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Abstract.The aim of the present paper is devoted to discuss some more properties
of γ-irresolute mappings and contra-γ-irresolute mappings. Also, we introduce and
study two new weak homeomorphisms such as contra-γr-homeomorphisms and contra-
γ-homeomorphisms. Further, we investigate some groups related to the mappings above
and some examples of them on digital lines.

1 Introduction and preliminaries D.Andrijević [6] (resp. A.A. EL-Atik [15] and
J. Dontchev and M. Przemski [13]) introduced independently the concept of b-open sets [6]
(resp. γ-open sets [15] and sp-open sets [13]). A subset A of a topological space (X, τ) is
called a γ-open set [15] (or b-open set [6], sp-open set [13]), if A ⊆ Cl(Int(A)) ∪ Int(Cl(A))
holds in (X, τ); and the complement of a γ-open (or b-open, sp-open) set is called γ-closed
(or b-closed, sp-closed). Throughout the present paper, we use the terminology due to [15]
for the naming of the above set, i.e., γ-open sets, γ-closed sets. The γ-closure of a subset E
of (X, τ) is defined by γCl(E) :=

∩
{F |E ⊆ F, F is γ-closed in (X, τ)}; and it is the smallest

γ-closed set containing E (cf. Theorem 4.4(iii)); we recall some importante properties of
γ-open sets in Section 4 (Theorem 4.4).

In the present paper, we use the following notations (cf. [28] [19, p.2]):
γO(X, τ) := {U |U is γ-open in (X, τ)};
γC(X, τ) := {F |F is γ-closed in (X, τ), i.e., Int(Cl(F )) ∩ Cl(Int(F )) ⊆ F}.
SO(X, τ) := {U |U is semi-open in (X, τ), i.e., U ⊆ Cl(Int(U))} [25];
SC(X, τ) := {F |F is semi-closed in (X, τ), i.e., Int(Cl(F )) ⊆ F}.
τα := {V | V is α-open in (X, τ), i.e., V ⊆ Int(Cl(Int(V )))} [27].
βO(X, τ) = SPO(X, τ) := {W | W is β-open (or semi-preopen) in (X, τ), i.e., W ⊆
Cl(Int(Cl(W )))} [2],[5]. It is well known that:
τα ⊆ SO(X, τ) ⊆ γO(X, τ) ⊆ βO(X, τ) hold in general.

In Section 2, we mention some relations among γ-irresoluteness [12], pre-γ-closedness [15],
contra-γ-irresoluteness ([16] [28]) and some mappings (cf. Definitions 2.1, 2.2).

In Section 3, after the work due to A.Keskin and T.Noiri [20], we study a new group,
say γr-h(X; τ) ∪ contra-γr-h(X; τ) (Theorem 3.4(i), Corollary 3.6(i)). By the article [20,
Definition 4.13, Theorem 4.14(ii)], the concept of the family γr-h(X; τ) is introduced and it
is proved that γr-h(X; τ) forms a group. The family contra-γr-h(X; τ) is one of all contra-γ-
homeomorhpisms on (X, τ) (cf. Definition 3.2). The group γr-h(X; τ)∪contra-γr-h(X; τ) is
one of the group invariants of a topological space (X, τ) under a γr-homeomorphism between
topological spaces (Theorem 3.5(i)). By Theorem 3.4(iii)(cf. (iv)), it is shown that the group
h(X; τ) of all homeomorphisms on (X, τ) is a subgroup of the group γr-h(X; τ) ∪ contra-
γr-h(X; τ).

In Section 4, we introduce two subgroups of γr-h(X; τ) (Definition 4.1) and so we can
investigate some group structure of γr-h(H; τ |H) for the subspace (H, τ |H) of (X, τ) (The-
orems 4.2 and 4.9(iii)).
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In Section 5, we study some topological properties on related topics of transformations on
the digital line (Z, κ) (so-called Khalimsky lines [21], [22, p.7, line −6], [23, p.905, p.908]),
and for a specific subset H of the digital line (Z, κ), we determine the group structure
(Example 5.13) of γr-h(Z, Z \ H;κ), γr-h0(Z, Z \ H;κ) and γr-h(H; κ|H).

Throughout the present paper, (X, τ), (Y, σ) and (Z, η) (or simply X,Y and Z) represent
nonempty topological spaces on which no separation axioms are assumed, unless otherwise
mentioned.

2 Contra-γ-irresolute mappings and γ-irresolute mappings This section is de-
voted to discuss the relation among γ-irresolute mappings [15], contra-γ-irresolute mappings
[16][28], perfectly contra-γ-irresolute mappings [16] and some mappings (cf. Definitions 2.1,
2.2).

Definition 2.1 A mapping f : (X, τ) → (Y, σ) is said to be:
(i) b-continuous [12] (or γ-continuous [15]), if f−1(V ) is a b-closed (or γ-closed) set of

(X, τ) for each closed set V of (Y, σ);
(ii) perfectly continuous [31], if f−1(V ) is clopen in (X, τ) for each open set V of (Y, σ);
(iii) contra-continuous [11], if f−1(V ) is closed in (X, τ) for each open set V of (Y, σ);
(iv) contra-γ-continuous [16] (or contra-b-continuous [28]) if f−1(V ) ∈ γC(X, τ) for each

open set V of (Y, σ);
(iv)

′
strongly contra-γ-continuous (cf. (iv)), if f is a contra-γ-continuous mapping such

that the inverse image of each open set of (Y, σ) has an interior point;
(v) B-continuous [34], if f−1(V ) is a B-set of (X, τ) for each nonempty open set V of

(Y, σ), where the B-set is the intersection of an open set and a semi-closed set of (X, τ) (this
is defined by [34], cf. [10, Theorem 2.3]).

(v)
′

B∗-continuous (cf. (v)), if f−1(V ) contains a nonempty B-set of (X, τ) for each
nonempty open set V of (Y, σ);

(vi) pre-b-closed [15] (or pre-γ-closed), if f(G) is b-closed (or γ-closed) in (Y, σ) for each
b-closed (or γ-closed) set G of (X, τ).

