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ABSTRACT. In this paper, we prove a fixed point theorem for widely more generalized
hybrid non-self mappings in Hilbert spaces. Furthermore, we prove mean convergence
theorems of Baillon’s type for widely more generalized hybrid non-self mappings in a
Hilbert space.

1 Introduction Let H be a real Hilbert space and let C' be a non-empty subset of H. In
2010, Kocourek, Takahashi and Yao [13] defined a class of nonlinear mappings in a Hilbert
space. A mapping T from C into H is said to be generalized hybrid if there exist real
numbers « and (3 such that

alTe = Tyl* + (1 = a)|la = Tyl]* < BlITz — y[* + (1 = Bz — y|?

for any z,y € C. We call such a mapping an («, 3)-generalized hybrid mapping. We
observe that the class of the mappings covers the classes of well-known mappings. For
example, an («, 3)-generalized hybrid mapping is nonexpansive [18] for a = 1 and 3 = 0,
ie., |[Tx — Tyl < |z —y| for all z,y € C. It is nonspreading [15] for « =2 and § =1, i.e.,
2| Tz — Ty|? < ||[Tx — y||* + || Ty — «||* for all z,y € C. It is also hybrid [19] for « = 3 and
B=131ie,3|Tz—Ty|?> <|z—y|?>+ Tz —yl*+ || Ty — z|]? for all 2,y € C. They proved
fixed point theorems for such mappings; see also Kohsaka and Takahashi [14] and Iemoto
and Takahashi [9]. Moreover, they proved the following nonlinear ergodic theorem.

Theorem 1.1 ([13]). Let H be a real Hilbert space, let C' be a non-empty closed convex
subset of H, let T be a generalized hybrid mapping from C into itself which has a fized point,
and let P be the metric projection from H onto the set of fized points of T. Then for any
xeC,

1 n—1
Spr = — k
'nT - ZT T
k=0
1s weakly convergent to a fized point p of T, where p = lim,_ .o, PT"x.

Furthermore, they defined a more broad class of nonlinear mappings than the class of
generalized hybrid mappings. A mapping T from C into H is said to be super hybrid if
there exist real numbers «, 5 and - such that

alTz =Ty + (1 - a+7) |z - Ty|?
<B+B-aNTz —ylI* + (1=~ (B—a-1)lz -yl
+(a = B)ylle — T + ylly — Tyl
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for any z,y € C'. A generalized hybrid mapping with a fixed point is quasinonexpansive.
However, a super hybrid mapping is not quasi-nonexpansive generally even if it has a fixed
point. Very recently, the authors [11] also defined a class of nonlinear mappings in a Hilbert
space which covers the class of contractive mappings and the class of generalized hybrid
mappings defined by Kocourek, Takahashi and Yao [13]. A mapping T from C into H is
said to be widely generalized hybrid if there exist real numbers «a, (3,7, §,e and ¢ such that

a||Tz = Ty|* + Blle = Tyl* + 9Tz — y|* + 8|z -yl
+max{elle — Tz|?, (ly - Tyl*} <0

for any x,y € C. Furthermore, the authors [12] defined a class of nonlinear mappings in
a Hilbert space which covers the class of super hybrid mappings and the class of widely
generalized hybrid mappings. A mapping T from C into H is said to be widely more
generalized hybrid if there exist real numbers «, 3,7, §, &, ¢ and 7 such that

alTe = Tyl* + Bllo = Ty|* + Tz — y|* + 8]l — y?
+ellz = Tal* + Clly — Tyl® +nli(z — Ta) — (y = Ty)|I* <0

for any z,y € C. Then we prove fixed point theorems for such new mappings in a Hilbert
space. Furthermore, we prove nonlinear ergodic theorems of Baillon’s type in a Hilbert
space. It seems that the results are new and useful. For example, using our fixed point
theorems, we can directly prove Browder and Petryshyn’s fixed point theorem [5] for strictly
pseudocontractive mappings and Kocourek, Takahashi and Yao’s fixed point theorem [13]
for super hybrid mappings. On the other hand, Hojo, Takahashi and Yao [8] defined a
more broad class of nonlinear mappings than the class of generalized hybrid mappings. A
mapping T from C into H is said to be extended hybrid if there exist real numbers a, 3
and v such that

