section, we considered the condition “limn→∞ | {i ≤ n | jα(i) = } |/n = 1/6
for every  ∈ {1, 2, . . . , 6}”. One can of course study this condition from the viewpoint of
measure theory:

Question 1. Does the following property hold for a.e. α ∈ (0, 1) \Q?

lim
n→∞

| {i ≤ n | jα(i) = } |
n

=
1

6
for every  = 1, 2, . . . , 6.

We do not know the answer to this question. Note however that Theorems 10 and 11,
together with the fact that Σn

i=1 ai/n is unbounded almost everywhere [7, pp. 94], shows
that

Theorem 14. Almost every α ∈ (0, 1) \Q has the following property:

lim sup
n→∞

| {i ≤ n | jα(i) = } |
n

≥ 1

6
for every  ∈ {1, 2, . . . , 6}.

Similarly, one will be able to conclude that lim infn→∞ | {i ≤ n | jα(i) = } |/n ≤ 1/6 for
every  ∈ {1, 2, . . . , 6}.

Here is another partial result:

Theorem 15. For almost every α ∈ (0, 1) \Q, the sequence | {i ≤ n | jα(i) = } |/n has 1/6
as an accumulation point for every  ∈ {1, 2, . . . , 6}.

Proof. The following theorem plays an important role in our proof:

Theorem 16 ([7, Theorem 30]). Let ϕ(i) be an arbitrary positive function with natural
argument n. If the series Σ∞i=11/ϕ(i) diverges, then for almost every α, infinitely many i
satisfy the inequality ai ≥ ϕ(i).
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Applying this theorem for ϕ(i) := Ki (K ∈ Z>0) and taking the countable intersection
for all positive integers K, one sees that almost every α ∈ (0, 1) \ Q has the following
property: For any positive real number x, infinitely many i satisfy the inequality ai ≥ xi.
We claim that 1/6 is an accumulation point of the sequence | {i ≤ n | jα(i) = } |/n for every
 ∈ {1, 2, . . . , 6} whenever α ∈ (0, 1) \Q has the above property. To prove our claim, choose
an α having the above property and take  from {1, 2, . . . , 6} arbitrarily.

Let ε > 0 and N ∈ Z>0 be given. What we have to show is that there exists an
n′ ≥ N such that | | {i ≤ n′ | jα(i) = } |/n′ − 1/6 | < ε holds. By the assumption on
α, there exists an n > max{N, 5/3ε} satisfying the inequality an > 2n/ε. We claim that
a1 + · · ·+ an (≥ n > N) works as n′.

For m ≥ 2, Proposition 1 tells us that the sequence jα((Σm−1
s=1 as) + 1), jα((Σm−1

s=1 as) +
2), . . . , jα((Σm−1

s=1 as)+am) = jα(Σms=1 as) is periodic. This periodicity enables us to estimate
the number of occurrences of  in this sequence:⌊am

6

⌋
< | {Σm−1

s=1 as < i ≤ Σms=1 as | jα(i) = } | <
⌊am

6

⌋
+ 1.

When m = 1, periodic part is jα(2), jα(3), . . . , jα(a1). Hence we have⌊
a1 − 1

6

⌋
< | {i ≤ a1 | jα(i) = } | <

⌊
a1 − 1

6

⌋
+ 2.

These arguments, together with inequalities 2n/ε < an ≤ Σns=0 as and 5/3ε < n ≤ Σns=1 as,
proves that

| {i ≤ Σns=1 as | jα(i) = } |
Σns=1 as

≤
Σns=1 as

6 + n+ 5
6

Σns=1 as

<
1

6
+
ε

2
+
ε

2

=
1

6
+ ε.

Similarly, one can prove

| {i ≤ Σns=1 as | jα(i) = } |
Σns=1 as

>
1

6
− ε.

This completes the proof.

Note that Theorem 14 follows also from this result as a corollary.

The rest of this paper studies another possible question concerning Question 1. Specifically,
we ask if it gives rise to any difference to replace “for every ” in Question 1 with “for some
”. The next results shows that the notion of parity plays a crucial part in this investigation.

