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Abstract. This paper is devoted to investigating quantitatively the ODE model
for fish schooling which was introduced in the paper [15]. First, we will study how
each parameter in the model equations contributes to the geometrical structure of the
school created by fish such as school diameter, connectedness, graph, etc. Second,
we will concentrate on studying effects of the noise imposed to the model equations.
In particular, it will be shown that, if the noise’s magnitude is larger than a certain
threshold, then fish can no longer form a school.

1 Introduction In the preceding paper [15], we have introduced an ordinary differential
equation model:

(1.1)



dxi(t) = vidt + σidwi(t), i = 1, 2, . . . , N,

dvi(t) =
[
−α

N∑
j=1, j 6=i

(
rp

‖xi − xj‖p
− rq

‖xi − xj‖q

)
(xi − xj)

−β
N∑

j=1, j 6=i

(
rp

‖xi − xj‖p
+

rq

‖xi − xj‖q

)
(vi − vj)

+Fi(t, xi, vi)
]
dt, i = 1, 2, . . . , N,

for describing the process of schooling of N -fish system. Each fish is regarded as a moving
particle in the Euclidean space Rd, where d = 2 or 3. The unknown xi(t) is a stochastic
process with values in Rd denoting a position of the i-th fish of system at time t; meanwhile,
vi(t) is a stochastic process with values in Rd denoting a velocity of the i-th fish at time t.
The fish are allowed to swim in the unbounded, continuous and homogeneous space Rd.

The first equations of (1.1) are stochastic equations concerning xi, where σidwi denote
noise resulting from the imperfectness of information-gathering and action of the i-th fish.
In fact, {wi(t), t > 0} (i = 1, 2, ..., N) are independent d-dimensional Brownian motions
defined on a complete probability space with filtration (Ω, F, {Ft}t>0, P) satisfying the usual
conditions. The second equations are deterministic equations on vi, where 1 < p < q < ∞
are fixed exponents, α, β are positive coefficients for interaction between fish and velocity
matching, respectively, and r > 0 is a fixed distance. Since 1 < p < q < ∞, if ‖xi −xj‖ > r
then the i-th fish moves toward the j-th; to the contrary, if ‖xi − xj‖ < r, then the i-th
fish acts in order to avoid collision with the j-th fish. The number r > 0 therefore denotes
a critical distance. Finally, the functions Fi(t, xi, vi) denote external forces at time t which
are given functions defined for (xi, vi) with values in Rd. It is assumed that Fi(t, xi, vi)
(i = 1, 2, . . . , N) are locally Lipschitz continuous. In building up such a differential equation
model we have referred to the fish’s behavioral rules:
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1. The school has no leaders and each fish follows the same behavioral rules.

2. To decide where to move, each fish uses some form of weighted average of the position
and orientation of its nearest neighbors.

3. There is a degree of uncertainty in the individual’s behavior that reflects both the
imperfect information-gathering ability of a fish and the imperfect execution of the
fish’s actions.

introduced by Camazine-Deneubourg-Franks-Sneyd-Theraulaz-Bonabeau [4, Chapter 11].
We have also referred to the idea due to Reynolds [14]. For the details, however, consult
the paper [15].

The objective of the present paper is to investigate geometrical structures of the fish
school when the fish move by obeying the kinematic equations (1.1) and create a swarm.
For this purpose, we intend to introduce several quantitative notions: Distance to School
Mates, Minimum Distance, Mean Distance to School Mates, Diameter of School, Variance
of Velocity, and ε-Graph, to measure the geometrical structure of school. We in addition
introduce a notion of ε-schooling where ε is fixed almost equally to r. We then perform many
numerical computations to clarify effects of each parameter or exponent of the equations
in determining geometry of structures of school. These will be presented in Section 2 with
absence of noise. Next, in Section 3, we focus on studying effects of the noise which is an
indispensable factor in the real world.