a(l+ Tz —Ty|* + (1 — a(l +7))llz — Ty|]?
<B4+ a)| Tz —ylI>+ (1= (B+ o))z -yl
(o= B)yllx — Tx||* —~lly — Ty

for any z,y € C. Furthermore, they proved a fixed point theorem for generalized hybrid
non-self mappings by using the extended hybrid mapping.

In this paper, using an idea of [8], we prove a fixed point theorem for widely more
generalized hybrid non-self mappings in Hilbert spaces. Furthermore, we prove mean con-
vergence theorems of Baillon’s type for widely more generalized hybrid non-self mappings
in a Hilbert space.

2 Preliminaries Throughout this paper, we denote by N the set of positive integers and
by R the set of real numbers. Let H be a real Hilbert space with inner product (-,-) and
norm || - ||. We denote the strong convergence and the weak convergence of {z,} tox € H
by z, — x and z, — x, respectively. Let A be a non-empty subset of H. We denote by
oA the closure of the convex hull of A. In a Hilbert space, it is known that

(2.1) laz + (1 = a)y|* = allz* + (1 = &)llyl* — al = a) ]z - y*

for any z,y € H and for any a € R; see [18]. Furthermore, in a Hilbert space, we obtain
that

(2.2) 20—y, 2 —w) = |lz —w|® + lly — 2 = lla — 2[* = |y — w|?
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for any z,y,z,w € H. Let C be a non-empty subset of H and let T' be a mapping from C'
into H. We denote by F(T') the set of fixed points of T. A mapping T" from C into H with
F(T) # 0 is said to be quasi-nonexpansive if ||z — Ty|| < ||z — y|| for any z € F(T) and
for any y € C. Tt is well-known that the set F(T) of fixed points of a quasi-nonexpansive
mapping 7' is closed and convex; see Ito and Takahashi [10]. It is not difficult to prove such
a result in a Hilbert space; see, for instace, [21]. Let D be a non-empty closed convex subset
of H and x € H. Then, we know that there exists a unique nearest point z € D such that
|z —z|| = infyep ||z —y||. We denote such a correspondence by z = Ppz. The mapping Pp
is said to be the metric projection from H onto D. It is known that Pp is nonexpansive
and

(x — Ppz,Ppx —u) >0

for any x € H and for any u € D; see [18] for more details. For proving a mean convergence
theorem in this paper, we also need the following lemma proved by Takahashi and Toyoda
[20].

Lemma 2.1. Let D be a non-empty closed convexr subset of H. Let P be the metric
projection from H onto D. Let {u,} be a sequence in H. If ||[upt1 — ul| < ||uyn —ul| for any
u € D and for any n € N, then {Pu,} converges strongly to some ug € D.

Let [°° be the Banach space of bounded sequences with supremum norm. Let p be
an element of (I°°)* (the dual space of [°°). Then, we denote by u(f) the value of p at
f = (x1,22,23,...) € [®°. Sometimes, we denote by pu,(z,) the value pu(f). A linear
functional p on I* is said to be a mean if p(e) = ||u|| = 1, where e = (1,1,1,...). A mean

 is said to be a Banach limit on % if p,(2,41) = pin(2,). We know that there exists a
Banach limit on [*°. If y is a Banach limit on [*°, then for f = (21,22, 3,...) € [,

liminf 2, < p,(x,) <limsupz,.
n—oo n—oo

In particular, if f = (21, 22,23,...) € [*® and x, — a € R, then we obtain u(f) = pn(x,) =
a. See [17] for the proof of existence of a Banach limit and its other elementary properties.
Using means and the Riesz theorem, we have the following result; see [16] and [17].