Definition 2.2 A mapping f : (X, τ) → (Y, σ) is said to be:
(i) γ-irresolute (or b-irresolute [15]) (resp. irresolute [8, Definition 1.1]), if f−1(U) ∈

γO(X, τ) (resp. f−1(U) ∈ SO(X, τ)) for every set U ∈ γO(Y, σ) (resp. U ∈ SO(Y, σ));
(ii) contra-γ-irresolute [16] (or contra-b-irresolute [28]) (resp.-

contra-irresolute), if f−1(U) ∈ γC(X, τ) (resp. f−1(U) ∈ SC(X, τ)) for every set U ∈
γO(Y, σ) (resp. U ∈ SO(Y, σ));

(iii) perfectly contra-γ-irresolute [29] (resp. perfectly contra-irresolute), if f−1(V ) is γ-
clopen (resp. semi-open and semi-closed) in (X, τ) for each set V ∈ γO(Y, σ) (resp. V ∈
SO(Y, σ)).

Theorem 2.3 A mapping f : (X, τ) → (Y, σ) is B∗-continuous, if one of the following
conditions is satisfied:

(1) f is a strongly contra-γ-continuous mapping,
(2) f is an onto and B-continuous mapping. ¤

We have the following diagram among several mappings defined above, where p → q (resp.
p’ = q’) means that p implies q (resp. p’ and q’ are independent). The implications are not
reversible and the independence is explained (cf. Remark 2.4 below).

contra-continuous
↙ ↘

contra-γ-continuous = B-continuous ← onto and B-continuous
↑ ↓

strongly contra-γ-continuous → B∗-contiuous.
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Remark 2.4 (i) Let (R, ε) be the real line with the Euclidean topology ε. The following
functions f, 1R : (R, ε) → (R, ε) of (i) below are seen in [12].

(i) (i-1) Let f : (R, ε) → (R, ε) be a mapping defined by f(x) = [x], where [x] is the
Gaussian symbol. Then, f is contra-γ-continuous (cf. Definition 2.1(iv)). However, f is not
contra-continuous, because for an open interval (1/2, 3/2), f−1((1/2, 3/2)) = [1, 2) is not
closed in (R, ε).

(i-2) The identity mapping 1R : (R, ε) → (R, ε) is B-continuous (cf. Definition 2.1(v)) but
not contra-γ-continuous, since the inverse image of each singleton is not γ-open. Moreover,
1R is not contra-continuous.

(ii) The following mapping f : (X, τ) → (X, τ) is contra-γ-continuous; but f is not
B-continuous. Let X := {a, b, c} and τ := {∅, {a, b}, X}. Then, we have γC(X, τ) =
{∅,{a},{b},{c}, {b, c},{a, c},X} and SC(X, τ) = {∅,{c},X}. We define the mapping f by
f(a) := a, f(b) := c, f(c) := b.

(iii) The converse of Theorem 2.3 under the assumption (1) is not reversible. Let X :=
{a, b, c} and τ := {∅, {a}, {b}, {a, b}, X}. Let f : (X, τ) → (X, τ) be a mapping defined by
f(a) := b, f(b) := c, f(c) := a. Then, since γC(X, τ) = SC(X, τ) = P (X)\{{a, b}}, we show
f is B-continuous and onto. By Theorem 2.3 under the assumption (2), it is obtained that f
is B∗-continuous. This mapping f is contra-γ-continuous; but Int(f−1({a})) = Int({c}) = ∅
hold; and so f is not strongly contra-γ-continuous.

(iv) The converse of Theorem 2.3 under the assumption (2) is not reversible. The map-
ping f : (X, τ) → (X, τ) defined in (ii) above is not B-continuous (cf. (ii)). But, f is
B∗-continuous, because {c} and X are the nonempty B-sets.

(v) The contra-γ-continuous mapping f : (X, τ) → (X, τ) of (ii) above is not strongly
contra-γ-continuous (cf. Definition 2.1(iv)

′
), because

Int(f−1({a, b})) = ∅.

Remark 2.5 (i) Let X = {a, b}, τ = {∅, X, {a}} and σ = {∅, X, {b}}. Then the identity
mapping 1X : (X, τ) → (X,σ) is a contra-γ-continuous mapping but it is not γ-continuous.

(ii) The identity mapping 1R : (R, ε) → (R, ε) of Remark 2.4(i)(i-2) is γ-continuous but
it is not contra-γ-continuous.

Remark 2.6 The following properties are well known. (i) [4, Theorem 3.7(i)] if f : (X, τ) →
(Y, σ) is contra-γ-irresolute and g : (Y, σ) → (Z, η) is γ-continuous, then g ◦ f is contra-γ-
continuous.

(ii) Every homeomorphism is γ-irresolute.

Remark 2.7 (i) By the following examples (i-1) and (i-2), it is shown that the contra-
γ-irresoluteness and γ-irresoluteness are independent notions: let X := {a, b, c} and τ :=
{X, ∅, {a}, {a, b}}.
(i-1) The identity mapping on (X, τ) above is γ-irresolute; but it is not contra-γ-irresolute.
(i-2) Let f : (X, τ) → (X, τ) be a mapping defined by f(a) := b, f(b) := b, f(c) := a. Then,
f is contra-γ-irresolute; but f is not γ-irresolute.

(ii) In general, for any topological space (X, τ), the identity mapping 1X : (X, τ) → (X, τ)
is contra-γ-irresolute if and only if γO(X, τ) = γC(X, τ) holds. And, 1X on any topological
space (X, τ) is γ-irresolute.

Remark 2.8 (i) Every contra-γ-irresolute mapping is contra-γ-continuous, but it is shown
that its converse is not true, by the following example. Let X = {a, b, c}, τ={∅,{a},
{b},{a, b},X}. Let f : (X, τ) → (X, τ) be a mapping defined by f(a) := c, f(b) := a, f(c) :=
b.

(ii) For a mapping f : (X, τ) → (Y, σ), f is contra-γ-irresolute if and only if the inverse
image f−1(F ) of each γ-closed set F of (Y, σ) is γ-open in (X, τ).
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Remark 2.9 (i) The following diagram of implications is well known:
· contra-irresolute ←− perfectly contra-irresolute −→ irresolute.

We have the following diagram of implications:
· contra-γ-irresolute ←− perfectly contra-γ-irresolute −→ γ-irresolute;

and they are not reversible (cf. Remark 2.7(i) above and Remark 2.10 below):
(ii) In the implications above, the irresoluteness (resp. contra-irresoluteness, perfectly

contra-irresoluteness) and the γ-irresoluteness (resp. contra-γ-irresoluteness, perfectly contra-
γ-irresoluteness) are independent (cf. (a), (b), (c) below).