Empirical study on fish schooling has been done in [1, 3, 5, 8, 13]. As for the theoretical
approach we want to quote [7, 10, 11, 16]. Vicsek et al. [16] introduced a simple difference
model, assuming that each particle is driven with a constant absolute velocity and the
average direction of motion of the particles in its neighborhood together with some random
perturbation. Oboshi et al. [10] presented another difference model in which an individual
selects one basic behavioral pattern from four based on the distance between it and its
nearest neighbor. Olfati-Saber [11] and D´Orsogna et al. [7] constructed deterministic
differential models using a generalized Morse and attractive/repulsive potential functions,
respectively. We use the ODE model mentioned above. Such a model can describe the fish’s
behavior precisely. Moreover, an ODE model is tractable for making numerical simulations.
In this paper, we will use the Euler scheme for stochastic differential equations which has
been introduced by Kloeden and Platen [6].

2 Various Measures for Geometrical Structures In this section we want to intro-
duce various measures to study the geometrical structures of school. Using these measures
we will also clarify contributions of exponents and parameters included in (1.1) to the
geometrical structure of school by examining many numerical examples.

For simplicity, we consider throughout this section the deterministic case, i.e., σi = 0
for all i. Therefore, (xi(t), vi(t)) denotes a trajectory of the i-th fish in the phase space
Rd × Rd.

2.1 Distance to School Mates For each fish i, put

DSi(t) = min
16j6N, j 6=i

‖xj(t) − xi(t)‖, 0 < t < ∞, i = 1, 2, . . . , N.

By definition, DSi(t) denotes the distance between the i-th individual to its nearest mates
at time t. We call DSi(t) the distance of i to the school mates. It is observed that DSi(t)
depends on the position xi(t) considerably. If xi(t) is near the center of school, i.e., x̄(t) =
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1
N

N∑
j=1

xi(t), then DSi(t) is much smaller than r; on the contrary, if xi(t) is in the periphery

of school, then DSi(t) can be almost equal to the maximum value r.
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Figure 1: Dependence of MiDS on the exponent p

2.2 Minimum Distance We define

MiDS(t) = min
16i6N

DSi(t), 0 < t < ∞,

and call this value the minimum distance of school. This is the nearest distance between
two fish in a group of N individuals at time t. Basically, MiDS(t) is dependent on r. But,
it is seen that MiDS(t) depends on the exponents p and q, too. For example, we have

lim
p→∞

MiDS(T ) = r,

provided that T is a sufficiently large time. That is the nearest distance tends to the critical
distance as power p tends to infinity for sufficiently large time T . By simulations, we shall
find such a relationship between r and MiDS(T ).

We consider a 100-fish system in the 2-dimensional space with Fi = −5.0vi, which is
often used to present the resistance against the moving particles. We fix two initial positions
for two examples of 100-individual system (the initial positions xi(0), 1 6 i 6 100, are
randomly distributed in the square domain [0, 10]2 ⊂ R2) with all null initial velocities
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vi = (0, 0), (1 6 i 6 100). Taking the critical distance r = 1 for the first example and
r = 0.5 for the second, we tune the exponent p from 1 to 12 and always keep the relation
q = p + 1. Other parameters are chosen as follows: α = 1, β = 0.5, step size δ = 0.001.
The result is got after 30.000 running steps, that is at time T = 30. Figure 1 illustrates
dependence of MiDS(T) on the exponent p.

Remark 2.1. The model we consider contains many parameters, but we can find that the
powers p and q are especially meaningful. p and q are concerned with a range of interactions
among fish. As p and q increase, the range shortens and approaches sharply to the critical
length r, namely, if ‖xi−xj‖ > r the attraction between i and j is weak and if ‖xi−xj‖ < r
the repulsive is very strong. ¤

In order to simplify our arguments, in what follows, we will always take q so that
q = p+1. This assures the condition q > p in modeling and the difference is similar to that
of the Van der Waals and the Newton’s law, where p = 3 and q = 4.
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Figure 2: Dependence of MDS on the total number of fish

2.3 Mean Distance to School Mates We consider the mean of DSi(t), i.e.,

MDS(t) =
1
N

N∑
i=1

DSi(t), 0 < t < ∞.
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This quantity is called the mean distance of school mates and is one of quantitative measures
which are used to study the internal structure of the fish school.

