CONTRA- γ -IRRESOLUTE MAPPINGS AND RELATED GROUPS *

H. Maki and A.I.EL-Maghrabi

Received January 8, 2016

ABSTRACT. The aim of the present paper is devoted to discuss some more properties of γ -irresolute mappings and contra- γ -irresolute mappings. Also, we introduce and study two new weak homeomorphisms such as contra- γr -homeomorphisms and contra- γ -homeomorphisms. Further, we investigate some groups related to the mappings above and some examples of them on digital lines.

1 Introduction and preliminaries D.Andrijević [6] (resp. A.A. EL-Atik [15] and J. Dontchev and M. Przemski [13]) introduced independently the concept of *b*-open sets [6] (resp. γ -open sets [15] and *sp*-open sets [13]). A subset *A* of a topological space (X, τ) is called a γ -open set [15] (or *b*-open set [6], *sp*-open set [13]), if $A \subseteq Cl(Int(A)) \cup Int(Cl(A))$ holds in (X, τ) ; and the complement of a γ -open (or *b*-open, *sp*-open) set is called γ -closed (or *b*-closed, *sp*-closed). Throughout the present paper, we use the terminology due to [15] for the naming of the above set, i.e., γ -open sets, γ -closed sets. The γ -closure of a subset *E* of (X, τ) is defined by $\gamma Cl(E) := \bigcap \{F | E \subseteq F, F \text{ is } \gamma$ -closed in $(X, \tau)\}$; and it is the smallest γ -closed set containing *E* (cf. Theorem 4.4(iii)); we recall some importante properties of γ -open sets in Section 4 (Theorem 4.4).

In the present paper, we use the following notations (cf. [28] [19, p.2]): $\gamma O(X, \tau) := \{U|U \text{ is } \gamma \text{-open in } (X, \tau)\};$

 $\gamma C(X,\tau) := \{F | F \text{ is } \gamma \text{-closed in } (X,\tau), \text{ i.e., } Int(Cl(F)) \cap Cl(Int(F)) \subseteq F\}.$

 $SO(X,\tau) := \{U|U \text{ is semi-open in } (X,\tau), \text{ i.e., } U \subseteq Cl(Int(U))\} [25];$

 $SC(X,\tau) := \{F | F \text{ is semi-closed in } (X,\tau), \text{ i.e., } Int(Cl(F)) \subseteq F\}.$

 $\tau^{\alpha} := \{ V | V \text{ is } \alpha \text{-open in } (X, \tau), \text{ i.e., } V \subseteq Int(Cl(Int(V))) \} [27].$

 $\beta O(X,\tau) = SPO(X,\tau) := \{W | W \text{ is } \beta \text{-open (or semi-preopen) in } (X,\tau), \text{ i.e., } W \subseteq Cl(Int(Cl(W)))\}$ [2],[5]. It is well known that:

 $\tau^{\alpha} \subseteq SO(X,\tau) \subseteq \gamma O(X,\tau) \subseteq \beta O(X,\tau)$ hold in general.

In Section 2, we mention some relations among γ -irresoluteness [12], pre- γ -closedness [15], contra- γ -irresoluteness ([16] [28]) and some mappings (cf. Definitions 2.1, 2.2).

In Section 3, after the work due to A.Keskin and T.Noiri [20], we study a new group, say $\gamma r \cdot h(X; \tau) \cup contra \cdot \gamma r \cdot h(X; \tau)$ (Theorem 3.4(i), Corollary 3.6(i)). By the article [20, Definition 4.13, Theorem 4.14(ii)], the concept of the family $\gamma r \cdot h(X; \tau)$ is introduced and it is proved that $\gamma r \cdot h(X; \tau)$ forms a group. The family $contra \cdot \gamma r \cdot h(X; \tau)$ is one of all $contra \cdot \gamma \cdot homeomorphisms$ on (X, τ) (cf. Definition 3.2). The group $\gamma r \cdot h(X; \tau) \cup contra \cdot \gamma r \cdot h(X; \tau)$ is one of the group invariants of a topological space (X, τ) under a γr -homeomorphism between topological spaces (Theorem 3.5(i)). By Theorem 3.4(ii)(cf. (iv)), it is shown that the group $h(X; \tau)$ of all homeomorphisms on (X, τ) is a subgroup of the group $\gamma r \cdot h(X; \tau) \cup contra \cdot \gamma r \cdot h(X; \tau)$.

In Section 4, we introduce two subgroups of $\gamma r \cdot h(X; \tau)$ (Definition 4.1) and so we can investigate some group structure of $\gamma r \cdot h(H; \tau | H)$ for the subspace $(H, \tau | H)$ of (X, τ) (Theorems 4.2 and 4.9(iii)).

^{*2010} Mathematics Subject Classification. 54C08;64C40,54J05.

Key words and phrases. γ -open sets, b-open set, γ -irresolute mappings, contra- γ -irresolute mappings, γr -homeomorphisms, contra- γr -homeomorphisms, digital lines.

In Section 5, we study some topological properties on related topics of transformations on the digital line (\mathbb{Z}, κ) (so-called Khalimsky lines [21], [22, p.7, line -6], [23, p.905, p.908]), and for a specific subset H of the digital line (\mathbb{Z}, κ) , we determine the group structure (Example 5.13) of $\gamma r \cdot h(\mathbb{Z}, \mathbb{Z} \setminus H; \kappa)$, $\gamma r \cdot h_0(\mathbb{Z}, \mathbb{Z} \setminus H; \kappa)$ and $\gamma r \cdot h(H; \kappa | H)$.

Throughout the present paper, (X, τ) , (Y, σ) and (Z, η) (or simply X, Y and Z) represent nonempty topological spaces on which no separation axioms are assumed, unless otherwise mentioned.

2 Contra- γ -irresolute mappings and γ -irresolute mappings This section is devoted to discuss the relation among γ -irresolute mappings [15], contra- γ -irresolute mappings [16][28], perfectly contra- γ -irresolute mappings [16] and some mappings (cf. Definitions 2.1, 2.2).

Definition 2.1 A mapping $f : (X, \tau) \to (Y, \sigma)$ is said to be:

(i) *b-continuous* [12] (or γ -continuous [15]), if $f^{-1}(V)$ is a *b*-closed (or γ -closed) set of (X, τ) for each closed set V of (Y, σ) ;

(ii) perfectly continuous [31], if $f^{-1}(V)$ is clopen in (X, τ) for each open set V of (Y, σ) ;

(iii) contra-continuous [11], if $f^{-1}(V)$ is closed in (X, τ) for each open set V of (Y, σ) ;

(iv) contra- γ -continuous [16] (or contra-b-continuous [28]) if $f^{-1}(V) \in \gamma C(X, \tau)$ for each open set V of (Y, σ) ;

(iv) strongly contra- γ -continuous (cf. (iv)), if f is a contra- γ -continuous mapping such that the inverse image of each open set of (Y, σ) has an interior point;

(v) *B*-continuous [34], if $f^{-1}(V)$ is a *B*-set of (X, τ) for each nonempty open set *V* of (Y, σ) , where the *B*-set is the intersection of an open set and a semi-closed set of (X, τ) (this is defined by [34], cf. [10, Theorem 2.3]).

(v) B^* -continuous (cf. (v)), if $f^{-1}(V)$ contains a nonempty B-set of (X, τ) for each nonempty open set V of (Y, σ) ;

(vi) pre-b-closed [15] (or pre- γ -closed), if f(G) is b-closed (or γ -closed) in (Y, σ) for each b-closed (or γ -closed) set G of (X, τ) .

Definition 2.2 A mapping $f : (X, \tau) \to (Y, \sigma)$ is said to be:

(i) γ -irresolute (or b-irresolute [15]) (resp. irresolute [8, Definition 1.1]), if $f^{-1}(U) \in \gamma O(X, \tau)$ (resp. $f^{-1}(U) \in SO(X, \tau)$) for every set $U \in \gamma O(Y, \sigma)$ (resp. $U \in SO(Y, \sigma)$);

(ii) contra- γ -irresolute [16] (or contra-b-irresolute [28]) (resp.contra-irresolute), if $f^{-1}(U) \in \gamma C(X, \tau)$ (resp. $f^{-1}(U) \in SC(X, \tau)$) for every set $U \in$

 $\gamma O(Y, \sigma)$ (resp. $U \in SO(Y, \sigma)$); (iii) perfectly contra- γ -irresolute [29] (resp. perfectly contra-irresolute), if $f^{-1}(V)$ is γ clopen (resp. semi-open and semi-closed) in (X, τ) for each set $V \in \gamma O(Y, \sigma)$ (resp. $V \in SO(Y, \sigma)$).

Theorem 2.3 A mapping $f : (X, \tau) \to (Y, \sigma)$ is B^* -continuous, if one of the following conditions is satisfied:

- (1) f is a strongly contra- γ -continuous mapping,
- (2) f is an onto and B-continuous mapping.