Let X = {a, b, c}. We consider the following topologies on X : τ := {X, ∅, {a}, {b}, {a, b}},
τ1 := {X, ∅, {a}, {a, b}}, τ2 := {X, ∅, {c}, {a, b}} and τ3 := {X, ∅}. We have the following
dates: SO(X, τ) = γO(X, τ) = P (X) \ {{c}}; SO(X, τ1) = γO(X, τ1)={∅, {a}, {a, b},{a, c},
X}; SO(X, τ2) = τ2, γO(X, τ2) = P (X); SO(X, τ3) = {∅, X}, γO(X, τ3) = P (X).

(a) (a-1) Define a mapping f : (X, τ) → (X, τ2) as follows: f(a) = a, f(b) = c and
f(c) = b. Then f is irresolute; f is not γ-irresolute.
(a-2) Let f : (X, τ3) → (X, τ) be the identity mapping. Then f is γ-irresolute; f is not
irresolute.

(b) (b-1) Let f : (X, τ2) → (X, τ1) be the identity mapping. Then f is contra-γ-irresolute;
f is not contra-irresolute.
(b-2) Define a mapping f : (X, τ1) → (X, τ2) as follows: f(a) := a, f(b) := a, f(c) := b.
Then f is contra-irresolute; f is not contra-γ-irresolute.

(c) (c-1) Let f : (X, τ3) → (X, τ2) be the identity mapping. Then f is perfectly contra-
γ-irresolute; f is not perfectly contra-irresolute.
(c-2) Define a mapping f : (X, τ) → (X, τ2) as follows: f(a) := c, f(b) := a, f(c) := b. Then
f is perfectly contra-irresolute; f is not perfectly contra-γ-irresolute.

Remark 2.10 We have a decomposition of perfectly contra-γ-irresolute mappings. The
following conditions (1) and (2) are equivalent: (1) f : (X, τ) → (Y, σ) is perfectly contra-
γ-irresolute; (2) f : (X, τ) → (Y, σ) is contra-γ-irresolute and γ-irresolute.

3 Groups γr-h(X; τ)∪ contra-γr-h(X; τ) and h(X; τ)∪ contra-h(X; τ) We have a new
homeomorphism invariant for topological spaces (cf. Theorems 3.4, 3.5, Corollary 3.6).

Definition 3.1 (i) A mapping f : (X, τ) → (Y, σ) is said to be:
(i-1) ([20, Definiton 4.12]) a γr-homeomorphism if f is a γ-irresolute bijection and f−1

is γ-irresolute;
(i-2) a contra-γr-homeomorphism if f is a contra-γ-irresolute bijection and f−1 is contra-

γ-irresolute;
(ii) (ii-1) ([20, Definition 4.12]) a γ-homeomorphism if f is a γ-continuous bijection and

f−1 is γ-continuous;
(ii-2) a contra-γ-homeomorphism (resp. contra-homeomorphism) if f is a contra-γ-continuous

(resp. contra-continuous) bijection and f−1 is contra-γ-continuous (resp. contra-continuous).

Definition 3.2 We recall and define the following families of mappings from (X, τ) onto
itself.
· ([20, Definition 4.13]) γr-h(X; τ) := {f |f : (X, τ) → (X, τ) is a γr-homeomorphism} (by
[20, Theorem 4.14(ii)], it is proved that γr-h(X; τ) forms a group under the composition of
mappings);
· contra-γr-h(X; τ) := {f |f : (X, τ) → (X, τ) is a contra-γr-homeomorphism};
· h(X; τ) := {f |f : (X, τ) → (X, τ) is a homeomorphism};
· contra-h(X; τ) := {f |f : (X, τ) → (X, τ) is a contra-homeomorphism};
· G(X,τ) := γr-h(X; τ) ∪ contra-γr-h(X; τ);
· H(X,τ) := h(X; τ) ∪ contra-h(X; τ).
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Proposition 3.3 Let f : (X, τ) → (Y, σ) and g : (Y, σ) → (Z, η) be two mappings between
topological spaces.

(i) (i-1) ([20, Theorem 4.14(ii)]) If f and g are γ-irresolute, then g ◦ f is γ-irresolute.
(i-2) ([20, Theorem 4.14(ii)]) The identity mapping 1X : (X, τ) → (X, τ) is γ-irresolute.
(i-3) If f and g are contra-γ-irresolute, then g ◦ f is γ-irresolute.
(ii) (ii-1) If f is contra-γ-irresolute and g is γ-irresolute, then g◦f is contra-γ-irresolute.
(ii-2) If f is γ-irresolute and g is contra-γ-irresolute, then g ◦ f is contra-γ-irresolute. ¤

Theorem 3.4 Let G(X,τ) and H(X,τ) be the families of mappings defned in Definition 3.2.
(i) G(X,τ) forms a group under the composition of mappings.
(ii) γr-h(X; τ) forms a subgroup of G(X,τ) (cf. [20, Theorem 4.14(ii)]).
(iii) The group h(X; τ) is a subgroup of γr-h(X; τ) ([20, Theorem 4.14(iii)]) and h(X; τ)

is also a subgroup of G(X,τ).
(iv) H(X,τ) forms a group under the composition of mappings. The group h(X; τ) is a

subgroup of H(X,τ).
(v) If τ = γO(X, τ) holds, then G(X,τ) = H(X,τ). ¤

We note that the binary operation ωG(X,τ) : G(X,τ) × G(X,τ) → G(X,τ) is well defined by
ωG(X,τ)(a, b) := b◦a, where a, b ∈ G(X,τ) and b◦a denotes the composition of two mappings
a, b defined by (b ◦ a)(x) = b(a(x)) for any x ∈ X (cf. Proposition 3.3). And, the restriction
ωG(X,τ)|γr-h(X; τ) × γr-h(X; τ) is denoted shortly by ωX .