Lemma 2.2. Let H be a Hilbert space, let {x,} be a bounded sequence in H and let u be
a mean on I°°. Then there exists a unique point zy € co{x, | n € N} such that

Nn<$n,y> - <ZOa y>
foranyy € H.
Kawasaki and Takahashi [12] proved from Lemma 2.2 the following fixed point theorem.

Theorem 2.1. Let H be a real Hilbert space, let C' be a non-empty closed convexr subset of
H and let T be an («, 3,7, 6,¢,(,n)-widely more generalized hybrid mapping from C into
itself which satisfies the following condition (1) or (2):

(1) a+B+v+6>0,a+y+e+n>0and(+n>0;
(2) a+pf+v+0>0,a+8+(+n>0ande+n>0.

Then T has a fixed point if and only if there exists z € C such that {T"z |n=0,1,...} is
bounded. In particular, a fized point of T' is unique in the case of a+ B+~v+ 3 > 0 on the
conditions (1) and (2).
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As a direct consequence of Theorem 2.1, we obtain the following.

Theorem 2.2. Let H be a real Hilbert space, let C' be a bounded closed conver subset of H
and let T be an («, 3,7,9,¢,(,n)-widely more generalized hybrid mapping from C' into itself
which satisfies the following condition (1) or (2):

(1) a+pB+7+0>20,a+y+e+n>0and(+n>0;
(2) a+B+7+5>0,a+B+(+n>0ande+n>0.

Then T has a fived point. In particular, a fixed point of T is unique in the case of o+ 0+
v+ 6 >0 on the conditions (1) and (2).

3 Fixed point theorem Let H be a real Hilbert space and let C' be a non-empty subset
of H. A mapping T from C into H was said to be widely more generalized hybrid if there
exist «, 3,7, 9,¢,(,n € R such that

(3.1) o Tz — Ty|? + Bllz — Tyl +y|Tx — y|I* + 6|z — y||?
+ello — Tzl + ¢y — Tyl* + nll(x — Tx) — (y — Ty)|* <0

for any z,y € C; see Introduction. Such a mapping T is said to be (a, 3,7,0,¢,(,n)-
widely more generalized hybrid; see [12]. An (a,f,7,6,¢,(,n)-widely more generalized
hybrid mapping is generalized hybrid in the sense of Kocourek, Takahashi and Yao [13] if
a+pf=—-—y—0=1and € = =n=0. Moreover it is an extension of widely generalized
hybrid mappings in the sence of Kawasaki and Takahashi [11]. Using Theorem 2.2, we prove
a fixed point theorem for widely more generalized hybrid non-self mappings in a Hilbert
space.

Theorem 3.1. Let H be a real Hilbert space, let C' be a non-empty bounded closed convex
subset of H and let T be an («, 3,7, 9, ¢, (,n)-widely more generalized hybrid mapping from
C into H which satisfies the following condition (1) or (2):

(1) a+0B8+v+5>0, a+v+e+n>0, and there exists A € R such that A # 1 and
(a+B)A+(+n=>0;

(2) a+pB4+v+5>0, a+B+(+n>0, and there exists A € R such that A # 1 and
(a+y)A+e+n>0.

Suppose that for any x € C, there exist m € R and y € C such that 0 < (1 —A)m <1 and
Tx=x+m(y—x). Then T has a fized point. In particular, a fived point of T is unique in
the case of o+ B+ + 9 > 0 on the conditions (1) and (2).

Proof. Let S = (1 — A\)T + AI. Since

Sr = (1-MNTz+ Az
= 1-XNz+m(y—=z)+ I\
1-01-Mm)z+1-NmyeC

for any « € C, S is a mapping from C into itself. Since A # 1, we obtain that F(S) = F(T).
Moreover from (2.1) we obtain that