We have the following diagram among several mappings defined above, where $p \rightarrow q$ (resp. p' $\leftrightarrow q'$) means that p implies q (resp. p' and q' are independent). The implications are not reversible and the independence is explained (cf. Remark 2.4 below).

$$\begin{array}{c} \text{contra-continuous} \\ \swarrow & \searrow \\ \text{contra-}\gamma\text{-continuous} \leftrightarrow B\text{-continuous} \leftarrow \text{onto and } B\text{-continuous} \\ \uparrow & \downarrow \\ \text{strongly contra-}\gamma\text{-continuous} & \rightarrow & B^*\text{-continuous.} \end{array}$$

Remark 2.4 (i) Let (\mathbb{R}, ϵ) be the real line with the Euclidean topology ϵ . The following functions $f, 1_{\mathbb{R}} : (\mathbb{R}, \epsilon) \to (\mathbb{R}, \epsilon)$ of (i) below are seen in [12].

(i) (i-1) Let $f : (\mathbb{R}, \epsilon) \to (\mathbb{R}, \epsilon)$ be a mapping defined by f(x) = [x], where [x] is the Gaussian symbol. Then, f is contra- γ -continuous (cf. Definition 2.1(iv)). However, f is not contra-continuous, because for an open interval $(1/2, 3/2), f^{-1}((1/2, 3/2)) = [1, 2)$ is not closed in (\mathbb{R}, ϵ) .

(i-2) The identity mapping $1_{\mathbb{R}} : (\mathbb{R}, \epsilon) \to (\mathbb{R}, \epsilon)$ is *B*-continuous (cf. Definition 2.1(v)) but not contra- γ -continuous, since the inverse image of each singleton is not γ -open. Moreover, $1_{\mathbb{R}}$ is not contra-continuous.

(ii) The following mapping $f : (X, \tau) \to (X, \tau)$ is contra- γ -continuous; but f is not B-continuous. Let $X := \{a, b, c\}$ and $\tau := \{\emptyset, \{a, b\}, X\}$. Then, we have $\gamma C(X, \tau) = \{\emptyset, \{a\}, \{b\}, \{c\}, \{b, c\}, \{a, c\}, X\}$ and $SC(X, \tau) = \{\emptyset, \{c\}, X\}$. We define the mapping f by f(a) := a, f(b) := c, f(c) := b.

(iii) The converse of Theorem 2.3 under the assumption (1) is not reversible. Let $X := \{a, b, c\}$ and $\tau := \{\emptyset, \{a\}, \{b\}, \{a, b\}, X\}$. Let $f : (X, \tau) \to (X, \tau)$ be a mapping defined by f(a) := b, f(b) := c, f(c) := a. Then, since $\gamma C(X, \tau) = SC(X, \tau) = P(X) \setminus \{\{a, b\}\}$, we show f is B-continuous and onto. By Theorem 2.3 under the assumption (2), it is obtained that f is B^* -continuous. This mapping f is contra- γ -continuous; but $Int(f^{-1}(\{a\})) = Int(\{c\}) = \emptyset$ hold; and so f is not strongly contra- γ -continuous.

(iv) The converse of Theorem 2.3 under the assumption (2) is not reversible. The mapping $f : (X, \tau) \to (X, \tau)$ defined in (ii) above is not *B*-continuous (cf. (ii)). But, *f* is *B*^{*}-continuous, because $\{c\}$ and *X* are the nonempty *B*-sets.

(v) The contra- γ -continuous mapping $f : (X, \tau) \to (X, \tau)$ of (ii) above is not strongly contra- γ -continuous (cf. Definition 2.1(iv)'), because $Int(f^{-1}(\{a,b\})) = \emptyset$.

Remark 2.5 (i) Let $X = \{a, b\}, \tau = \{\emptyset, X, \{a\}\}$ and $\sigma = \{\emptyset, X, \{b\}\}$. Then the identity mapping $1_X : (X, \tau) \to (X, \sigma)$ is a contra- γ -continuous mapping but it is not γ -continuous.

(ii) The identity mapping $1_{\mathbb{R}} : (\mathbb{R}, \epsilon) \to (\mathbb{R}, \epsilon)$ of Remark 2.4(i)(i-2) is γ -continuous but it is not contra- γ -continuous.

Remark 2.6 The following properties are well known. (i) [4, Theorem 3.7(i)] if $f : (X, \tau) \rightarrow (Y, \sigma)$ is contra- γ -irresolute and $g : (Y, \sigma) \rightarrow (Z, \eta)$ is γ -continuous, then $g \circ f$ is contra- γ -continuous.

(ii) Every homeomorphism is γ -irresolute.

Remark 2.7 (i) By the following examples (i-1) and (i-2), it is shown that the contra- γ -irresoluteness and γ -irresoluteness are independent notions: let $X := \{a, b, c\}$ and $\tau := \{X, \emptyset, \{a\}, \{a, b\}\}$.

(i-1) The identity mapping on (X, τ) above is γ -irresolute; but it is not contra- γ -irresolute. (i-2) Let $f: (X, \tau) \to (X, \tau)$ be a mapping defined by f(a) := b, f(b) := b, f(c) := a. Then, f is contra- γ -irresolute; but f is not γ -irresolute.

(ii) In general, for any topological space (X, τ) , the identity mapping $1_X : (X, \tau) \to (X, \tau)$ is contra- γ -irresolute if and only if $\gamma O(X, \tau) = \gamma C(X, \tau)$ holds. And, 1_X on any topological space (X, τ) is γ -irresolute.

Remark 2.8 (i) Every contra- γ -irresolute mapping is contra- γ -continuous, but it is shown that its converse is not true, by the following example. Let $X = \{a, b, c\}, \tau = \{\emptyset, \{a\}, \{b\}, \{a, b\}, X\}$. Let $f : (X, \tau) \to (X, \tau)$ be a mapping defined by f(a) := c, f(b) := a, f(c) := b.

(ii) For a mapping $f: (X, \tau) \to (Y, \sigma)$, f is contra- γ -irresolute if and only if the inverse image $f^{-1}(F)$ of each γ -closed set F of (Y, σ) is γ -open in (X, τ) .

Remark 2.9 (i) The following diagram of implications is well known:

 \cdot contra-irresolute \leftarrow perfectly contra-irresolute \rightarrow irresolute.

We have the following diagram of implications:

 \cdot contra- γ -irresolute \leftarrow perfectly contra- γ -irresolute $\longrightarrow \gamma$ -irresolute;

and they are not reversible (cf. Remark 2.7(i) above and Remark 2.10 below):

(ii) In the implications above, the irresoluteness (resp. contra-irresoluteness, perfectly contra-irresoluteness) and the γ -irresoluteness (resp. contra- γ -irresoluteness, perfectly contra- γ -irresoluteness) are independent (cf. (a), (b), (c) below).

Let $X = \{a, b, c\}$. We consider the following topologies on $X : \tau := \{X, \emptyset, \{a\}, \{b\}, \{a, b\}\}, \tau_1 := \{X, \emptyset, \{a\}, \{a, b\}\}, \tau_2 := \{X, \emptyset, \{c\}, \{a, b\}\} \text{ and } \tau_3 := \{X, \emptyset\}.$ We have the following dates: $SO(X, \tau) = \gamma O(X, \tau) = P(X) \setminus \{\{c\}\}; SO(X, \tau_1) = \gamma O(X, \tau_1) = \{\emptyset, \{a\}, \{a, b\}, \{a, c\}, X\}; SO(X, \tau_2) = \tau_2, \gamma O(X, \tau_2) = P(X); SO(X, \tau_3) = \{\emptyset, X\}, \gamma O(X, \tau_3) = P(X).$

(a) (a-1) Define a mapping $f : (X, \tau) \to (X, \tau_2)$ as follows: f(a) = a, f(b) = c and f(c) = b. Then f is irresolute; f is not γ -irresolute.

(a-2) Let $f: (X, \tau_3) \to (X, \tau)$ be the identity mapping. Then f is γ -irresolute; f is not irresolute.

(b) (b-1) Let $f: (X, \tau_2) \to (X, \tau_1)$ be the identity mapping. Then f is contra- γ -irresolute; f is not contra-irresolute.

(b-2) Define a mapping $f : (X, \tau_1) \to (X, \tau_2)$ as follows: f(a) := a, f(b) := a, f(c) := b. Then f is contra-irresolute; f is not contra- γ -irresolute.

(c) (c-1) Let $f: (X, \tau_3) \to (X, \tau_2)$ be the identity mapping. Then f is perfectly contra- γ -irresolute; f is not perfectly contra-irresolute.

(c-2) Define a mapping $f: (X, \tau) \to (X, \tau_2)$ as follows: f(a) := c, f(b) := a, f(c) := b. Then f is perfectly contra-irresolute; f is not perfectly contra- γ -irresolute.

Remark 2.10 We have a decomposition of perfectly contra- γ -irresolute mappings. The following conditions (1) and (2) are equivalent: (1) $f : (X, \tau) \to (Y, \sigma)$ is perfectly contra- γ -irresolute; (2) $f : (X, \tau) \to (Y, \sigma)$ is contra- γ -irresolute and γ -irresolute.