Theorem 3.5 (i) If f : (X, τ) → (Y, σ) is a γr-homeomorphism (resp. contra-γr-homeomorphism),
then the mapping f induces an isomorphism f∗ : G(X,τ) → G(Y,σ), where f∗ is defined by
f∗(a) := f ◦ a ◦ f−1 for any a ∈ G(X,τ). Moreover,

(a) (g◦f)∗ = g∗◦f∗ : G(X,τ) → G(Z,η), where g : (Y, σ) → (Z, η) is a γr-homeomorphism
(resp. contra-γr-homeomorphism),

(b) (1X)∗ = 1 : G(X,τ) → G(X,τ) is the identity isomorphism,
(c) f∗(γr-h(X; τ)) = γr-h(Y ; σ), f∗(h(X; τ)) ⊆ γr-h(Y ;σ) and

f∗(contra-γr-h(X; τ)) = contra-γr-h(Y ; σ) hold.
(ii) Especially, if f : (X, τ) → (Y, σ) and g : (Y, σ) → (Z, η) are homeomorphisms, then

the induced mappings f∗ : G(X,τ) → G(Y,σ) and g∗ : G(Y,σ) → G(Z,η) are isomorphisms (cf.
(i)). Moreover, they have the same property of (a),(b) and (c) in (i). We note that, in (c),
f∗(h(X; τ)) = h(Y ;σ) holds. ¤

Corollary 3.6 (cf. Definition 3.2, Theorem 3.5) (i) If G(X,τ) 6∼= G(Y,σ) (i.e. G(X,τ) is not
isomorphic to G(Y,σ) as groups), then there does not exist any γr-homeomorphism between
two topological spaces (X, τ) and (Y, σ); and hence (X, τ) 6∼= (Y, σ) (i.e., (X, τ) is not home-
omorphic to (Y, σ)).

(ii) If γr-h(X; τ) 6∼= γr-h(Y ; σ) (i.e., γr-h(X; τ) is not isomorphic to γr-h(Y ; σ) as
groups), then there does not exist any γr-homeomorphism between (X, τ) and (Y, σ). ¤

Example 3.7 (i) In Section 5, we give a special example of group γr-h(H,κ|H), where
(H,κ|H) is a subspace of the digital line (Z, κ)(cf. Example 5.13).

(ii) Let (X, τ) and (Y, σ) be two topological spaces, where X = Y := {a, b, c}, τ :=
{∅, {a}, {b, c}, X} and σ := {∅,{a},{b},{a, b},Y }. Then, it is shown that G(X,τ) = γr-
h(X; τ) ∼= S3(=the symetric group of degree 3) and G(Y,σ) = γr-h(Y ; σ) = {1Y , hc}, where
hc : (Y, σ) → (Y, σ) is a bijection defined by hc(a) := b, hc(b) := a, hc(c) := c; and hence
G(X,τ) 6∼= G(Y,σ). Thus, using Corollary 3.6(i), we can assure that there is never exists
any γr-homeomorphism between (X, τ) and (Y, σ). We note that h(X; τ) = {1X , ha} and
h(Y ; σ) = {1Y , hc} hold, where ha : (X, τ) → (X, τ) is a bijection defined by ha(a) :=
a, ha(b) := c, ha(c) := b; and so h(X; τ) ∼= h(Y ;σ) holds.

(iii) Let (X, τ) be the topological space of (ii) above and let (Y1, σ1) be a topological
space such that Y1 := {a, b, c} and σ1 := {∅,{a},{b},{a, b},{a, c}
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,Y1}. Then, we have that G(X,τ) 6∼= G(Y1,σ1) and h(X; τ) 6∼= h(Y1; σ1). Using Corollary 3.6,
there is never exist any γr-homeomorphism between (X, τ) and (Y1, σ1).

(iv) Let (Y1, σ1) be the topological space of (iii) above and let (Y2, σ2) be a topologi-
cal space such that Y2 := {a, b, c} and σ2 := {∅, {a}, Y2}. Then, we have that G(Y1,σ1)

∼=
G(Y2,σ2), γr-h(Y1, σ1) 6∼= γr-h(Y2, σ2) and h(Y1, σ1) 6∼= h(Y2, σ2) hold. We can apply Corol-
lary 3.6(ii) for this example (iii).

(v) For the digital line (Z, κ), we have an example of a subgroup of H(Z,κ) (cf. Exam-
ple 5.10(iv)).

4 Two subgroups of γr-h(X; τ) and their properties The purpose of the present
section is to prove Theorem 4.9.

Definition 4.1 For a subset G of X, we define the following families of mappings:
(i) γr-h(X,G; τ) := {a| a ∈ γr-h(X; τ) and a(G) = G};
(ii) γr-h0(X,G; τ) := {a| a ∈ γr-h(X; τ) and a(x) = x for every point x ∈ G}.

Theorem 4.2 Let H be a subset of a topological space (X, τ). The families γr-h(X,X \
H; τ) and γr-h0(X,X \H; τ) form two subgroups of γr-h(X, τ) and γr-h(X,X \H; τ) = γr-
h(X,H; τ) holds. ¤

For the group γr-h(X,X \H; τ), say A, (resp. γr-h0(X,X \H; τ), say A0,) of Theorem 4.2,
we define the binary operation ωX,H : A × A → A (resp. ωX,H0 : A0 × A0 → A0) by
ωX,H(a, b) := (ωG(X,τ)|A × A)(a, b) = b ◦ a (resp. ωX,H0(a, b) := (ωG(X,τ)|A0 × A0)(a, b) =
b ◦ a) (cf. a few lines after Theorem 3.4).

In order to investigate precisely some structures of γr-h(H,X\H; τ |H) (cf. Theorem 4.9),
we need the following definitions and properties.

Definition 4.3 Let H, K be subsets of X and Y , respectively. For a mapping f : X → Y
satisfying a property K = f(H), we define the following mapping rH,K(f) : H → K by
rH,K(f)(x) = f(x) for every x ∈ H.

Then, we have the following properties:
(4.a) jK ◦ rH,K(f) = f |H : H → Y , where jK : K → Y be the inclusion defined by

jK(y) = y for every y ∈ K and f |H : H → Y is the restriction of f to H defined by
(f |H)(x) = f(x) for every x ∈ H.

(4.b) Especially, we consider the following case where X = Y,H = K ⊆ X. If a(H) = H
and b(H) = H, then rH,H(b◦a) = rH,H(b)◦rH,H(a) holds, where a, b : X → X are mappings.

(4.c) If a mapping a : X → X is a bijection such that a(H) = H, then rH,H(a) : H → H
is bijective and rH,H(a−1) = (rH,H(a))−1.