1 A 1 A
<1—)\SI_1—)\x>_<1—>\sy_1—>\y>

2
«
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2

1 A 2 1 A
6 x_<1—)\5y_1—)\y> +7H<1—Asx_1—ﬁ>_y
+6]|z —yl?
1 A 2 1 A 2
+e x—(l_)\Sac—l_)\x) —i—CHy—(l_)\Sy—l_)\y)
1 A 1 A 2
(o= (550 252)) - (- (5590 250)
1 2
= ﬁ(Sfc—Sy) 1 )\(x—y)
1 A 2
+6’1_/\(x—5y)—1_/\(x—y)
1 A 2 )
e et ey Tt R
1 2 1 2
+e 1_/\(95_535) +CH1_/\(Z/—53/)
i - 50 - s
| N I N
_ G« . 2 B _ 2
= 75 182 = Syl* + = ll= — Swll
1Sz =yl + (— " (a+ B+7) +6) v -y
) DY
etyA 2, CHOBA 9
g = S+ gl = S
7+

m”(ﬂ’j — Sz)—(y— Sy)|* < 0.

Then S is an (ﬁ7 %, = —ﬁ(a +08+7)+9, (ili\"" éfgi}, (qfi;)—widely more gen-
eralized hybrid mapping. Furthermore, we obtain that
@ 16 5y A
0 = 0>
Tt T 1_)\(a+5+’y)+ at+pf+v+4=>0,
Q@ n ~ e+ A n+ak a+'y+a+n>0
I—X 1-Xx (1-XN2 (1-XN2 (1—X)2 ’
¢+ BA N+ o\ (a+B)A+C+n
= > 0.
(1=2)2 (1=-A7? =22 -

Therefore by Theorem 2.2 we obtain F(S) # 0.
Next suppose that a4+ 3+ v+ 6 > 0. Let p; and ps be fixed points of T'. Then

a||Tpr — Tps|? + Bllp1 — Tp2||* + Y| Tp1 — p2||* + 8[lp1 — p2l?
+ellp1 — Tp1l? + Cllp2 — To2ll* + nll(pr — Tp1) — (p2 — Tp2)|?
=(@+B+7+0)|p —p2> <0

and hence p; = po. Therefore a fixed point of T' is unique.

In the case of the condition (2), we can obtain the result by replacing the variables x
and y. O
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Ezxample 3.1. Let H = R, let C = [0, §]7 let Te = (1 + 2z)cosx — 222 and let a = 1,
B=~7=11,0=-22,e=(=—-12and n=1. Then T is an («, 3,7, 9, ¢, (,n)-widely more
generalized hybrid mapping from C' into H, a+8+~v+d=1>0and a+y+c+n=1>0.
Let A = 5275 and let m = 147 Then 0 < (1-A)ym = § < Land (a+B)A+¢+n = T52 > 0.
Let y = o + W%—w) for any x € C. Then Tax = 2+ m(y — z) and y € C. Therefore

by Theorem 3.1 T has a unique fixed point.

4 Nonlinear ergodic theorems In this section, using the technique developed by Taka-
hashi [16], we prove mean convergence theorems of Baillon’s type in a Hilbert space. Before
proving the results, we need the following lemmas.

Lemma 4.1. Let H be a real Hilbert space, let C' be a non-empty closed conver subset of
H and let T be an («, 8,7, 6,¢,(,n)-widely more generalized hybrid mapping from C into
H which has a fized point and satisfies the condition:

a+y+e+n>0,ora+pB+C+n>0.
Then F(T) is closed.

Proof. Suppose that {z, | n=1,2,...} C F(T) is convergent to z € H. We show z € F(T).
Putting y = x,, in (3.1), we obtain that

al|Tz = Tan||* + Bl — Tan|? + 41Tz — 241> + 6]l — 2,12
+ellr — TxHQ +Cllen — T$n||2 +nl(x = Tz) — (20 — Txn)}2 <0

and hence

(4.1) (@ + T2 = zal® + (8 + 0)llz — @nll* + (e + )|z — T|* < 0.
Letting n — oo, we obtain that

(4.2) (a+vy+e+n)||Tz—z|*<0.