Theorem 17. Let 1, 2 ∈ {1, 2, . . . , 6} be two distinct numbers with the same parity. If
limn→∞ | {i ≤ n | jα(i) = 1} |/n = 1/6 holds a.e., then so does limn→∞ | {i ≤ n | jα(i) =
2} |/n = 1/6.

Proof. We give the proof only for the case 1 = 1 and 2 = 3; the other cases are left to the
reader.

For  ∈ {1, 2, . . . , 6}, put

N :=

{
α ∈ (0, 1) \Q

∣∣∣∣ | {i ≤ n | jα(i) = } |
n

does not converge to
1

6

}
.
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What we need to prove is that if N1 is of measure zero, then so is N3.
Define a function g : (0, 1)→ (0, 1/3) by g(x) = x/(2x+1). Clearly, g is a homeomorphism

on (0, 1). An elementary computation shows that g is invertible and that both g and g−1

are bi-Lipschitz, in particular both send measure zero sets to measure zero sets. Since we
trivially have N3 = {α ∈ N3 | a1 ≥ 3} ∪ {α ∈ N3 | a1 = 1 or 2 }, in order to prove that N3

is of measure zero, it suffices to show the next two identities:

{α ∈ N3 | a1 ≥ 3} = g(N1);

{α ∈ N3 | a1 = 1 or 2} = g−2({α ∈ N1 | a1 = 5 or 6 }).

Observe that g maps [0; a1, a2, a3, . . . ] to [0; a1 +2, a2, a3, . . . ], i.e. adds 2 to the first element
of the continued fraction expansion. This observation, together with Proposition 1, leads to
the next

Lemma 3. For every α ∈ (0, 1) and n ≥ 1, the type of Dn+2(0, g(α), 1) is the type of
Dn(0, α, 1) plus 2 (modulo 6).

This lemma implies that α satisfies limn→∞ | {i ≤ n | jα(i) = 1} |/n = 1/6 if and only if
g(α) satisfies limn→∞ | {i ≤ n | jα(i) = 3} |/n = 1/6. In other words, α ∈ N1 ⇐⇒ g(α) ∈ N3.
The desired two identities follows from this easily.

Remark 3. In the above proof, the value 1/6 did not play any role. Indeed, the statement
remains valid even when 1/6 is replaced by any other real number in (0, 1).

In the proof of the preceding theorem, Lemma 3 played an important role. A similar
statement when the parity of 1 is different from that of 2 is no longer true. This makes it
difficult to prove an analogous statement to Theorem 17 for a pair of different parity.

Question 2. Let two distinct numbers 1, 2 ∈ {1, 2, . . . , 6} with different parity be given. If
limn→∞ | {i ≤ n | jα(i) = 1} |/n = 1/6 holds a.e., does limn→∞ | {i ≤ n | jα(i) = 2} |/n =
1/6 also hold a.e. ?

If this (technical) question has a positive answer, then we can actually replace “for every
” with (seemingly weaker) “for some ” in the statement of Question 1. Indeed, suppose
there exists some  ∈ {1, 2, . . . , 6} such that limn→∞ | {i ≤ n | jα(i) = } |/n = 1/6 holds
almost everywhere. Then, we know from Theorem 17 and the positive answer to Question
2 that limn→∞ | {i ≤ n | jα(i) = ′} |/n = 1/6 holds almost everywhere for every ′. Hence
we see that limn→∞ | {i ≤ n | jα(i) = ′} |/n = 1/6 for every ′ = 1, 2, . . . , 6 at almost
everywhere.

Note that an affirmative answer to the following question solves Question 2 positively:

Question 3. Are the following two conditions equivalent for every  ∈ {1, 2, . . . , 6}?

1. limn→∞ | {i ≤ n | jα(i) and  have the same parity} |/n = 1/2 holds a.e.;

2. limn→∞ | {i ≤ n | jα(i) = } |/n = 1/6 holds a.e.

One can easily deduce the first condition from the second one. Indeed, 2 and Theorem 17
imply that we have limn→∞ | {i ≤ n | jα(i) = ′} |/n = 1/6 a.e. for every ′ having the same
parity as . As the conjunction of finitely many properties that hold almost everywhere
again holds almost everywhere, 1 now follows.