It may be a very interesting question to know how MDS(t) depends on the total number
of fish. In order to examine this, we consider an N -fish system in the 3-dimensional space
with Fi = −5.0vi, 1 6 i 6 N . Let α = 5, β = 1, p = 3, q = 4 and r = 0.5. We take various
values N between 20 and 200. Initial positions xi(0), 1 6 i 6 N , are randomly distributed
in the cubic domain [0, 20]3 with all null initial velocities vi(0) = (0, 0, 0). The time T is
fixed as T = 120 throughout the simulations. Figure 2 then shows dependence of MDS(T)
on the total number N . In order to reduce the effect of the random initial positions to
the result, for each value of N , we run 10 simulations each with different random initial
positions in [0, 20]3 ⊂ R3. The mean distance for each N is drawn by a cross ×. After that
we take the mean value of these and then interpolate these values by a smooth curve.

As seen, MDS(T ) decreases monotonically as N increases. This means that the school
becomes “more condensed” as N is larger. This agrees with the results stated in a number
of works, such as [2, 8, 9, 12] in which the authors show that the mean distance to school
mates decreases as a function of the number of fish. From Figure 2, we also see that the
range of the simulation results for MDS decreases as N increases.
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Figure 3: Dependence of MDS and δS on the critical distance r

2.4 Diameter of School The diameter of school is defined by

δS(t) = sup
16i6N

‖xi(t) − x̄(t)‖, 0 < t < ∞,

where x̄(t) = 1
N

N∑
i=1

xi(t) is the center of the group at time t.
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The diameter of school is, by definition, the radius of the minimal ball centered at x̄(t)
and containing all the individuals at time t.

The following numerical example shows that MDS(T ) and δS(T ) are linearly dependent
on r for sufficiently large time T . We consider a 50-fish system in the 3-dimensional space
with Fi = −5vi. Let α = 5, β = 1, p = 3 with q = p + 1. Now, r is a tuning parameter
which varies from 0.5 to 2. Initial positions xi(0), 1 6 i 6 50, are randomly distributed in
the cubic domain [0, 20]3 with null initial velocities vi(0) = (0, 0, 0). The time T is fixed as
T = 150. Figure 3 then illustrated the dependence of MDS(T ) and δS(T ) on the critical
distance r. The plots of these values are approximately on linear lines δS(T ) = ar and
MDS(T ) = br, respectively. In this parameter setting we observe that a = 1.18984 and
b = 0.60158.
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Figure 4: Dependence of δS on the total number N

How does δS(T ) respond when the total number N increases? To examine this question,
we consider an N -fish system in the 2 or 3-dimensional space with Fi = −5.0vi, and set
α = 1, β = 0.5, p = 3, q = p + 1, r = 1 and T = 20. As stated before, in order to simplify
the arguments, each value shown in the figure is calculated by taking the mean value of the
corresponding values for 10 simulations with different initial positions. Figure 4 shows that
the diameter of school typically increases with the fish number. This is generally true in
animal flocks, cf. also [7].

By observing the figure we find that the slope of the school radius as function of N is
larger when p becomes larger.
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2.5 Variance of Velocity In order to measure matching of velocity each other, we will
use the ordinary variance

σVS(t) =

√√√√ 1
N

N∑
i=1

‖vi(t) − v̄(t)‖2, 0 < t < ∞,

where v̄(t) = 1
N

N∑
i=1

vi(t) is the average of all velocities of fish at time t.
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Figure 5: Effect of the total number N for Nε

2.6 ε-Graph of School We finally introduce the ε-graph. Let ε > 0 be a fixed length.
The vertices of graph at time t are all the positions of particles, xi(t), 1 6 i 6 N . Two
vertices xi(t) and xj(t) are connected by the edge of graph if and only if ‖xi(t)−xj(t)‖ 6 ε.
This graph is called the ε-graph of school at time t and is denoted by GSε(t). We also
denote by Nε(t) the number of connected components of GSε(t). When Nε(t) = 1, we
consider that the fish have created a school with max

16i6N
DSi(t) 6 ε. If Nε(t) > 2, Nε(t)

denotes the number of sub-schools.

Let us now examine effects of the total population N on Nε(t) for sufficiently large time
t. To create a single school, N must be sufficiently large. To see this fact, consider an
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N -fish system in the 2-dimensional space with Fi = −5.0vi. Let α = 1, β = 0.5, p = 4,
q = p + 1, r = ε = 0.5. Initial positions xi(0), 1 6 i 6 N , are randomly distributed in
[0, 10]2 with null initial velocities vi(0) = (0, 0). The population number N changes from 20
to 50. Figure 5 illustrates the graph GS0.5(400) for each N . Up to N = 39, N0.5(400) > 2
and so the fish are divided into a few sub-schools. But after a threshold number N = 40,
they can create a single school.