In Theorem 4.4 below, we recall well known properties on γ-open sets and they are
needed later. For a subset H of (X, τ) and a subset U ⊆ H, IntH(U) (resp. ClH(U)) is the
interior (resp. closure) of the set U in a subspace (H, τ |H). The γ-interior of a subset A of
(X, τ) is defined by
· γInt(A) :=

∪
{V |V ⊆ A, V ∈ γO(X, τ)}. It is well known that: for a set A ⊆ X,

· ([6, Proposition 2.5]) γInt(A) = A ∩ (Int(Cl(A)) ∪ Cl(Int(A))) and
· γCl(A) = A∪ (Int(Cl(A))∩Cl(Int(A))) hold (e.g., [19, Lemma 2.6(iii)], [3, Lemma 3.2]).
And, by [6, Proposition 2.3(a)] (cf. Theorem 4.4(iii)), it is shown that
· γCl(A) ∈ γC(X, τ) and γInt(A) ∈ γO(X, τ), where A is a subset of (X, τ).
· γO(H, τ |H) := {U ⊆ H| U is γ-open in (H, τ |H)};
· γC(H, τ |H) := {F ⊆ H| F is γ-closed in (H, τ |H)};
· γClH(U) :=

∩
{F | U ⊆ F, F ∈ γC(H, τ |H)}, where U ⊆ H ⊆ X.
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Theorem 4.4 (i) ([15],e.g.,[14, Lemma 2.2];[1, Proof of Theorem 2.3(3)]). Let H ⊆ X and
A1 ⊆ X. If H is α-open in (X, τ) and A1 is γ-open in (X, τ), then A1 ∩ H is γ-open in
(H, τ |H).

(ii) ([15];e.g.,[14, Lemma 2.4]) Let A ⊆ H ⊆ X. If A is γ-open in (H, τ |H) and H is
α-open in (X, τ), then A is γ-open in (X, τ).

(iii) ([6, Proposition 2.3(a)]) Arbitrary union of γ-open sets of (X, τ) is γ-open in (X, τ).
(iv) ([6, Proposition 2.4(2)]) Let H ⊆ X and A1 ⊆ X. If H is α-open in (X, τ) and A1

is γ-open in (X, τ), then A1 ∩ H is γ-open in (X, τ).
(v) If B ⊆ H ⊆ X and H is α-open in (X, τ), then γCl(B) ∩ H = γClH(B) holds.
(vi) Let F ⊆ H ⊆ X. If H is α-open and γ-closed in (X, τ) and F is γ-closed in

(H, τ |H), then F is γ-closed in (X, τ). ¤

Remark 4.5 It follows from the following example that one of the assumptions of Theo-
rem 4.4(vi) is not removed. Let X := {a, b, c} and τ := {∅, {a}, X} (cf. the space (Y2, σ2)
of Example 3.7(iv)). For a subset H := {a, c}, the set H is γ-closed in (H, τ |H) and it is
α-open in (X, τ), but H is not γ-closed in (X, τ).

Proposition 4.6 (i) If f : (X, τ) → (Y, σ) is γ-irresolute and a subset H is α-open in
(X, τ), then f |H : (H, τ |H) → (Y, σ) is γ-irresolute.

(ii) Let k : (X, τ) → (K,σ|K) be a mapping and jK : (K,σ|K) → (Y, σ) be the inclusion,
where K ⊆ Y . Then, the following properties (1), (2) are equivalent, under the assumption
that K is α-open in (Y, σ):
(1) k : (X, τ) → (K,σ|K) is γ-irresolute;
(2) jK ◦ k : (X, τ) → (Y, σ) is γ-irresolute.

(iii) If f : (X, τ) → (Y, σ) is γ-irresolute, H is α-open in (X, τ) and f(H) is α-open in
(Y, σ), then rH,f(H)(f) : (H, τ |H) → (f(H), σ|f(H)) is γ-irresolute (cf. Definition 4.3).

Proof. The properties (i) and (ii)(1)⇒(2) (resp. (ii)(2)⇒(1)) are proved by using Theo-
rem 4.4(i) (resp. Theorem 4.4(ii)). The property (iii) is proved by (i),(ii) above and (4.a)
after Definition 4.3. ¤

Definition 4.7 For an α-open subset H of (X, τ), the following mappings (rH)∗ : γr-
h(X,X \ H; τ) → γr-h(H; τ |H) and (rH)∗,0 : γr-h0(X,X \ H; τ) → γr-h(H; τ |H) are well
defined as follows (cf. Proposition 4.6(iii)), respectively:

(rH)∗(f) := rH,H(f) for every f ∈ γr-h(X,X \ H; τ);
(rH)∗,0(g) := rH,H(g) for every g ∈ γr-h0(X,X \ H; τ).

Lemma 4.8 (A pasting lemma for γ-irresolute mappings) Let X = U1 ∪ U2, where U1

and U2 are α-open sets in (X, τ), and f1 : (U1, τ |U1) → (Y, σ) and f2 : (U2, τ |U2) → (Y, σ)
are γ-irresolute mappings such that f1(x) = f2(x) for every point x ∈ U1 ∩ U2. Then its
combination f1∇f2 : (X, τ) → (Y, σ) is γ-irresolute, where (f1∇f2)(x) := fj(x) for every
x ∈ Uj(j ∈ {1, 2}).

Proof. Let V ∈ γO(Y, σ). By Theorem 4.4 (ii) and (iii), it is proved that (f1∇f2)−1(V ) ∈
γO(X, τ), because f−1

i (V ) ∈ γO(Ui, τ |Ui), f−1
i (V ) ∈-

γO(X, τ) for each i ∈ {1, 2} and (f1∇f2)−1(V ) = f−1
1 (V ) ∪ f−1

2 (V ) hold. ¤

Theorem 4.9 Let H be a subset of a topological space (X, τ).
(i) (i-1) If H is α-open in (X, τ), then the mappings (rH)∗ : γr-h(X,X \ H; τ) → γr-

h(H; τ |H) and (rH)∗,0 : γr-h0(X,X \ H; τ) → γr-h(H; τ |H) are homomorphisms of groups
(cf. Definition 4.7). Moreover, (rH)∗|B0 = (rH)∗,0 holds, where B0 := γr-h0(X,X \ H; τ).

(i-2) If H is α-open and α-closed in (X, τ), then the mappings (rH)∗ : γr-h(X,X \
H; τ) → γr-h(H; τ |H) and (rH)∗,0 : γr-h0(X,X \ H; τ) → γr-h(H; τ |H) are onto homo-
morphisms of groups.
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(ii) For an α-open subset H of (X, τ), we have the following isomorphisms of groups:
(ii-1) γr-h(X,X \ H; τ)/Ker(rH)∗ ∼= Im(rH)∗;
(ii-2) γr-h0(X,X\H; τ) ∼= Im(rH)∗,0, where Ker(rH)∗:= {a ∈ γr-h(X,X\H; τ)| (rH)∗(a) =

1X} is a normal subgroup of γr-h(X,X\H; τ); Im(rH)∗:={(rH)∗(a)| a ∈ γr-h(X,X\H; τ)}
and Im(rH)∗,0:={(rH)∗,0(b)| b ∈ γr-h0(X,X \ H; τ)} are subgroups of γr-h(H; τ).