3 Groups $\gamma r \cdot h(X; \tau) \cup contra \cdot \gamma r \cdot h(X; \tau)$ and $h(X; \tau) \cup contra \cdot h(X; \tau)$ We have a new homeomorphism invariant for topological spaces (cf. Theorems 3.4, 3.5, Corollary 3.6).

Definition 3.1 (i) A mapping $f : (X, \tau) \to (Y, \sigma)$ is said to be:

(i-1) ([20, Definiton 4.12]) a γr -homeomorphism if f is a γ -irresolute bijection and f^{-1} is γ -irresolute;

(i-2) a contra- γr -homeomorphism if f is a contra- γ -irresolute bijection and f^{-1} is contra- γ -irresolute;

(ii) (ii-1) ([20, Definition 4.12]) a γ -homeomorphism if f is a γ -continuous bijection and f^{-1} is γ -continuous;

(ii-2) a contra- γ -homeomorphism (resp. contra-homeomorphism) if f is a contra- γ -continuous (resp. contra-continuous) bijection and f^{-1} is contra- γ -continuous (resp. contra-continuous).

Definition 3.2 We recall and define the following families of mappings from (X, τ) onto itself.

· ([20, Definition 4.13]) $\gamma r \cdot h(X; \tau) := \{f | f : (X, \tau) \to (X, \tau) \text{ is a } \gamma r \cdot \text{homeomorphism}\}$ (by [20, Theorem 4.14(ii)], it is proved that $\gamma r \cdot h(X; \tau)$ forms a group under the composition of mappings);

 \cdot contra- γr - $h(X; \tau) := \{ f | f : (X, \tau) \to (X, \tau) \text{ is a contra-} \gamma r$ -homeomorphism};

· $h(X;\tau) := \{f | f : (X,\tau) \to (X,\tau) \text{ is a homeomorphism} \};$

· $contra-h(X;\tau) := \{f | f : (X,\tau) \to (X,\tau) \text{ is a contra-homeomorphism}\};$

• $G_{(X,\tau)} := \gamma r \cdot h(X;\tau) \cup contra \cdot \gamma r \cdot h(X;\tau);$

• $H_{(X,\tau)} := h(X;\tau) \cup contra-h(X;\tau).$

Proposition 3.3 Let $f : (X, \tau) \to (Y, \sigma)$ and $g : (Y, \sigma) \to (Z, \eta)$ be two mappings between topological spaces.

(i) (i-1) ([20, Theorem 4.14(ii)]) If f and g are γ -irresolute, then $g \circ f$ is γ -irresolute.

(i-2) ([20, Theorem 4.14(ii)]) The identity mapping $1_X : (X, \tau) \to (X, \tau)$ is γ -irresolute. (i-3) If f and g are contra- γ -irresolute, then $g \circ f$ is γ -irresolute.

(ii) (ii-1) If f is contra- γ -irresolute and g is γ -irresolute, then $g \circ f$ is contra- γ -irresolute. (ii-2) If f is γ -irresolute and g is contra- γ -irresolute, then $g \circ f$ is contra- γ -irresolute. \Box

Theorem 3.4 Let $G_{(X,\tau)}$ and $H_{(X,\tau)}$ be the families of mappings defined in Definition 3.2. (i) $G_{(X,\tau)}$ forms a group under the composition of mappings.

(ii) $\gamma r \cdot h(X; \tau)$ forms a subgroup of $G_{(X,\tau)}$ (cf. [20, Theorem 4.14(ii)]).

(iii) The group $h(X;\tau)$ is a subgroup of $\gamma r \cdot h(X;\tau)$ ([20, Theorem 4.14(iii)]) and $h(X;\tau)$ is also a subgroup of $G_{(X,\tau)}$.

(iv) $H_{(X,\tau)}$ forms a group under the composition of mappings. The group $h(X;\tau)$ is a subgroup of $H_{(X,\tau)}$.

(v) If $\tau = \gamma O(X, \tau)$ holds, then $G_{(X,\tau)} = H_{(X,\tau)}$.

We note that the binary operation $\omega_{G(X,\tau)} : G_{(X,\tau)} \times G_{(X,\tau)} \to G_{(X,\tau)}$ is well defined by $\omega_{G(X,\tau)}(a,b) := b \circ a$, where $a, b \in G_{(X,\tau)}$ and $b \circ a$ denotes the composition of two mappings a, b defined by $(b \circ a)(x) = b(a(x))$ for any $x \in X$ (cf. Proposition 3.3). And, the restriction $\omega_{G(X,\tau)}|\gamma r \cdot h(X;\tau) \times \gamma r \cdot h(X;\tau)$ is denoted shortly by ω_X .

Theorem 3.5 (i) If $f: (X, \tau) \to (Y, \sigma)$ is a γr -homeomorphism (resp. contra- γr -homeomorphism), then the mapping f induces an isomorphism $f_*: G_{(X,\tau)} \to G_{(Y,\sigma)}$, where f_* is defined by $f_*(a) := f \circ a \circ f^{-1}$ for any $a \in G_{(X,\tau)}$. Moreover,

(a) $(g \circ f)_* = g_* \circ f_* : G_{(X,\tau)} \to G_{(Z,\eta)}$, where $g : (Y,\sigma) \to (Z,\eta)$ is a γr -homeomorphism (resp. contra- γr -homeomorphism),

(b) $(1_X)_* = 1 : G_{(X,\tau)} \to G_{(X,\tau)}$ is the identity isomorphism,

(c) $f_*(\gamma r \cdot h(X;\tau)) = \gamma r \cdot h(Y;\sigma), f_*(h(X;\tau)) \subseteq \gamma r \cdot h(Y;\sigma)$ and

 $f_*(contra-\gamma r \cdot h(X;\tau)) = contra-\gamma r \cdot h(Y;\sigma) \ hold.$

(ii) Especially, if $f : (X, \tau) \to (Y, \sigma)$ and $g : (Y, \sigma) \to (Z, \eta)$ are homeomorphisms, then the induced mappings $f_* : G_{(X,\tau)} \to G_{(Y,\sigma)}$ and $g_* : G_{(Y,\sigma)} \to G_{(Z,\eta)}$ are isomorphisms (cf. (i)). Moreover, they have the same property of (a),(b) and (c) in (i). We note that, in (c), $f_*(h(X;\tau)) = h(Y;\sigma)$ holds.

Corollary 3.6 (cf. Definition 3.2, Theorem 3.5) (i) If $G_{(X,\tau)} \not\cong G_{(Y,\sigma)}$ (i.e. $G_{(X,\tau)}$ is not isomorphic to $G_{(Y,\sigma)}$ as groups), then there does not exist any γr -homeomorphism between two topological spaces (X,τ) and (Y,σ) ; and hence $(X,\tau) \not\cong (Y,\sigma)$ (i.e., (X,τ) is not homeomorphic to (Y,σ)).

(ii) If $\gamma r \cdot h(X;\tau) \cong \gamma r \cdot h(Y;\sigma)$ (i.e., $\gamma r \cdot h(X;\tau)$ is not isomorphic to $\gamma r \cdot h(Y;\sigma)$ as groups), then there does not exist any $\gamma r \cdot homeomorphism$ between (X,τ) and (Y,σ) . \Box

Example 3.7 (i) In Section 5, we give a special example of group $\gamma r \cdot h(H, \kappa | H)$, where $(H, \kappa | H)$ is a subspace of the digital line (\mathbb{Z}, κ) (cf. Example 5.13).

(ii) Let (X, τ) and (Y, σ) be two topological spaces, where $X = Y := \{a, b, c\}, \tau := \{\emptyset, \{a\}, \{b, c\}, X\}$ and $\sigma := \{\emptyset, \{a\}, \{b\}, \{a, b\}, Y\}$. Then, it is shown that $G_{(X,\tau)} = \gamma r \cdot h(X; \tau) \cong S_3$ (=the symetric group of degree 3) and $G_{(Y,\sigma)} = \gamma r \cdot h(Y; \sigma) = \{1_Y, h_c\}$, where $h_c: (Y, \sigma) \to (Y, \sigma)$ is a bijection defined by $h_c(a) := b, h_c(b) := a, h_c(c) := c$; and hence $G_{(X,\tau)} \not\cong G_{(Y,\sigma)}$. Thus, using Corollary 3.6(i), we can assure that there is never exists any γr -homeomorphism between (X, τ) and (Y, σ) . We note that $h(X; \tau) = \{1_X, h_a\}$ and $h(Y; \sigma) = \{1_Y, h_c\}$ hold, where $h_a: (X, \tau) \to (X, \tau)$ is a bijection defined by $h_a(a) := a, h_a(b) := c, h_a(c) := b$; and so $h(X; \tau) \cong h(Y; \sigma)$ holds.