Since o + v +e+n > 0, from (4.2) we obtain that x € F(T). Therefore F(T) is closed.
Similarly, we can obtain the desired result for the case of a« + 3+ (+n > 0. O

Lemma 4.2. Let H be a real Hilbert space, let C' be a non-empty closed convex subset of
H and let T be an (o, 8,7, 6,¢,(,n)-widely more generalized hybrid mapping from C into
H which has a fized point and satisfies the condition (1) or (2):

(1) a+f8+v+d6d>0anda+~v+e+n>0;
(2) a+fB8+v+06>0anda+B+(+n>0.
Then F(T) is convex.

Proof. For x1,29 € F(T) and A € R with 0 < A < 1, put = (1 — A\)z1 + Axe. We show
that € F(T). Putting y = z; in (3.1), we obtain that

al|Te = Tx | + Bl — Tai|* + (| Tx — 1> + 6|z — 24
+ellz = Ta|® + ¢ller — T |* + 0| (z — Tx) — (21 — Ta1)[|* <0

and hence

(4.3) (@ + DTz — 21| + (B + )N 21 — 22|* + (¢ + n)l|lz — Tz|* < 0.
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Similarly, putting y = x2 in (3.1), we obtain that
(4.4) (@+ Tz — 2| + (B+8)(1 = N)?||lz1 — 22]|* + (e +n)llz — Tz||* < 0.
Therefore from (4.3) we obtain that

(a+NTz —z1|* + (8 + 0)N?[|z1 — z2||
+Ee+n)(|Tz - ac1||2 + )\2||331 — x2H2 + 20Tz — x1,21 — 22)) < 0.

Thus we obtain that

(4.5) (@+y+e+n)|Tz — x|+ (B +6 + e+ A2z — a2
2(e + ATz — x1, 21 — 22)) <O0.
Similarly, from (4.4) we obtain that

(4.6) (a+y+e+n)|Tz —zaol* + (B+6+e+n)(1 = X)?||lzy — 22|
—2(e+n)(1 = N (Tx — x9,21 — x2)) < 0.

Using (2.1), (4.5), (4.6), a+~v+ec+n>0and o+ §+ v+ > 0, we obtain that
T2 — x|
= [Tz — (1 = N1 + Aza) |
= (1= N7z — 21 ]* + ATz — z2]* = A1 = A)[|l1 — 22|
(B+0+¢e+n)\

<(1=XN(- — x|
< (T ey )
2(e +n)A
ST e — —
a+7+s+n<x L xﬁ)
+o4+e+n)1—-N?
Y <_(ﬁ 77)( ) H$1_952||2
at+ty+e+n
2(e+n)(1—X)

Tx —x9,21 —
a+7+5+n< > 20

A= Vs — z2]?

+0+e+n)A(1—\
— _(6 € 77) ( )Hxl —$2||2

at+y+e+n
_(5+5+€+77))\(1 _)‘)2 ||£U1 —LL’2||2
at+ty+e+n
2 A1 =X
Agiflﬁgﬁgggglnxlg,x2”2
a+y+e+n

A = Ny = 22

a+B84+7+HAN1-A
:_( /8 g ) ( )||131—172||2§0
a+y+e+n
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and hence z € F(T). Thus F(T) is convex. Similarly, we can obtain the desired result in

the caseof o+ +~v+0>0and a+ 5+ (+n>0.

Lemma 4.3. Let H be a real Hilbert space, let C' be a non-empty closed conver subset of

O

H and let T be an («, 8,7, 6,¢,(,n)-widely more generalized hybrid mapping from C into

H which has a fized point and satisfies the condition (1) or (2):
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(1) a+8+7+6>0,a+y>0ande+n>0;

(2) a+pf+v+6>0,a+p>0and(+n>0.

Then T s quasi-nonexpansive.

Proof. From (3.1) we have that for any x € C' and for any y € F(T),
a| Tz = Ty|* + Bllz — Tyl* + 7Tz — ylI* + 8]z — y?

tellz = Tl + Clly = Tyl® +nll(z — Tx) = (y = Ty)|?
= (@+ )Tz —ylI* + (B + )]z — ylI* + (e + n)llz — Tz* < 0.