(iii) For an α-open and α-closed subset H of (X, τ), we have the following isomorphisms
of groups:

(iii-1) γr-h(H; τ |H) ∼= γr-h(X,X \ H; τ)/Ker(rH)∗;
(iii-2) γr-h(H; τ |H) ∼= γr-h0(X,X \ H; τ).

Proof. (i) (i-1) Since H is α-open in (X, τ), the mappings (rH)∗ and (rH)∗,0 are well
defined (cf. Definition 4.7). Let a, b ∈ γr-h(X,X \H; τ) and ωX,H : γr-h(X,X \H; τ)× γr-
h(X,X \H; τ)) → γr-h(X,X \H; τ) be the binary operation of the group γr-h(X,X \H; τ)
(cf. a few lines after Theorem 4.2). Then, (rH)∗(ωX,H(a, b)) =(rH)∗(b ◦ a) = rH,H(b ◦ a) =
(rH,H(b)) ◦ (rH,H(a)) = ωH((rH)∗(a), (rH)∗(b)) hold, where ωH is the binary operation of
the group γr-h(H; τ |H) (cf. a few lines after Theorem 3.4). Thus, (rH)∗ is a homomorphism
of group. Similarly, the mapping (rH)∗,0 : γr-h0(X,X \ H; τ) → γr-h(H; τ |H) is also a
homomorphism of groups. It is obviously shown that (rH)∗|γr-h0(X,X \ H; τ) = (rH)∗,0

holds (cf. Definition 4.1, Definition 4.7).
(i-2) Let h ∈ γr-h(H; τ |H). We consider the combination h1 := (jH ◦h)∇(jX\H ◦1X\H) :

(X, τ) → (X, τ). By Proposition 4.6 (ii) and the assumption of α-openness of H, it is shown
that the two mappings jH ◦ h : (H, τ |H) → (X, τ) and jH ◦ h−1 : (H, τ |H) → (X, τ)
are γ-irresolute. Moreover, under the assumption of α-openness of X \ H, jX\H ◦ 1X\H :
(X \ H, τ |(X \ H)) → (X, τ) is γ-irresolute. By using Lemma 4.8 for an α-open cover
{H,X \ H} of X, the combination above h1 : (X, τ) → (X, τ) is γ-irresolute and h1 is
bijective and its inverse mapping h−1

1 = (jH ◦h−1)∇(jX\H ◦1X\H) is also γ-irresolute. Thus,
we have that h1 ∈ γr-h(X, τ). Since h1(x) = x for every point x ∈ X \H, we conclude that
h1 ∈ γr-h0(X,X \H; τ) and so h1 ∈ γr-h(X,X \H; τ); moreover, (rH)∗,0(h1) = (rH)∗(h1) =
rH,H(h1) = h.

(ii) By (i-1) above and the first isomorphism theorem of group theory, it is shown that
there are group isomorphisms below, under the assumption of the α-openness of H in (X, τ):
(4.d) γr-h(X,X \ H; τ)/Ker(rH)∗ ∼= Im(rH)∗ and
(4.e) γr-h0(X,X \ H; τ)/Ker(rH)∗,0

∼= Im(rH)∗,0, where Ker(rH)∗,0 := {a ∈ γr-h0(X,X \
H; τ)| (rH)∗,0(a) = 1X}.

It is shown that Ker(rH)∗,0 = {1X}. Indeed, let u0 ∈ Ker(rH)∗,0 ⊂ γr-h0(X,X \H; τ);
then (rH)∗,0(u0) = 1H , where 1H is the identity element of γr-h(H; τ |H). By Definitions 4.7
and 4.3, we have that, for any point x ∈ H, ((rH)∗,0(u0))(x) = (rH,H(u0))(x) = u0(x) and
so, u0(x) = 1H(x); and, for any point x ∈ X \H,u0(x) = x (cf. Definition 4.1(ii)). Thus, we
conclude that u0 = 1X ; and hence Ker(rH)∗,0 = {1X}. Therefore, by using the isomorphism
(4.e) above, we have the isomorphism (ii-2).

(iii) By (i-2) and (ii), the isomorphisms (iii-1) and (iii-2) are obtained. ¤

Example 4.10 (i) In Example 5.13 of Section 5, the groups in Theorem 4.9 above are given
for a special subspace (H,κ|H) of the digital line (Z, κ).

(ii) Let (X, τ) be the topological space of Example 3.7(ii) throughout the present Exam-
ple 4.10(ii).
(ii-1) Let H := {a}. Since H = {a} is α-open and α-closed in the topologica space (X, τ),
then we apply Theorem 4.9(iii) to the present case; and so, we have the following result:
γr-h(H; τ |H) ∼= γr-h(X,X \ H; τ)/Ker(rH)∗ ∼= γr-h0(X,X \ H; τ).

We can check directly the group isomorphisms as follows: we have the date: γr-h(X,X \
H; τ) = {1X , ha}, Ker(rH)∗ = {1X , ha}, γO(H, τ |H) = {∅,H}, γr-h(H; τ |H) = {1H} and
γr-h0(X,X \ H; τ) = {1X}, where τ |H = {∅,H}.
(ii-2) Let H := {b, c}. Then H is α-open and α-closed in (X, τ). Now, we apply Theorem 4.9
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(iii) to the present case; and we can also check directly the group isomorphisms: we have
the date as follows: γr-h(X,X \H; τ) = {1X , ha}, Ker(rH)∗ = {1X}, γO(H, τ |H) = P (H),
γr-h(H; τ |H) = {1H , ha|H} and γr-h0(X,X \ H; τ) = {1X ,ha}, where τ |H = {∅, H}.

Example 4.11 Even if a subset H of a topological space (X, τ) is not α-closed and it
is α-open (cf. Theorem 4.9(i)(i-2)), we have some examples such that the homomorphisms
(rH)∗ and (rH)∗,0 are onto.