3 Robustness of ε, θ-Schooling against Noise In this section, we consider the stochas-
tic model (1.1). Under σi > 0, we want to study how the terms σidwi(t) affect the geomet-
rical structure of school. Can the fish system still create a school?

Let us here give a mathematical definition of school.

Definition 3.1 (ε, θ-Schooling). For a given length ε > 0 and a tolerance θ > 0, we say
that the fish system is in ε, θ-schooling if there exists a time T > 0 such that Nε(t) = 1 and
σV S(t) < θ for every t > T .

According to the above definition, a system forms a school only if velocities of all the
fish tend to their average with the error less than tolerance θ. Therefore, the distance
‖xi(t) − xj(t)‖ between any pair (i, j) will almost remain unchanged for t > T . So, the
school structure remains unchanged, too. The second condition ensures that all the fish
keep the relation DSi(t) 6 ε for t > T . As a consequence, Nε(t) = 1 remains to hold for
t > T .

Assume that a system is in ε, θ-schooling for t > T . According to Remark 2.1 (cf. also
Figure 1), if ‖xi(t)− xj(t)‖ > ε, then i and j keep their distance far away and consquently

(3.1)
(

rp

‖xi(t) − xj(t)‖p
− rq

‖xi(t) − xj(t)‖q

)
(xi(t) − xj(t))

is sufficiently small. In the meantime, if ‖xi(t) − xj(t)‖ ≈ ε, then their distance is ‖xi(t) −
xj(t)‖ ≈ r and consequently (3.1) is again sufficiently small. In addition, it is clear that(

rp

‖xi(t) − xj(t)‖p
+

rq

‖xi(t) − xj(t)‖q

)
(vi(t) − vj(t))

is sufficiently small because of ‖vi(t) − vj(t)‖ ≈ 0. We thus verify that

n∑
i=1

dvi ≈
N∑

i=1

Fi(t, xi, vi)dt.

In particular, if we take Fi(t, xi, vi) = −cvi (1 6 i 6 N), then

N∑
i=1

dvi ≈ −c

(
N∑

i=1

vi

)
dt.

Consequently,
N∑

i=1

vi(t) decays exponentially as t → ∞ and the system converges to a steady

state.

Figure 6 shows an example of ε, θ-schooling generated by (1.1). 100 fish are situated at
random positions in [0, 10]2 ⊂ R2 with null velocities at time t = 0. Then they interact
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Figure 6: Example of ε, θ-schooling

with each other with α = 5, β = 1, p = 3, q = 4, r = 0.5, σ = 0, Fi = −5vi, (1 6 i 6 100),
we set ε = 0.5 = r and θ = 10−6.

In the first three subfigures, we show ε-graphs of the system at different instants t. Each
of these figure shows the positions of fish by points, their velocities by vectors and ε-graph
edges by lines. The last subfigure draws the variance of velocity and the radius of school as
functions of t.

Of course whether a system creates a school or not depends strongly on initial posi-
tions. It is also observed that 3-dimensional systems can create schools much easier than
2-dimensional ones.

Let us next study effects of the noise. We set σi(t) = σ, for i = 1, 2, . . . , N. Simulations
are implemented in the 3-dimensional space. We fix initial positions taking randomly in
[0, 5]3 ⊂ R3 with 50 fish, run 10 simulations with different realizations of the Wiener process
for each value of σ. We observe the end point of each trajectories of σVS(T ) and δS(T ) at
T = 50. Other parameters are set as p = 3, q = p + 1, α = 5, β = 1, r = 0.5, Fi = −5.0vi,
step size δ = 0.001. Figure 7 shows that the fish can keep schooling against the noises when
their magnitude σ is small enough. To the contrary, when it is large, the noises prevent the
fish from creating a single school. It might be allowed, however, to insist that the swarming
behavior described by our model (1.1) possesses the robustness for schooling. Figure 8
shows the expectation of school diameter as a function of σ. From this figure, too, we can
find a similar tendency.
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Figure 7: Influence of the noise magnitude σ for schooling
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