(iii) Let (X, τ) be the topological space of (ii) above and let (Y_1, σ_1) be a topological space such that $Y_1 := \{a, b, c\}$ and $\sigma_1 := \{\emptyset, \{a\}, \{b\}, \{a, b\}, \{a, c\}$

 Y_1 . Then, we have that $G_{(X,\tau)} \not\cong G_{(Y_1,\sigma_1)}$ and $h(X;\tau) \not\cong h(Y_1;\sigma_1)$. Using Corollary 3.6, there is never exist any γr -homeomorphism between (X,τ) and (Y_1,σ_1) .

(iv) Let (Y_1, σ_1) be the topological space of (iii) above and let (Y_2, σ_2) be a topological space such that $Y_2 := \{a, b, c\}$ and $\sigma_2 := \{\emptyset, \{a\}, Y_2\}$. Then, we have that $G_{(Y_1, \sigma_1)} \cong G_{(Y_2, \sigma_2)}, \gamma r \cdot h(Y_1, \sigma_1) \not\cong \gamma r \cdot h(Y_2, \sigma_2)$ and $h(Y_1, \sigma_1) \not\cong h(Y_2, \sigma_2)$ hold. We can apply Corollary 3.6(ii) for this example (iii).

(v) For the digital line (\mathbb{Z}, κ) , we have an example of a subgroup of $H_{(\mathbb{Z},\kappa)}$ (cf. Example 5.10(iv)).

4 Two subgroups of γr - $h(X; \tau)$ and their properties The purpose of the present section is to prove Theorem 4.9.

Definition 4.1 For a subset G of X, we define the following families of mappings:

(i) $\gamma r \cdot h(X, G; \tau) := \{a \mid a \in \gamma r \cdot h(X; \tau) \text{ and } a(G) = G\};$

(ii) $\gamma r \cdot h_0(X, G; \tau) := \{a \mid a \in \gamma r \cdot h(X; \tau) \text{ and } a(x) = x \text{ for every point } x \in G\}.$

Theorem 4.2 Let H be a subset of a topological space (X, τ) . The families $\gamma r \cdot h(X, X \setminus H; \tau)$ and $\gamma r \cdot h_0(X, X \setminus H; \tau)$ form two subgroups of $\gamma r \cdot h(X, \tau)$ and $\gamma r \cdot h(X, X \setminus H; \tau) = \gamma r \cdot h(X, H; \tau)$ holds.

For the group $\gamma r \cdot h(X, X \setminus H; \tau)$, say A, (resp. $\gamma r \cdot h_0(X, X \setminus H; \tau)$, say A_0 ,) of Theorem 4.2, we define the binary operation $\omega_{X,H} : A \times A \to A$ (resp. $\omega_{X,H_0} : A_0 \times A_0 \to A_0$) by $\omega_{X,H}(a,b) := (\omega_{G(X,\tau)} | A \times A)(a,b) = b \circ a$ (resp. $\omega_{X,H_0}(a,b) := (\omega_{G(X,\tau)} | A_0 \times A_0)(a,b) = b \circ a$) (cf. a few lines after Theorem 3.4).

In order to investigate precisely some structures of $\gamma r \cdot h(H, X \setminus H; \tau | H)$ (cf. Theorem 4.9), we need the following definitions and properties.

Definition 4.3 Let H, K be subsets of X and Y, respectively. For a mapping $f: X \to Y$ satisfying a property K = f(H), we define the following mapping $r_{H,K}(f): H \to K$ by $r_{H,K}(f)(x) = f(x)$ for every $x \in H$.

Then, we have the following properties:

(4.a) $j_K \circ r_{H,K}(f) = f|H : H \to Y$, where $j_K : K \to Y$ be the inclusion defined by $j_K(y) = y$ for every $y \in K$ and $f|H : H \to Y$ is the restriction of f to H defined by (f|H)(x) = f(x) for every $x \in H$.

(4.b) Especially, we consider the following case where $X = Y, H = K \subseteq X$. If a(H) = H and b(H) = H, then $r_{H,H}(b \circ a) = r_{H,H}(b) \circ r_{H,H}(a)$ holds, where $a, b : X \to X$ are mappings.

(4.c) If a mapping $a: X \to X$ is a bijection such that a(H) = H, then $r_{H,H}(a): H \to H$ is bijective and $r_{H,H}(a^{-1}) = (r_{H,H}(a))^{-1}$.

In Theorem 4.4 below, we recall well known properties on γ -open sets and they are needed later. For a subset H of (X, τ) and a subset $U \subseteq H$, $Int_H(U)$ (resp. $Cl_H(U)$) is the interior (resp. closure) of the set U in a subspace $(H, \tau | H)$. The γ -interior of a subset A of (X, τ) is defined by

 $\cdot \gamma Int(A) := \bigcup \{ V | V \subseteq A, V \in \gamma O(X, \tau) \}.$ It is well known that: for a set $A \subseteq X$,

· ([6, Proposition 2.5]) $\gamma Int(A) = A \cap (Int(Cl(A)) \cup Cl(Int(A)))$ and

 $\gamma Cl(A) = A \cup (Int(Cl(A)) \cap Cl(Int(A)))$ hold (e.g., [19, Lemma 2.6(iii)], [3, Lemma 3.2]). And, by [6, Proposition 2.3(a)] (cf. Theorem 4.4(iii)), it is shown that

 $\cdot \gamma Cl(A) \in \gamma C(X, \tau)$ and $\gamma Int(A) \in \gamma O(X, \tau)$, where A is a subset of (X, τ) .

 $\cdot \gamma O(H, \tau | H) := \{ U \subseteq H | U \text{ is } \gamma \text{-open in } (H, \tau | H) \};$

 $\cdot \gamma C(H,\tau|H) := \{ F \subseteq H | F \text{ is } \gamma \text{-closed in } (H,\tau|H) \};$

 $\cdot \gamma Cl_H(U) := \bigcap \{F \mid U \subseteq F, F \in \gamma C(H, \tau | H)\}, \text{ where } U \subseteq H \subseteq X.$

Theorem 4.4 (i) ([15],e.g.,[14, Lemma 2.2];[1, Proof of Theorem 2.3(3)]). Let $H \subseteq X$ and $A_1 \subseteq X$. If H is α -open in (X, τ) and A_1 is γ -open in (X, τ) , then $A_1 \cap H$ is γ -open in $(H, \tau|H)$.

(ii) ([15];e.g., [14, Lemma 2.4]) Let $A \subseteq H \subseteq X$. If A is γ -open in $(H, \tau | H)$ and H is α -open in (X, τ) , then A is γ -open in (X, τ) .

(iii) ([6, Proposition 2.3(a)]) Arbitrary union of γ -open sets of (X, τ) is γ -open in (X, τ) .

(iv) ([6, Proposition 2.4(2)]) Let $H \subseteq X$ and $A_1 \subseteq X$. If H is α -open in (X, τ) and A_1 is γ -open in (X, τ) , then $A_1 \cap H$ is γ -open in (X, τ) .

(v) If $B \subseteq H \subseteq X$ and H is α -open in (X, τ) , then $\gamma Cl(B) \cap H = \gamma Cl_H(B)$ holds.

(vi) Let $F \subseteq H \subseteq X$. If H is α -open and γ -closed in (X, τ) and F is γ -closed in $(H, \tau|H)$, then F is γ -closed in (X, τ) .

Remark 4.5 It follows from the following example that one of the assumptions of Theorem 4.4(vi) is not removed. Let $X := \{a, b, c\}$ and $\tau := \{\emptyset, \{a\}, X\}$ (cf. the space (Y_2, σ_2) of Example 3.7(iv)). For a subset $H := \{a, c\}$, the set H is γ -closed in $(H, \tau|H)$ and it is α -open in (X, τ) , but H is not γ -closed in (X, τ) .

Proposition 4.6 (i) If $f : (X, \tau) \to (Y, \sigma)$ is γ -irresolute and a subset H is α -open in (X, τ) , then $f|H : (H, \tau|H) \to (Y, \sigma)$ is γ -irresolute.

(ii) Let $k : (X, \tau) \to (K, \sigma | K)$ be a mapping and $j_K : (K, \sigma | K) \to (Y, \sigma)$ be the inclusion, where $K \subseteq Y$. Then, the following properties (1), (2) are equivalent, under the assumption that K is α -open in (Y, σ) :

(1) $k: (X, \tau) \to (K, \sigma | K)$ is γ -irresolute;

(2) $j_K \circ k : (X, \tau) \to (Y, \sigma)$ is γ -irresolute.

(iii) If $f: (X, \tau) \to (Y, \sigma)$ is γ -irresolute, H is α -open in (X, τ) and f(H) is α -open in (Y, σ) , then $r_{H,f(H)}(f): (H, \tau|H) \to (f(H), \sigma|f(H))$ is γ -irresolute (cf. Definition 4.3).

Proof. The properties (i) and (ii)(1) \Rightarrow (2) (resp. (ii)(2) \Rightarrow (1)) are proved by using Theorem 4.4(i) (resp. Theorem 4.4(ii)). The property (iii) is proved by (i),(ii) above and (4.a) after Definition 4.3.