(i) For example, let (X, τ) be a topological space and (H, τ |H) a subspace of (X, τ), where
X := {a, b, c}, H =: {a, b} and τ := {∅, {a}, {b}, {a, b}, X}; and so, τ |H = {∅, {a}, {b},H}.
Then, we see that γO(X, τ) = P (X) \ {{c}} and τα = τ . The subset H is α-open and it is
not α-closed in (X, τ). Hence by Theorem 4.9(i)(i-1), the mappings (rH)∗ and (rH)∗,0 are
homomorphisms of groups. Because of X \ H = {c}, we see that γr-h0(X,X \ H; τ) = γr-
h(X,X \ H; τ) and (rH,0)∗ = (rH)∗. And it is shown directly that γr-h(X,X \ H; τ) =
{1X , hc} ∼= Z2, (hc)2 = 1X , and γr-h(H; τ |H) = {1H , ta,b}, where hc : (X, τ) → (X, τ) and
ta,b : (H, τ |H) → (H, τ |H) are the bijections defined by hc(a) = b, hc(b) = a, hc(c) = c and
ta,b(a) = b, ta,b(b) = a, respectively. Then, we prove that : (rH)∗ : γr-h(X,X \ H; κ) → γr-
h(H; τ |H) is onto; Ker(rH)∗ = {1X}. By using Theorem 4.9(i)(i-1) and (ii), we have that
γr-h(H; τ |H) ∼= γr-h(X,X \ H; τ)/Ker(rH)∗ = γr-h(X,X \ H; τ) hold.

(ii) In Section 5, we give an example of an onto homomorphism (rH)∗, where H :=
{−1, 0, 1} of the digital line (Z, κ) (cf. Example 5.13(iv)).

5 Examples on the digital line (Z, κ) We recall that the digital line is the set of the
integers, Z, equipped with the topology κ having {{2s − 1, 2s, 2s + 1}| s ∈ Z}, say G, as
a subbase (e.g., [24, p.175], [26, Section 3(I)], [23, p.905,p.908]). This topological space is
denoted by (Z, κ). By the definition of topology κ, every singleton {2u+1} is open in (Z, κ)
and it is not closed in (Z, κ), where u ∈ Z. Every singleton {2s} is closed in (Z, κ) and it is
not open in (Z, κ), where s ∈ Z. In the present paper, we denote: U(2s) := {2s−1, 2s, 2s+1}
and U(2u+1) := {2u+1} for each point 2s and 2u+1 of (Z, κ), respectively; and U(2s) and
U(2u + 1) are two typical open sets of (Z, κ). And, U(x) above is called the smallest open
set containing the point x of (Z, κ), where x ∈ Z. It is well known that: for a nonempty
open set U and a point x of (Z, κ), if x ∈ U , then U(x) ⊆ U holds (e.g., [26, Section 3]).

(I) Characterizations of γ-open sets in the digital line (Z, κ) (cf. Theorems 5.1
and 5.5 below). First, we recall some properties on the digital line (Z, κ) : κ = PO(Z, κ)
and PO(Z, κ) ⊆ SO(Z, κ) = γO(Z, κ) = βO(Z, κ) (cf. [9], [17], [33]). Secondly, we need
some notations and properties (e.g., [18, Sections 1, 2], [26, Sections 2, 3]): let A be a
nonempty subset of (Z, κ), Aκ := {x ∈ A| {x} is open in (Z, κ)}; AF := {x ∈ A| {x} is
closed in (Z, κ)}. It is easily shown that:
(i) Aκ = {2s + 1 ∈ A| s ∈ Z}; AF = {2m ∈ A| m ∈ Z}; and
(ii) A = Aκ ∪ AF (Aκ ∩ AF = ∅), where A is any subset of (Z, κ).

By Takigawa [32, Theorems 1, 2 and 3], some characterizations of any preopen sets,
semi-open sets and semi-preopen sets in the digital n-space (Zn, κn) are investigated, where
n ≥ 1. The following property is obtained by a special case of [32, Theorem 2 or Theorem
3] for the digital line (i.e., n = 1).

Theorem 5.1 (A special case of Takigawa [32, Theorem 2 or Theorem 3]) A subset E is
γ-open in (Z, κ) if and only if E ⊆ Cl(Eκ) holds in (Z, κ).

Remark 5.2 (i) If Aκ = ∅ for a subset A of (Z, κ), then A is closed in (Z, κ). The converse
of above implication is not true; a subset {2s, 2s+1, 2s+2} is closed in (Z, κ), where s ∈ Z;
and ({2s, 2s + 1, 2s + 2})κ = {2s + 1} 6= ∅.

(ii) Cl(A) = Cl(Aκ) ∪ A holds for a subset A of (Z, κ).

Definition 5.3 ([7, Definition 5.3]) Let A be a subset of (Z, κ).
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(i) For a point x ∈ Z, the following set VA(x) is defined: if x + 1 ∈ A, then VA(x) :=
{x, x + 1} (sometimes it is denoted by VA

+(x), or shortly V +(x)); if x + 1 6∈ A, then
VA(x) := {x − 1, x} (sometimes it is denoted by VA

−(x), or shortly V −(x)). Thus, we have
that VA(x) = VA

+(x) or VA
−(x).

(ii) VA :=
∪
{VA(x)| x ∈ AF} if AF 6= ∅; VA := ∅ if AF = ∅.

Example 5.4 (i) A subset {x, x + 1} of Z is γ-open and γ-closed in (Z, κ) for any point
x ∈ Z.

(ii) (cf. [7, Example 5.5]) For a point x ∈ Z and a subset A ⊆ Z, the set VA(x) is both
γ-open and γ-closed in (Z, κ) (cf. Definition 5.3).

Finally, the following characterization (Theorem 5.5) is obtained by using the equality
γO(Z, κ) = βO(Z, κ) and [7, Theorem 5.7]. We note that we are able to have directly an
alternative proof of Theorem 5.5 using the characterization of Theorem 5.1 above.

Theorem 5.5 ([7, Theorem 5.7]) Let B be a nonempty subset of (Z, κ). Then the following
statements hold.

(i) Assume that BF 6= ∅.
(i-1) If B is γ-open in (Z, κ), then B is expressible as the union: B = VB ∪ Bκ, where

VB :=
∪
{VB(x)|x ∈ BF} (cf. Definiton 5.3).

(i-2) If B satisfies a property that B = VB ∪ Bκ, then B is γ-open in (Z, κ).
(ii) Assume that BF = ∅. Then, VB = ∅ and B = Bκ hold and B is open in (Z, κ); and

so B is γ-open in (Z, κ). ¤

Example 5.6 Suppose that a singleton {x} is closed in (Z, κ) (i.e., x is even in Z) and y
is any point with y 6= x. Then,
(i) {x, y} is γ-closed in (Z, κ);
(ii) {x, y} is γ-open if and only if y = x + 1 or y = x − 1.