From a 4 v > 0 we obtain that

1)
1Tz -yl < 20 —yp2 - E11

z — Tz|>.
eyl — L o~ Ta

. s
Smce—g—_t,yglfroma+ﬂ+7+620and—2

—:—Z < 0 from € + 7 > 0, we obtain that
1Tz —y|* < |lz -yl

and hence
[Tz —yll < flz -yl

Thus T is quasi-nonexpansive. Similarly, we can obtain the desired result for the case of
a+08+y+06>0,a+p8>0and (+n>0. O

Moreover we obtain the following.

Lemma 4.4. Let H be a real Hilbert space, let C' be a non-empty closed convexr subset of
H and let T be an (a,B,7,0,¢,(,n)-widely more generalized hybrid mapping from C into
H which has a fized point and satisfies the condition (1) or (2):

(1) a+pB+v+3 >0, and there exists A € R such that 0 < (a+y)A+e+n < a+y+e+n;
(2)  a+08+v+d >0, and there exists A € R such that 0 < (a+B)A+{+n < a+B+(+7.
Then (1 — A\)T + M is quasi-nonezpansive.

Proof. Let S = (1 — A\)T 4+ AI. As in the proof of Theorem 3.1, we have that S is an
(%7 %, T —ﬁ(a +B+7)+9, (it}\;‘z, éfﬁ;‘z , gti;‘z )—Widely more generalized hy-
brid mapping from C' into H and F(S) = F(T). Furthermore, we obtain that

@ I6] 5 A
_ = >
Tttt T 1_Am+6+vww a+pf+v+42>0,
o] v oty
D L T W g W
€+ YA n+ax (a+7))\+5+n>0
1= (1-N2 @=x2

By Lemma 4.3 S is quasi-nonexpansive. Similarly, we can obtain the desired result for the
case of the condition (2). O
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Now we first obtain the following mean convergence theorem for widely more generalized
hybrid mappings in a Hilbert space.

Theorem 4.1. Let H be a real Hilbert space, let C' be a non-empty closed conver subset of
H and let T be an («, 8,7, 9,¢,(,n)-widely more generalized hybrid mapping from C into
H which has a fized point and satisfies the condition (1) or (2):

(1) a+B+7y+0>0,a+vy>0ande+n>0;
(2) a+B+7y+5>0,a+3>0and+n>0.

Then for any x € C(T;0) ={z | T"z € C, Yn € NU{0}},

1 n—1
Spr = -~ kZ_OTkx

18 weakly convergent to a fized point p of T', where P is the metric projection from H onto
F(T) and p =lim, . PT"z.

Proof. Let x € C(T;0). We first consider the case of the condition (2). Since F(T') is
non-empty and by Lemma 4.3 T is quasi-nonexpansive, we obtain that

17" —y|| < |72 —y]

for any n € NU{0} and for any y € F(T') and hence {T"x} is bounded for any = € C(T’;0).
Since

1 n—1
1Sz —yll < DTz —y| <l =yl
k=0

for any n € NU {0} and for any y € F(T), {Spz |n=0,1,...} is also bounded. Therefore
there exist a strictly increasing sequence {n;} and p € H such that {S,,z | i = 0,1,...}
is weakly convergent to p. Since C is closed and convex, C' is weakly closed. Thus p € C.
We show that p € F(T). Since T is an («, 3,7,0,¢,(,n)-widely more generalized hybrid
mapping from C into H, we obtain that

o[ Tz = T a||* + Bllz = T a||* + 9| Tz — T2||* + 0|2 — T x|
tellz = Tel* + ¢ T" — T*  al* + (2 = Tz) — (T*2 — T a)| < 0

for any k € NU {0} and for any z € C. By (2.2) we obtain that

I(z = Tz) = (T*z — T"*'a)|?
= |z = Tz||)? + |TFz — T*H | — 2(2 — Tz, TFx — T 2)
= |z = Tz||)? + |TFz — T*Hz|? + ||z — T*z|*> + || T2 — TF 2|2
—|lz = T z|? — | Tz — TFz|?.