Definition 4.7 For an α -open subset H of (X, τ) , the following mappings $(r_H)_* : \gamma r$ - $h(X, X \setminus H; \tau) \to \gamma r$ - $h(H; \tau | H)$ and $(r_H)_{*,0} : \gamma r$ - $h_0(X, X \setminus H; \tau) \to \gamma r$ - $h(H; \tau | H)$ are well defined as follows (cf. Proposition 4.6(iii)), respectively:

 $(r_H)_*(f) := r_{H,H}(f)$ for every $f \in \gamma r \cdot h(X, X \setminus H; \tau);$

 $(r_H)_{*,0}(g) := r_{H,H}(g)$ for every $g \in \gamma r \cdot h_0(X, X \setminus H; \tau)$.

Lemma 4.8 (A pasting lemma for γ -irresolute mappings) Let $X = U_1 \cup U_2$, where U_1 and U_2 are α -open sets in (X, τ) , and $f_1 : (U_1, \tau | U_1) \to (Y, \sigma)$ and $f_2 : (U_2, \tau | U_2) \to (Y, \sigma)$ are γ -irresolute mappings such that $f_1(x) = f_2(x)$ for every point $x \in U_1 \cap U_2$. Then its combination $f_1 \nabla f_2 : (X, \tau) \to (Y, \sigma)$ is γ -irresolute, where $(f_1 \nabla f_2)(x) := f_j(x)$ for every $x \in U_j(j \in \{1, 2\})$.

Proof. Let $V \in \gamma O(Y, \sigma)$. By Theorem 4.4 (ii) and (iii), it is proved that $(f_1 \nabla f_2)^{-1}(V) \in \gamma O(X, \tau)$, because $f_i^{-1}(V) \in \gamma O(U_i, \tau | U_i), f_i^{-1}(V) \in \gamma O(X, \tau)$ for each $i \in \{1, 2\}$ and $(f_1 \nabla f_2)^{-1}(V) = f_1^{-1}(V) \cup f_2^{-1}(V)$ hold. \Box

Theorem 4.9 Let H be a subset of a topological space (X, τ) .

(i) (i-1) If H is α -open in (X, τ) , then the mappings $(r_H)_* : \gamma r \cdot h(X, X \setminus H; \tau) \to \gamma r \cdot h(H; \tau | H)$ and $(r_H)_{*,0} : \gamma r \cdot h_0(X, X \setminus H; \tau) \to \gamma r \cdot h(H; \tau | H)$ are homomorphisms of groups (cf. Definition 4.7). Moreover, $(r_H)_*|B_0 = (r_H)_{*,0}$ holds, where $B_0 := \gamma r \cdot h_0(X, X \setminus H; \tau)$.

(i-2) If H is α -open and α -closed in (X, τ) , then the mappings $(r_H)_* : \gamma r \cdot h(X, X \setminus H; \tau) \rightarrow \gamma r \cdot h(H; \tau | H)$ and $(r_H)_{*,0} : \gamma r \cdot h_0(X, X \setminus H; \tau) \rightarrow \gamma r \cdot h(H; \tau | H)$ are onto homomorphisms of groups.

(ii) For an α -open subset H of (X, τ) , we have the following isomorphisms of groups: (ii-1) $\gamma r \cdot h(X, X \setminus H; \tau) / Ker(r_H)_* \cong Im(r_H)_*;$

(ii-2) $\gamma r \cdot h_0(X, X \setminus H; \tau) \cong Im(r_H)_{*,0}$, where $Ker(r_H)_* := \{a \in \gamma r \cdot h(X, X \setminus H; \tau) | (r_H)_*(a) = 1_X\}$ is a normal subgroup of $\gamma r \cdot h(X, X \setminus H; \tau)$; $Im(r_H)_* := \{(r_H)_*(a) | a \in \gamma r \cdot h(X, X \setminus H; \tau)\}$ and $Im(r_H)_{*,0} := \{(r_H)_{*,0}(b) | b \in \gamma r \cdot h_0(X, X \setminus H; \tau)\}$ are subgroups of $\gamma r \cdot h(H; \tau)$.

(iii) For an α -open and α -closed subset H of (X, τ) , we have the following isomorphisms of groups:

(iii-1) $\gamma r \cdot h(H; \tau | H) \cong \gamma r \cdot h(X, X \setminus H; \tau) / Ker(r_H)_*;$ (iii-2) $\gamma r \cdot h(H; \tau | H) \cong \gamma r \cdot h_0(X, X \setminus H; \tau).$

Proof. (i) (i-1) Since H is α -open in (X, τ) , the mappings $(r_H)_*$ and $(r_H)_{*,0}$ are well defined (cf. Definition 4.7). Let $a, b \in \gamma r \cdot h(X, X \setminus H; \tau)$ and $\omega_{X,H} : \gamma r \cdot h(X, X \setminus H; \tau) \times \gamma r \cdot h(X, X \setminus H; \tau)) \rightarrow \gamma r \cdot h(X, X \setminus H; \tau)$ be the binary operation of the group $\gamma r \cdot h(X, X \setminus H; \tau)$ (cf. a few lines after Theorem 4.2). Then, $(r_H)_*(\omega_{X,H}(a,b)) = (r_H)_*(b \circ a) = r_{H,H}(b \circ a) = (r_{H,H}(b)) \circ (r_{H,H}(a)) = \omega_H((r_H)_*(a), (r_H)_*(b))$ hold, where ω_H is the binary operation of the group $\gamma r \cdot h(H; \tau | H)$ (cf. a few lines after Theorem 3.4). Thus, $(r_H)_*$ is a homomorphism of group. Similarly, the mapping $(r_H)_{*,0} : \gamma r \cdot h_0(X, X \setminus H; \tau) \rightarrow \gamma r \cdot h(H; \tau | H)$ is also a homomorphism of groups. It is obviously shown that $(r_H)_* |\gamma r \cdot h_0(X, X \setminus H; \tau) = (r_H)_{*,0}$ holds (cf. Definition 4.1, Definition 4.7).

(i-2) Let $h \in \gamma r \cdot h(H; \tau | H)$. We consider the combination $h_1 := (j_H \circ h) \nabla (j_{X \setminus H} \circ 1_{X \setminus H}) :$ $(X, \tau) \to (X, \tau)$. By Proposition 4.6 (ii) and the assumption of α -openness of H, it is shown that the two mappings $j_H \circ h : (H, \tau | H) \to (X, \tau)$ and $j_H \circ h^{-1} : (H, \tau | H) \to (X, \tau)$ are γ -irresolute. Moreover, under the assumption of α -openness of $X \setminus H, j_{X \setminus H} \circ 1_{X \setminus H} :$ $(X \setminus H, \tau | (X \setminus H)) \to (X, \tau)$ is γ -irresolute. By using Lemma 4.8 for an α -open cover $\{H, X \setminus H\}$ of X, the combination above $h_1 : (X, \tau) \to (X, \tau)$ is γ -irresolute and h_1 is bijective and its inverse mapping $h_1^{-1} = (j_H \circ h^{-1}) \nabla (j_{X \setminus H} \circ 1_{X \setminus H})$ is also γ -irresolute. Thus, we have that $h_1 \in \gamma r \cdot h(X, \tau)$. Since $h_1(x) = x$ for every point $x \in X \setminus H$, we conclude that $h_1 \in \gamma r \cdot h_0(X, X \setminus H; \tau)$ and so $h_1 \in \gamma r \cdot h(X, X \setminus H; \tau)$; moreover, $(r_H)_{*,0}(h_1) = (r_H)_*(h_1) = r_{H,H}(h_1) = h$.

(ii) By (i-1) above and the first isomorphism theorem of group theory, it is shown that there are group isomorphisms below, under the assumption of the α -openness of H in (X, τ) : (4.d) $\gamma r \cdot h(X, X \setminus H; \tau) / Ker(r_H)_* \cong Im(r_H)_*$ and (4.e) $\gamma r \cdot h_0(X, X \setminus H; \tau) / Ker(r_H)_{*,0} \cong Im(r_H)_{*,0}$, where $Ker(r_H)_{*,0} := \{a \in \gamma r \cdot h_0(X, X \setminus H; \tau) \}$

 $\begin{array}{l} (4.e) \ \gamma r \cdot n_0(X, X \setminus H; \tau) / K er(r_H)_{*,0} \cong Im(r_H)_{*,0}, \text{ where } K er(r_H)_{*,0} \coloneqq \{a \in \gamma r \cdot n_0(X, X \setminus H; \tau) | \ (r_H)_{*,0}(a) = 1_X \}. \end{array}$

It is shown that $Ker(r_H)_{*,0} = \{1_X\}$. Indeed, let $u_0 \in Ker(r_H)_{*,0} \subset \gamma r \cdot h_0(X, X \setminus H; \tau)$; then $(r_H)_{*,0}(u_0) = 1_H$, where 1_H is the identity element of $\gamma r \cdot h(H; \tau | H)$. By Definitions 4.7 and 4.3, we have that, for any point $x \in H$, $((r_H)_{*,0}(u_0))(x) = (r_{H,H}(u_0))(x) = u_0(x)$ and so, $u_0(x) = 1_H(x)$; and, for any point $x \in X \setminus H$, $u_0(x) = x$ (cf. Definition 4.1(ii)). Thus, we conclude that $u_0 = 1_X$; and hence $Ker(r_H)_{*,0} = \{1_X\}$. Therefore, by using the isomorphism (4.e) above, we have the isomorphism (ii-2).