(II) Some transformations on (Z, κ).

Definition 5.7 Let te+,o− : (Z, κ) → (Z, κ), t− : (Z, κ) → (Z, κ) and fs : (Z, κ) → (Z, κ),
where s ∈ Z, be the transformations defined by the following form, respectively: for every
point x ∈ Z,
(i) te+,o−(x) := x + 1 if x is even and te+,o−(x) := x − 1 if x is odd;
(ii) t−(x) := −x; (iii) fs(x) := x + s.

Theorem 5.8 For any γ-open set A of (Z, κ), we have the following properties:
(i) te+,o−

−1(A) is explessible as the union of arbitrary collection of γ-closed sets of (Z, κ);
(ii) t−

−1(A) is explessible as the union of arbitrary collection of γ-closed sets of (Z, κ);
(iii)([7, Lemma 5.8(vii), Theorem 5.10(iii)]) f2m+1

−1(A) and f2m+1(A) are explessible
as the union of arbitrary collection of γ-closed sets of (Z, κ), where m ∈ Z.

Proof. (i) By using Definition 5.3, Example 5.6(i) and Definition 5.7, it is shown that, for
any set B and any point x ∈ Z, te+,o−

−1(VB(x)) is γ-closed in (Z, κ) (cf. Definition 5.3(i),
Example 5.6(i), Definition 5.7); te+,o−

−1(Bκ) =
∪
{{2s}| 2s + 1 ∈ B} holds, because

Bκ =
∪
{{2s + 1}| 2s + 1 ∈ B}). And, so te+,o−

−1(Bκ) is the union of the collection
{{2s}| 2s + 1 ∈ B} of γ-closed sets. Let A ∈ γO(Z, κ). By Theorem 5.5(i-1) and (ii), it
is shown that te+,o−

−1(A) = (
∪
{te+,o−

−1(VA(x))| x ∈ AF})∪te+,o−
−1(Aκ) (if AF 6= ∅)

and te+,o−
−1(A) = te+,o−

−1(Aκ) (if AF = ∅); and so, by the properties above respectively,
te+,o−

−1(A) is the union of a collection of γ-closed sets.
(ii) By an argument similar to that in (i), the statement (ii) is proved (cf. Definition 5.3,

Example 5.4).
(iii) This is shown by the property that γO(Z, κ) = βO(Z, κ) (cf. (I) above) and the

corresponding property on β-openess version [7, Lemma 5.8(vii), Theorem 5.10(iii)]. ¤
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Remark 5.9 Let A2k := {2k, 2k + 1} ∪ {2(k + 1) + 1, 2(k + 1) + 2}. Since Int(Cl(A2k)) ∩
Cl(Int(A2k)) = {2k + 1, 2(k + 1), 2(k + 1) + 1} 6⊆ A2k hold, A2k is not γ-closed. But, A2k

is the union of two γ-closed sets {2k, 2k + 1} and {2(k + 1) + 1, 2(k + 2)} of (Z, κ) (cf.
Example 5.4 (i)).

Example 5.10 (i) te+,o− 6∈ γr-h(Z;κ) and te+,o− 6∈ contra-γr-h(Z; κ) hold.
(ii) t− ∈ h(Z, κ) holds and so t− ∈ γr-h(Z;κ).
(iii) (iii-1) f2m+1 6∈ γr-h(Z; κ) and f2m+1 6∈ contra-γr-h(Z; κ);

(iii-2) f2m+1 6∈ h(Z; κ).
(iv) f2m ∈ h(Z; κ) and f2m+1 ∈ contra-h(Z; κ) hold; and hence {fs|s ∈ Z} forms a

subgroup of H(Z,κ).

(III) A group structure of γr-h(H; κ|H), where H := {−1, 0, 1}.

Lemma 5.11 Let s, u ∈ Z. If f : (Z, κ) → (Z, κ) is a γr-homeomorphism (i.e., f ∈ γr-
h(Z, κ)), then

(i) f(U(2s)) = U(2a) holds for some point 2a ∈ Z;
(ii) f(U(2u + 1)) = U(2v + 1) holds for some point 2v + 1 ∈ Z. ¤

Notation Let H be the smallest open set containing 0, U(0) := {−1, 0, +1}, which is used
in Example 5.13 below. A family of subsets of (Z, κ), say {Hj |j ∈ Z with j ≥ 1}, is defined
by : H1 := H = U(0) and Hi := U(−(2i − 2)) ∪ Hi−1 ∪ U(2i − 2) for each integer i ≥ 2,
where U(2s) := {2s − 1, 2s, 2s + 1}(s ∈ Z).

It is easily shown that Hi =
∪
{U(−(2j − 2)) ∪ U(2j − 2)| j ∈ Z with 1 ≤ j ≤ i} holds

for each integer i ≥ 2; and if i ≤ j, then Hi ⊆ Hj and
∪
{Hj | j ∈ Z with j ≥ 1} = Z.

Lemma 5.12 below is proved by an argument similar to that in [30, Claim in Proof of
Proposition 6.1]; we use induction on m ∈ Z and Lemma 5.11; and so we omite the proof.

Lemma 5.12 Let f ∈ γr-h(Z, Z\H; κ) and {Hj |j ∈ Z with j ≥ 1} be the family of subsets
defined by Notation above, where H = H1 = {−1, 0, 1}, i.e., H = U(0).

(i) If f |H = t−|H, then f |Hm = t−|Hm for any interger m with m ≥ 2.
(ii) If f |H = 1H , then f |Hm = 1Hm for any integer m with m ≥ 2. ¤

Using Lemma 5.11 and Lemma 5.12, we can examine the isomorphisms of Theorem 4.9(ii)
for the following α-open set H := U(0) which is not α-closed in (Z, κ).

Example 5.13 Let (H,κ|H) be a subspace of (Z, κ), where H := {−1, 0, +1} is the smallest
open set containing 0 ∈ Z, i.e., H = U(0). Then, we have the following properties: (i) γr-
h(Z, Z \ H; κ) = {1Z, t−}; (ii) γr-h0(Z, Z \ H; κ) = {1Z}; (iii) γr-h(H;κ|H) = {1H , t−|H};
(iv) Im(rH)∗ = {1H , t−|H} and (rH)∗ : γr-h(Z, Z \ H; κ) → γr-h(H,κ|H) is onto; (v)
Ker(rH)∗ = {1Z}.
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