Thus we obtain that

(a+n)|Tz =T 2|® + (8 —n)llz — T a||> + (v — n)|| Tz — TFz||?
+( 4+ )z = Tr2|* + (e +n)l|lz — Tzl|> + (¢ +n)|TFz — Tz < 0.
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From

(v =Tz = T z|?
= (a+7)(lz = T2|* + ||z = T*z|* — 2(z — Tz, z — T*z))
—(a+n)||Tz — Tra||?,
we obtain that
(@+|Tz = T ) + (8 = n)llz = T* 'a?
+a+7)(lz=Tz|? + ||z = TFz||? — 2(z — Tz, 2 — T*x))
—(a+n)|Tz =T z|* + (8 +n)llz — T"z|?
e+ mllz = T2l + (¢ + )| The = Tz |* < 0.
and hence
(@+n)(ITz =T a|? = T2 — T*|*) + (8 — )|z = T"*'a||?
+Ha+y+6+n)|z—TFz||? = 2(a+ ) (z — Tz, 2z — T"x)
Ha+ytetnlz—Tel* + (¢ + )T — T a]* < 0.
By a+ 8+ v+ > 0, we obtain that
—B-n==B+0)+i+n<at+y+i+n
From this inequality and { +n > 0, we obtain that
(@+n) (T2 =T a|)? — | T2 — T*x|?)
+(B = m)(llz = T a® — ||z = T*z|?)
2+ (z =Tz, z—TFz) + (a+y+e+n)|z—Tz|*> <0
for any kK € NU {0} and for any 2z € C'. Summing up these inequalities with respect to
k=0,1,...,n — 1 and dividing by n, we obtain that

a+n

—(ITz = T"a||* = |IT= — 2||*) +

(2 = T |* = ||z — =]*)

B—n
n
—2(a+y)(z —=Tz,2— Spx) + (a+y+e+n)||z — Tz|* <0.
Replacing n by n;, we obtain that

(ITz — T

atn B—n ng
) 2 =Tz —2|*) + ——(llz = T™z|* — ||z — «||*)
n; ng
2+ )z =Tz z2—Spz) +(a+v+e+n)z—Tz|* <O0.
Letting ¢ — oo, we obtain that
2+ )z =Tz, z—p)+(a+y+e+n)|z—Tz|*<0.
Putting z = p, we obtain that
(a+vy+e+n)lp—Tp|*<0.

Since a+vy+¢e+n > 0, we obtain that Tp = p. Since by Lemmas 4.1 and 4.2 F(T) is closed
and convex, the metric projection P from H onto F(T') is well-defined. By Lemma 2.1 there
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exists ¢ € F(T) such that {PT"z | n=0,1,...} is convergent to q. To complete the proof,
we show that ¢ = p. Note that the metric projection P satisfies

(z—=Pz,Pz—u) >0
for any z € H and for any u € F(T); see [17]. Therefore
(T*z — PT*2, PT 2 —y) > 0

for any k € NU {0} and for any y € F(T). Since P is the metric projection and T is
quasi-nonexpansive, we obtain that

|T"z — PT"z|| |T"2z — PT" x|

<
< Tt — PT |
that is, {||T"x — PT"z|| | n = 0,1,...} is non-increasing. Therefore we obtain

(Tkz — PT*z,y —q) < (T*z— PT*z, PT"z — q)

< |[The — PT*a|| - |PT*z — g
< lz = Pz|| - | PT"z — g].
Summing up these inequalities with respect to k¥ = 0,1,...,n — 1 and dividing by n, we

obtain

n—1 n—1
1 k |z — Px|| k
<&w—ngoPwa—q>SngJPTx—Q-

Since {Sy,z | i = 0,1, ...} is weakly convergent to p and {PT"z | n = 0,1,...} is convergent
to ¢, we obtain that

p—ay—q) <0.
Putting y = p, we obtain
lp—ql* <0

and hence ¢ = p. This completes the proof.
Similarly, we can obtain the desired result for the case of the condition (1). O

Moreover we obtain the following.