(iii) By (i-2) and (ii), the isomorphisms (iii-1) and (iii-2) are obtained.

Example 4.10 (i) In Example 5.13 of Section 5, the groups in Theorem 4.9 above are given for a special subspace $(H, \kappa | H)$ of the digital line (\mathbb{Z}, κ) .

(ii) Let (X, τ) be the topological space of Example 3.7(ii) throughout the present Example 4.10(ii).

(ii-1) Let $H := \{a\}$. Since $H = \{a\}$ is α -open and α -closed in the topological space (X, τ) , then we apply Theorem 4.9(iii) to the present case; and so, we have the following result: $\gamma r - h(H; \tau | H) \cong \gamma r - h(X, X \setminus H; \tau) / Ker(r_H)_* \cong \gamma r - h_0(X, X \setminus H; \tau).$

We can check directly the group isomorphisms as follows: we have the date: $\gamma r \cdot h(X, X \setminus H; \tau) = \{1_X, h_a\}, Ker(r_H)_* = \{1_X, h_a\}, \gamma O(H, \tau | H) = \{\emptyset, H\}, \gamma r \cdot h(H; \tau | H) = \{1_H\}$ and $\gamma r \cdot h_0(X, X \setminus H; \tau) = \{1_X\}$, where $\tau | H = \{\emptyset, H\}$.

(ii-2) Let $H := \{b, c\}$. Then H is α -open and α -closed in (X, τ) . Now, we apply Theorem 4.9

(iii) to the present case; and we can also check directly the group isomorphisms: we have the date as follows: $\gamma r \cdot h(X, X \setminus H; \tau) = \{1_X, h_a\}, Ker(r_H)_* = \{1_X\}, \gamma O(H, \tau | H) = P(H), \gamma r \cdot h(H; \tau | H) = \{1_H, h_a | H\}$ and $\gamma r \cdot h_0(X, X \setminus H; \tau) = \{1_X, h_a\}$, where $\tau | H = \{\emptyset, H\}$.

Example 4.11 Even if a subset H of a topological space (X, τ) is not α -closed and it is α -open (cf. Theorem 4.9(i)(i-2)), we have some examples such that the homomorphisms $(r_H)_*$ and $(r_H)_{*,0}$ are onto.

(i) For example, let (X, τ) be a topological space and $(H, \tau|H)$ a subspace of (X, τ) , where $X := \{a, b, c\}, H =: \{a, b\}$ and $\tau := \{\emptyset, \{a\}, \{b\}, \{a, b\}, X\}$; and so, $\tau|H = \{\emptyset, \{a\}, \{b\}, H\}$. Then, we see that $\gamma O(X, \tau) = P(X) \setminus \{\{c\}\}$ and $\tau^{\alpha} = \tau$. The subset H is α -open and it is not α -closed in (X, τ) . Hence by Theorem 4.9(i)(i-1), the mappings $(r_H)_*$ and $(r_H)_{*,0}$ are homomorphisms of groups. Because of $X \setminus H = \{c\}$, we see that $\gamma r \cdot h_0(X, X \setminus H; \tau) = \gamma r \cdot h(X, X \setminus H; \tau)$ and $(r_{H,0})_* = (r_H)_*$. And it is shown directly that $\gamma r \cdot h(X, X \setminus H; \tau) = \{1_X, h_c\} \cong \mathbb{Z}_2, (h_c)^2 = 1_X$, and $\gamma r \cdot h(H; \tau|H) = \{1_H, t_{a,b}\}$, where $h_c : (X, \tau) \to (X, \tau)$ and $t_{a,b} : (H, \tau|H) \to (H, \tau|H)$ are the bijections defined by $h_c(a) = b, h_c(b) = a, h_c(c) = c$ and $t_{a,b}(a) = b, t_{a,b}(b) = a$, respectively. Then, we prove that : $(r_H)_* : \gamma r \cdot h(X, X \setminus H; \kappa) \to \gamma r \cdot h(H; \tau|H)$ is onto; $Ker(r_H)_* = \{1_X\}$. By using Theorem 4.9(i)(i-1) and (ii), we have that $\gamma r \cdot h(H; \tau|H) \cong \gamma r \cdot h(X, X \setminus H; \tau) / Ker(r_H)_* = \gamma r \cdot h(X, X \setminus H; \tau)$ hold.

(ii) In Section 5, we give an example of an onto homomorphism $(r_H)_*$, where $H := \{-1, 0, 1\}$ of the digital line (\mathbb{Z}, κ) (cf. Example 5.13(iv)).

5 Examples on the digital line (\mathbb{Z}, κ) We recall that the digital line is the set of the integers, \mathbb{Z} , equipped with the topology κ having $\{\{2s - 1, 2s, 2s + 1\} | s \in \mathbb{Z}\}$, say **G**, as a subbase (e.g., [24, p.175], [26, Section 3(I)], [23, p.905,p.908]). This topological space is denoted by (\mathbb{Z}, κ) . By the definition of topology κ , every singleton $\{2u + 1\}$ is open in (\mathbb{Z}, κ) and it is not closed in (\mathbb{Z}, κ) , where $u \in \mathbb{Z}$. Every singleton $\{2s\}$ is closed in (\mathbb{Z}, κ) and it is not open in (\mathbb{Z}, κ) , where $s \in \mathbb{Z}$. In the present paper, we denote: $U(2s) := \{2s - 1, 2s, 2s + 1\}$ and $U(2u + 1) := \{2u + 1\}$ for each point 2s and 2u + 1 of (\mathbb{Z}, κ) , respectively; and U(2s) and U(2u + 1) are two typical open sets of (\mathbb{Z}, κ) . And, U(x) above is called the smallest open set containing the point x of (\mathbb{Z}, κ) , if $x \in U$, then $U(x) \subseteq U$ holds (e.g., [26, Section 3]).

(I) Characterizations of γ -open sets in the digital line (\mathbb{Z}, κ) (cf. Theorems 5.1 and 5.5 below). First, we recall some properties on the digital line (\mathbb{Z}, κ) : $\kappa = PO(\mathbb{Z}, \kappa)$ and $PO(\mathbb{Z}, \kappa) \subseteq SO(\mathbb{Z}, \kappa) = \gamma O(\mathbb{Z}, \kappa) = \beta O(\mathbb{Z}, \kappa)$ (cf. [9], [17], [33]). Secondly, we need some notations and properties (e.g., [18, Sections 1, 2], [26, Sections 2, 3]): let A be a nonempty subset of (\mathbb{Z}, κ) , $A_{\kappa} := \{x \in A \mid \{x\} \text{ is open in } (\mathbb{Z}, \kappa)\}$; $A_{\mathbf{F}} := \{x \in A \mid \{x\} \text{ is closed in } (\mathbb{Z}, \kappa)\}$. It is easily shown that:

(i) $A_{\kappa} = \{2s + 1 \in A | s \in \mathbb{Z}\}; A_{\mathbf{F}} = \{2m \in A | m \in \mathbb{Z}\}; \text{ and }$

(ii) $A = A_{\kappa} \cup A_{\mathbf{F}} \ (A_{\kappa} \cap A_{\mathbf{F}} = \emptyset)$, where A is any subset of (\mathbb{Z}, κ) .

By Takigawa [32, Theorems 1, 2 and 3], some characterizations of any preopen sets, semi-open sets and semi-preopen sets in the digital *n*-space (\mathbb{Z}^n, κ^n) are investigated, where $n \geq 1$. The following property is obtained by a special case of [32, Theorem 2 or Theorem 3] for the digital line (i.e., n = 1).

Theorem 5.1 (A special case of Takigawa [32, Theorem 2 or Theorem 3]) A subset E is γ -open in (\mathbb{Z}, κ) if and only if $E \subseteq Cl(E_{\kappa})$ holds in (\mathbb{Z}, κ) .

Remark 5.2 (i) If $A_{\kappa} = \emptyset$ for a subset A of (\mathbb{Z}, κ) , then A is closed in (\mathbb{Z}, κ) . The converse of above implication is not true; a subset $\{2s, 2s + 1, 2s + 2\}$ is closed in (\mathbb{Z}, κ) , where $s \in \mathbb{Z}$; and $(\{2s, 2s + 1, 2s + 2\})_{\kappa} = \{2s + 1\} \neq \emptyset$.

(ii) $Cl(A) = Cl(A_{\kappa}) \cup A$ holds for a subset A of (\mathbb{Z}, κ) .

Definition 5.3 ([7, Definition 5.3]) Let A be a subset of (\mathbb{Z}, κ) .