We now deduce Question 2 assuming that 2 follows from 1: Let us suppose limn→∞ | {i ≤
n | jα(i) = 1} |/n = 1/6 holds a.e. for a given 1 ∈ {1, 2, . . . , 6}. Take a 2 ∈ {1, 2, . . . , 6}
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having different parity from that of 1. We wish to prove that limn→∞ | {i ≤ n | jα(i) =
2} |/n = 1/6 holds a.e.

Since 2 implies 1, limn→∞ | {i ≤ n | jα(i) and 1 have the same parity} |/n = 1/2 holds
almost everywhere. Now observe that for an arbitrary α ∈ (0, 1) \ Q, limn→∞ | {i ≤ n |
jα(i) is even} |/n = 1/2 holds if and only if limn→∞ | {i ≤ n | jα(i) is odd} |/n = 1/2 holds.
Therefore, we have

lim
n→∞

| {i ≤ n | jα(i) is even} |
n

=
1

2
a.e.⇐⇒ lim

n→∞

| {i ≤ n | jα(i) is odd} |
n

=
1

2
a.e.

As 1 and 2 have different parity, it follows that limn→∞ | {i ≤ n | jα(i) and 2 have the same
parity} |/n = 1/2 holds a.e. By applying our assumption that the condition 2 follows from
1, we get the desired result.

One can also ask a

Question 4. Do we have limn→∞
p
√

Σni=1 jα(i)p/n = p
√

(1p + 2p + · · ·+ 6p)/6 almost ev-
erywhere?

We also do not know the answer to this question. What we can certainly say is that, in view
of Proposition 3, Question 4 is at least as likely to be true as Question 1. Although we know
from Theorem 9 that the condition ”limn→∞

p
√

Σni=1 jα(i)p/n = p
√

(1p + 2p + · · ·+ 6p)/6”
for p = p1 and for p = p2 are independent from each other whenever p1 and p2 are
distinct, there might be some relationship between statements “limn→∞

p
√

Σni=1 jα(i)p/n =
p
√

(1p + 2p + · · ·+ 6p)/6 holds almost everywhere” for p = p1 and for p = p2 even when
p1 6= p2; It is interesting to see how the strength of the above statement changes as the value
of p increases.

Our final remark is on “mod 2”. Instead of modulo 6, one can consider indexes of Ducci
matrices by modulo 2 and formulate statements for them, e.g. jα(i) ≡  (mod 2) in place of
jα(i) = . Even if we do so, the results in this paper remain valid (with trivial modifications).

Acknowledgement. The author wishes to thank the referee for his useful comments that
improved the quality of the presentation of this work.

Note Added in Proof. At the time of submission of the manuscript, the author was
not aware of the following fact: Almost every α = [0; a1, a2, . . . ] ∈ (0, 1) \ Q satisfies
limn→∞ Σni=1 ai/n =∞. This appears to be a standard result in ergodic theory.

On the other hand, Theorem 6 states that for each α ∈ (0, 1) \Q, Σni=1 ai/n diverges if
and only if limn→∞ | {i ≤ n | jα(i) + 1 ≡ jα(i+ 1) (mod 6)} |/n = 1 holds. Combining these
two results, we thus get a

Corollary 3. limn→∞ | {i ≤ n | jα(i) + 1 ≡ jα(i + 1) (mod 6)} |/n = 1 holds at almost
every α ∈ (0, 1) \Q.

In view of Theorem 8 and Proposition 3, this in turn gives us a

Corollary 4. 1. limn→∞ | {i ≤ n | jα(i) = } |/n = 1/6 for every  = 1, 2, . . . , 6 holds at
almost every α ∈ (0, 1) \Q;

2. For every positive integer p, limn→∞
p
√

Σni=1 jα(i)p/n = p
√

(1p + 2p + · · ·+ 6p)/6 holds
at almost every α ∈ (0, 1) \Q.

1 and 2 positively answer Questions 1 and 4, respectively. Questions 2 and 3 are vacuously
true.
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