Theorem 4.2. Let H be a real Hilbert space, let C' be a non-empty closed conver subset of
H and let T be an («, 8,7, 6,¢,(,n)-widely more generalized hybrid mapping from C into
H which has a fized point and satisfies the condition (1) or (2):

(1) a+B4+v+d > 0, and there exists A € R such that 0 < (a+vy)A+e+n < at+vy+e+n;
(2) a+B+v+0 > 0, and there exists X € R such that 0 < (a+)A+(+n < a+[5+(+7.
Then for any x € C(T;\) ={z | (1= XNT + A)"z€ C, Yn e NU{0}},

n—1

Spr == (L= AT +Al)kz

k=0
18 weakly convergent to a fized point p of T, where P is the metric projection from H onto
F(T) and p = lim, o P((1 — \)T + X)"x.
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Proof. Let S = (1 — A\)T + Al. As in the proof of Theorem 3.1, we have that S is an

=, %, I, - (a+B+7) +6, éf;\;‘z , éfg;‘z , (T_'(;i‘z )—Widely more generalized hy-

brid mapping from C into H and

« 3 ~y A
— p— >
1_)\+1_/\+1_)\ 1_/\(a+ﬁ+7)+5 a+fB8+y+0>0,
« Y oty
T N s W B
€+ YA n N+ ol _ (a+7))\+5+7720.
(1=2)2  (1-N)? (1=X)2

By Theorem 4.1 {S,,x} is weakly convergent to p € F(S) = F(T). Since by Lemmas 4.1 and
4.2 F(S) is closed and convex, the metric projection P from H onto F(S) is well-defined.
Since by Lemma 4.4 S is quasi-nonexpansive, we obtain that

18"+ e —yl| < (1S — ]|

for any n € NU {0} and for any y € F(S). Therefore we can obtain the desired result as in
the proof of Theorem 4.1.
Similarly, we can obtain the desired result for the case of the condition (2). O

Theorem 4.3. Let H be a real Hilbert space, let C' be a non-empty bounded closed convex
subset of H and let T be an («, B,7,0,¢,¢,n)-widely more generalized hybrid mapping from
C into H which satisfies the following condition (1) or (2):

(1)  a+pB+v+6 >0, and there exists A € R such that 0 < (a+vy)A+e+n < a+vy+e+n;
(2) a+p+v+06 > 0, and there exists A € R such that 0 < (a+B)A+{+n < a+LF+(+1n.

Suppose that for any x € C, there exist m € R and y € C such that 0 < (1 —X\)m <1 and
Tex=x+m(y—x). Then for any x € C,

n—1
1
Spr == (L= AT +Al)kz
" =0
1s weakly convergent to a fized point p of T', where P is the metric projection from H onto
F(T) and p =lim, oo P((1 = N)T + A)"z.

Proof. Let S = (1 —X)T + Al. Since S = (1 — A\)T + Al is a mapping from C' into itself, we
have C(T;\) = {z | (1 = XN)T +X)" 2 € C, Vn € NU{0}} = C. Therefore by Theorem
4.2 we obtain the desired result. O
Example 4.1. Let H = R, let C = [0, g] ,let Te = (1 + 2x)cosz — 222 and let a = 1,
B=~r=11,6=-22, e =(=—12 and n = 1. Then T is an («, 3,7, 0, ¢, {,n)-widely more
generalized hybrid mapping from C' into H, a+8+v+d=1>0and a+vy+ec+n=1> 0.

Let A\ = ?jfj’:) andm=1+m Then0< (1-Am=1%1<land0< (a+y)A+e+n=

71T+;7§ <l=a+vy+e+n. Lety= x—l—% for any € C. Then Tz = 2+ m(y—x)
and y € C. Therefore by Theorem 4.3 for any x € C,

1 n—1

Sna =~ > (1= NT + Ak

k=0

is weakly convergent to a fixed point p of T', where P is the metric projection from H onto
F(T) and p = lim,, oo P((1 — N)T + A)"x.
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