(i) For a point $x \in \mathbb{Z}$, the following set $V_A(x)$ is defined: if $x + 1 \in A$, then $V_A(x) :=$ $\{x, x+1\}$ (sometimes it is denoted by $V_A^+(x)$, or shortly $V^+(x)$); if $x+1 \notin A$, then $V_A(x) := \{x - 1, x\}$ (sometimes it is denoted by $V_A^{-}(x)$, or shortly $V^{-}(x)$). Thus, we have that $V_A(x) = V_A^+(x)$ or $V_A^-(x)$.

(ii) $V_A := \bigcup \{ V_A(x) | x \in A_F \}$ if $A_F \neq \emptyset$; $V_A := \emptyset$ if $A_F = \emptyset$.

Example 5.4 (i) A subset $\{x, x+1\}$ of \mathbb{Z} is γ -open and γ -closed in (\mathbb{Z}, κ) for any point $x \in \mathbb{Z}$.

(ii) (cf. [7, Example 5.5]) For a point $x \in \mathbb{Z}$ and a subset $A \subseteq \mathbb{Z}$, the set $V_A(x)$ is both γ -open and γ -closed in (\mathbb{Z}, κ) (cf. Definition 5.3).

Finally, the following characterization (Theorem 5.5) is obtained by using the equality $\gamma O(\mathbb{Z},\kappa) = \beta O(\mathbb{Z},\kappa)$ and [7, Theorem 5.7]. We note that we are able to have directly an alternative proof of Theorem 5.5 using the characterization of Theorem 5.1 above.

Theorem 5.5 ([7, Theorem 5.7]) Let B be a nonempty subset of (\mathbb{Z}, κ) . Then the following statements hold.

(i) Assume that $B_{\mathbf{F}} \neq \emptyset$.

(i-1) If B is γ -open in (\mathbb{Z}, κ) , then B is expressible as the union: $B = V_B \cup B_{\kappa}$, where $V_B := \bigcup \{ V_B(x) | x \in B_F \}$ (cf. Definiton 5.3).

(i-2) If B satisfies a property that $B = V_B \cup B_{\kappa}$, then B is γ -open in (\mathbb{Z}, κ) .

(ii) Assume that $B_{\mathbf{F}} = \emptyset$. Then, $V_B = \emptyset$ and $B = B_{\kappa}$ hold and B is open in (\mathbb{Z}, κ) ; and so B is γ -open in (\mathbb{Z}, κ) . \square

Example 5.6 Suppose that a singleton $\{x\}$ is closed in (\mathbb{Z}, κ) (i.e., x is even in \mathbb{Z}) and y is any point with $y \neq x$. Then,

(i) $\{x, y\}$ is γ -closed in (\mathbb{Z}, κ) ;

(ii) $\{x, y\}$ is γ -open if and only if y = x + 1 or y = x - 1.

(II) Some transformations on (\mathbb{Z}, κ) .

Definition 5.7 Let $t_{e+,o-}: (\mathbb{Z},\kappa) \to (\mathbb{Z},\kappa), t_-: (\mathbb{Z},\kappa) \to (\mathbb{Z},\kappa)$ and $f_s: (\mathbb{Z},\kappa) \to (\mathbb{Z},\kappa), t_-: (\mathbb{Z},\kappa) \to (\mathbb{Z},\kappa)$ where $s \in \mathbb{Z}$, be the transformations defined by the following form, respectively: for every point $x \in \mathbb{Z}$,

(i) $t_{e+,o-}(x) := x + 1$ if x is even and $t_{e+,o-}(x) := x - 1$ if x is odd; (ii) $t_{-}(x) := -x$; (iii) $f_{s}(x) := x + s$.

Theorem 5.8 For any γ -open set A of (\mathbb{Z}, κ) , we have the following properties:

(i) t_{e+,o}⁻¹(A) is explessible as the union of arbitrary collection of γ-closed sets of (Z, κ);
(ii) t₋⁻¹(A) is explessible as the union of arbitrary collection of γ-closed sets of (Z, κ);

(iii)([7, Lemma 5.8(vii), Theorem 5.10(iii)]) $f_{2m+1}^{-1}(A)$ and $f_{2m+1}(A)$ are explessible as the union of arbitrary collection of γ -closed sets of (\mathbb{Z}, κ) , where $m \in \mathbb{Z}$.

Proof. (i) By using Definition 5.3, Example 5.6(i) and Definition 5.7, it is shown that, for any set B and any point $x \in \mathbb{Z}$, $t_{e+,o-}^{-1}(V_B(x))$ is γ -closed in (\mathbb{Z},κ) (cf. Definition 5.3(i), Example 5.6(i), Definition 5.7); $t_{e+,o-}^{-1}(B_{\kappa}) = \bigcup\{\{2s\}|\ 2s+1 \in B\}$ holds, because $B_{\kappa} = \bigcup\{\{2s+1\}|\ 2s+1 \in B\}$. And, so $t_{e+,o-}^{-1}(B_{\kappa})$ is the union of the collection $\{\{2s\}|\ 2s+1 \in B\}$ of γ -closed sets. Let $A \in \gamma O(\mathbb{Z},\kappa)$. By Theorem 5.5(i-1) and (ii), it is shown that $t_{e+,o-}^{-1}(A) = (\bigcup\{t_{e+,o-}^{-1}(V_A(x))|\ x \in A_F\}) \cup t_{e+,o-}^{-1}(A_{\kappa})$ (if $A_F \neq \emptyset$) and $t_{e+,o-}^{-1}(A) = t_{e+,o-}^{-1}(A_{\kappa})$ (if $A_F = \emptyset$); and so, by the properties above respectively, $t_{e+,o-}^{-1}(A)$ is the union of a collection of γ -closed sets. $t_{e+,o-}^{-1}(A)$ is the union of a collection of γ -closed sets.

(ii) By an argument similar to that in (i), the statement (ii) is proved (cf. Definition 5.3, Example 5.4).

(iii) This is shown by the property that $\gamma O(\mathbb{Z},\kappa) = \beta O(\mathbb{Z},\kappa)$ (cf. (I) above) and the corresponding property on β -openess version [7, Lemma 5.8(vii), Theorem 5.10(iii)]. \square **Remark 5.9** Let $A_{2k} := \{2k, 2k+1\} \cup \{2(k+1)+1, 2(k+1)+2\}$. Since $Int(Cl(A_{2k})) \cap Cl(Int(A_{2k})) = \{2k+1, 2(k+1), 2(k+1)+1\} \not\subseteq A_{2k}$ hold, A_{2k} is not γ -closed. But, A_{2k} is the union of two γ -closed sets $\{2k, 2k+1\}$ and $\{2(k+1)+1, 2(k+2)\}$ of (\mathbb{Z}, κ) (cf. Example 5.4 (i)).

Example 5.10 (i) $t_{e+,o-} \notin \gamma r \cdot h(\mathbb{Z};\kappa)$ and $t_{e+,o-} \notin contra \cdot \gamma r \cdot h(\mathbb{Z};\kappa)$ hold. (ii) $t_{-} \in h(\mathbb{Z},\kappa)$ holds and so $t_{-} \in \gamma r \cdot h(\mathbb{Z};\kappa)$.

(iii) (iii-1) $f_{2m+1} \notin \gamma r \cdot h(\mathbb{Z}; \kappa)$ and $f_{2m+1} \notin contra \cdot \gamma r \cdot h(\mathbb{Z}; \kappa)$; (iii-2) $f_{2m+1} \notin h(\mathbb{Z}; \kappa)$.

(iv) $f_{2m} \in h(\mathbb{Z};\kappa)$ and $f_{2m+1} \in contra-h(\mathbb{Z};\kappa)$ hold; and hence $\{f_s | s \in \mathbb{Z}\}$ forms a subgroup of $H_{(\mathbb{Z},\kappa)}$.

(III) A group structure of $\gamma r \cdot h(H; \kappa | H)$, where $H := \{-1, 0, 1\}$.

(ii) f(U(2u+1)) = U(2v+1) holds for some point $2v+1 \in \mathbb{Z}$.

Lemma 5.11 Let $s, u \in \mathbb{Z}$. If $f : (\mathbb{Z}, \kappa) \to (\mathbb{Z}, \kappa)$ is a γr -homeomorphism (i.e., $f \in \gamma r$ - $h(\mathbb{Z}, \kappa)$), then

(i) f(U(2s)) = U(2a) holds for some point $2a \in \mathbb{Z}$;

11

Notation Let H be the smallest open set containing $0, U(0) := \{-1, 0, +1\}$, which is used in Example 5.13 below. A family of subsets of (\mathbb{Z}, κ) , say $\{H_j | j \in \mathbb{Z} \text{ with } j \ge 1\}$, is defined by : $H_1 := H = U(0)$ and $H_i := U(-(2i-2)) \cup H_{i-1} \cup U(2i-2)$ for each integer $i \ge 2$, where $U(2s) := \{2s - 1, 2s, 2s + 1\} (s \in \mathbb{Z})$.

It is easily shown that $H_i = \bigcup \{ U(-(2j-2)) \cup U(2j-2) | j \in \mathbb{Z} \text{ with } 1 \leq j \leq i \}$ holds for each integer $i \geq 2$; and if $i \leq j$, then $H_i \subseteq H_j$ and $\bigcup \{H_j | j \in \mathbb{Z} \text{ with } j \geq 1\} = \mathbb{Z}$.

Lemma 5.12 below is proved by an argument similar to that in [30, Claim in Proof of Proposition 6.1]; we use induction on $m \in \mathbb{Z}$ and Lemma 5.11; and so we omite the proof.

Lemma 5.12 Let $f \in \gamma r \cdot h(\mathbb{Z}, \mathbb{Z} \setminus H; \kappa)$ and $\{H_j | j \in \mathbb{Z} \text{ with } j \geq 1\}$ be the family of subsets defined by Notation above, where $H = H_1 = \{-1, 0, 1\}$, i.e., H = U(0).

(i) If $f|H = t_-|H$, then $f|H_m = t_-|H_m$ for any interger m with $m \ge 2$.

(ii) If $f|H = 1_H$, then $f|H_m = 1_{H_m}$ for any integer m with $m \ge 2$.

Using Lemma 5.11 and Lemma 5.12, we can examine the isomorphisms of Theorem 4.9(ii) for the following α -open set H := U(0) which is not α -closed in (\mathbb{Z}, κ) .

Example 5.13 Let $(H, \kappa | H)$ be a subspace of (\mathbb{Z}, κ) , where $H := \{-1, 0, +1\}$ is the smallest open set containing $0 \in \mathbb{Z}$, i.e., H = U(0). Then, we have the following properties: (i) $\gamma r \cdot h(\mathbb{Z}, \mathbb{Z} \setminus H; \kappa) = \{1_{\mathbb{Z}}, t_{-}\}$; (ii) $\gamma r \cdot h_0(\mathbb{Z}, \mathbb{Z} \setminus H; \kappa) = \{1_{\mathbb{Z}}\}$; (iii) $\gamma r \cdot h(H; \kappa | H) = \{1_H, t_- | H\}$; (iv) $Im(r_H)_* = \{1_H, t_- | H\}$ and $(r_H)_* : \gamma r \cdot h(\mathbb{Z}, \mathbb{Z} \setminus H; \kappa) \to \gamma r \cdot h(H, \kappa | H)$ is onto; (v) $Ker(r_H)_* = \{1_{\mathbb{Z}}\}$.

References

- M.E. Abd El-Monsef, A.A.El-Atik and M.M.El-Sharkasy, Some topologies induced by b-open sets, Kyungpook Math. J. 45(2005), no.4, 539–547.
- [2] M.E. Abd El-Monsef, A.A.El-Deeb and R.A. Mahmond, β-open sets and β-continuous mappings, Bull. Fac. Sci. Assiut Univ. 12(1983), 77–90.
- [3] A.Al-Omari and M.S.M. Noorani, Some properties of contra-b-continuous and almost contrab-continuous functions, Europian J. Pure Appl. Math. 2(2009), no.2, 213–230.
- [4] A.Al-Omari and M.S.M. Noorani, On generalized b-closed sets, Bull. Malaysian Math. Sci. Soc. 32(2009), no.1, 1-12.
- [5] D. Andrijević, Semi-preopen sets, Mat. Vesnik 38(1986), 24–32.

H.Maki, A.I.EL-Maghrabi

- [6] D. Andrijević, On b-open sets, Mat. Vesnik 48(1996), 59-64
- [7] S.C. Arora, S. Tahiliani and H. Maki, On π generalized β-closed sets in topological spaces II, Sci. Math. Jpn. 71(2010), no.1, 43–54; e2009, 637–648.
- [8] S.G. Crossley and S.K. Hildebrand, Semi-topological properties, Fund. Math. 74(1972), 233– 254.
- [9] R. Devi, K. Bhuvaneswari and H. Maki, Weak form on $g\rho$ -closed sets, where $\rho \in \{\alpha, \alpha^*, \alpha^{**}\}$, and digital planes, *Mem. Fac. Sci. Kochi Univ.(Math.)* **25**(2004), 37–54.
- [10] J. Dontchev, Characterization of some peculiar topological spaces via A- and B-sets, Act. Math. Hungar. 69(1995), no.1-2,67–71.
- [11] J.Dontchev, Contra-continuous functions and strongly S-closed spaces, Internat. J. Math. Math. Sci. 19(1996), 303–310.
- [12] J. Dontchev and T. Noiri, Contra-semi-continuous functions, Math. Panonica 10(1999),no.2, 159–168.
- [13] J. Dontchev and M. Przemski, On the various decompositions of continuous and some weakly continuous functions, Act. Math. Hungar. 71(1996), no.1-2, 109–120.
- [14] E. Ekici and M. Caldas, Slightly γ -continuous functions, *Bol. Soc. Paran. Mat.* **22**(2004),no.2, 63–74.
- [15] A.A. EL-Atik, A study on some types of mappings on topological spaces, M. Sc. Thesis, Tanta University, Egypt (1997).
- [16] A.I.EL-Maghrabi, Some properties of γ -continuous mappings, Int. J. General Topology **3**(2010), no.1-2, 55–64.
- [17] M. Fujimoto, H. Maki, T. Noiri and S. Takigawa, The digital plane is quasi-submaximal, Quest. Answers Gen. Topology 22(2004), 163–168.
- [18] M. Fujimoto, S. Takigawa, J. Dontchev, T. Noiri and H. Maki, The topological structure and groups of digital *n*-spaces, *Kochi J. Math.* 1(2006), 31–55.
- [19] T. Fukutake, A.A. Nasef and A.I.EL-Maghrabi, Some topological concepts via γ-generalized closed sets, Bull. Fukuoka Univ. Ed. Part III 52(2003), 1–9.
- [20] A. Keskin and T. Noiri, On bD-sets and associated separation axioms, Bull. Iran. Math. Soc. 35 (2009),no.1, 179–198.
- [21] E.D. Khalimsky, Applications of connected ordered topological spaces in topology, Conference of Math. Department of Povolosia, (1970).
- [22] E.D. Khalimsky, R. Kopperman and P.R. Meyer, Computer graphics and connected topologies in finite ordered sets, *Topology Appl.* 36(1990), 1–17.
- [23] T.Y. Kong, R. Kopperman and P.R. Meyer, A topological approach to digital topology, Amer. Math. Monthly 98(1991), 901–917.
- [24] V. Kovalevsky and R. Kopperman, Some topology-based image processing algorithms, Annales of the New York Academy of Sciences, papers on General Topology and its Applications 728(1994), 174–182.
- [25] N. Levine, Semi-open sets and semi-continuity in topological spaces, Amer. Math. Monthly70(1963), 36–41.
- [26] H. Maki, S. Takigawa, M. Fujimoto, P. Sundaram and M. Sheik John, Remarks on ω-closed sets in Sundaram-Sheik John's sense of digital n-spaces, Sci. Math. Jpn.77(no.3)(2014),317-337;(Online version, e-2014(No.27);(2014-11), 123–143).
- [27] O. Njåstad, On some classes of nearly open sets, Pacific J. Math. Math. 15(1965), 961–970.
- [28] A.A. Nasef, Some properties of contra-γ-continuous functions, Chaos, Solitons & Fractals 24(2005), 471–477.
- [29] A.A. Nasef and A.I.EL-Maghrabi, Weak and strong forms of γ -irresoluteness, *Fasc. Math.* **50**(2013), 107–116.

- [30] A.A. Nasef and H. Maki, On some maps concerning gp-closed sets and related groups, Sci. Math. Jpn. 71(2010), no.1, 55–81:Online e2009, 649–675.
- [31] T. Noiri, On δ -continuous functions, J. Korean Math. Soc. 16(1979/80), no.2, 161–166.
- [32] S. Takigawa, Characterizations of preopen sets and semi-open sets in digital n-spaces, this was lectured at "the 14-th meetings on topological spaces theory and its applications", August 22-23, 2009, Fukuoka University Seminar House; one can read the resume from its proceeding (collections of abstracts), p.43–44.
- [33] S. Takigawa, M. Ganster, H. Maki, T. Noiri and M. Fujimoto, The digital n-space is quasisubmaximal, Quest. Answers Gen. Topology 26(2008),45–52.
- [34] J. Tong, On decomposition of continuity in topological spaces, Acta Math. Hungar. 54(1989),no.1-20, 51–55.

Communicated by Kohzo Yamada

Haruo MAKI: Wakagi-dai 2-10-13, Fukutsu-shi, Fukuoka-ken, 811-3221 Japan. e-mail:makih@pop12.odn.ne.jp

Ahmad Ibrahim Taha EL-MAGHRABI: Department of Mathematics, Faculty of Science, Kafr EL-Sheikh University Kafr EL-Sheikh, EGYPT. e-mail:aelmaghrabi@yahoo.com