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Abstract. In this paper, we prove a fixed point theorem for widely more generalized
hybrid non-self mappings in Hilbert spaces. Furthermore, we prove mean convergence
theorems of Baillon’s type for widely more generalized hybrid non-self mappings in a
Hilbert space.

1 Introduction Let H be a real Hilbert space and let C be a non-empty subset of H. In
2010, Kocourek, Takahashi and Yao [13] defined a class of nonlinear mappings in a Hilbert
space. A mapping T from C into H is said to be generalized hybrid if there exist real
numbers α and β such that

α‖Tx − Ty‖2 + (1 − α)‖x − Ty‖2 ≤ β‖Tx − y‖2 + (1 − β)‖x − y‖2

for any x, y ∈ C. We call such a mapping an (α, β)-generalized hybrid mapping. We
observe that the class of the mappings covers the classes of well-known mappings. For
example, an (α, β)-generalized hybrid mapping is nonexpansive [18] for α = 1 and β = 0,
i.e., ‖Tx− Ty‖ ≤ ‖x− y‖ for all x, y ∈ C. It is nonspreading [15] for α = 2 and β = 1, i.e.,
2‖Tx− Ty‖2 ≤ ‖Tx− y‖2 + ‖Ty − x‖2 for all x, y ∈ C. It is also hybrid [19] for α = 3

2 and
β = 1

2 , i.e., 3‖Tx−Ty‖2 ≤ ‖x− y‖2 + ‖Tx− y‖2 + ‖Ty −x‖2 for all x, y ∈ C. They proved
fixed point theorems for such mappings; see also Kohsaka and Takahashi [14] and Iemoto
and Takahashi [9]. Moreover, they proved the following nonlinear ergodic theorem.

Theorem 1.1 ([13]). Let H be a real Hilbert space, let C be a non-empty closed convex
subset of H, let T be a generalized hybrid mapping from C into itself which has a fixed point,
and let P be the metric projection from H onto the set of fixed points of T . Then for any
x ∈ C,

Snx =
1
n

n−1∑
k=0

T kx

is weakly convergent to a fixed point p of T , where p = limn→∞ PTnx.

Furthermore, they defined a more broad class of nonlinear mappings than the class of
generalized hybrid mappings. A mapping T from C into H is said to be super hybrid if
there exist real numbers α, β and γ such that

α‖Tx − Ty‖2 + (1 − α + γ)‖x − Ty‖2

≤ (β + (β − α)γ)‖Tx − y‖2 + (1 − β − (β − α − 1)γ)‖x − y‖2

+(α − β)γ‖x − Tx‖2 + γ‖y − Ty‖2
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for any x, y ∈ C. A generalized hybrid mapping with a fixed point is quasinonexpansive.
However, a super hybrid mapping is not quasi-nonexpansive generally even if it has a fixed
point. Very recently, the authors [11] also defined a class of nonlinear mappings in a Hilbert
space which covers the class of contractive mappings and the class of generalized hybrid
mappings defined by Kocourek, Takahashi and Yao [13]. A mapping T from C into H is
said to be widely generalized hybrid if there exist real numbers α, β, γ, δ, ε and ζ such that

α‖Tx − Ty‖2 + β‖x − Ty‖2 + γ‖Tx − y‖2 + δ‖x − y‖2

+max{ε‖x − Tx‖2, ζ‖y − Ty‖2} ≤ 0

for any x, y ∈ C. Furthermore, the authors [12] defined a class of nonlinear mappings in
a Hilbert space which covers the class of super hybrid mappings and the class of widely
generalized hybrid mappings. A mapping T from C into H is said to be widely more
generalized hybrid if there exist real numbers α, β, γ, δ, ε, ζ and η such that

α‖Tx − Ty‖2 + β‖x − Ty‖2 + γ‖Tx − y‖2 + δ‖x − y‖2

+ε‖x − Tx‖2 + ζ‖y − Ty‖2 + η‖(x − Tx) − (y − Ty)‖2 ≤ 0

for any x, y ∈ C. Then we prove fixed point theorems for such new mappings in a Hilbert
space. Furthermore, we prove nonlinear ergodic theorems of Baillon’s type in a Hilbert
space. It seems that the results are new and useful. For example, using our fixed point
theorems, we can directly prove Browder and Petryshyn’s fixed point theorem [5] for strictly
pseudocontractive mappings and Kocourek, Takahashi and Yao’s fixed point theorem [13]
for super hybrid mappings. On the other hand, Hojo, Takahashi and Yao [8] defined a
more broad class of nonlinear mappings than the class of generalized hybrid mappings. A
mapping T from C into H is said to be extended hybrid if there exist real numbers α, β
and γ such that

α(1 + γ)‖Tx − Ty‖2 + (1 − α(1 + γ))‖x − Ty‖2

≤ (β + αγ)‖Tx − y‖2 + (1 − (β + αγ))‖x − y‖2

−(α − β)γ‖x − Tx‖2 − γ‖y − Ty‖2

for any x, y ∈ C. Furthermore, they proved a fixed point theorem for generalized hybrid
non-self mappings by using the extended hybrid mapping.

In this paper, using an idea of [8], we prove a fixed point theorem for widely more
generalized hybrid non-self mappings in Hilbert spaces. Furthermore, we prove mean con-
vergence theorems of Baillon’s type for widely more generalized hybrid non-self mappings
in a Hilbert space.

2 Preliminaries Throughout this paper, we denote by N the set of positive integers and
by R the set of real numbers. Let H be a real Hilbert space with inner product 〈·, ·〉 and
norm ‖ · ‖. We denote the strong convergence and the weak convergence of {xn} to x ∈ H
by xn → x and xn ⇀ x, respectively. Let A be a non-empty subset of H. We denote by
coA the closure of the convex hull of A. In a Hilbert space, it is known that

(2.1) ‖αx + (1 − α)y‖2 = α‖x‖2 + (1 − α)‖y‖2 − α(1 − α)‖x − y‖2

for any x, y ∈ H and for any α ∈ R; see [18]. Furthermore, in a Hilbert space, we obtain
that

(2.2) 2〈x − y, z − w〉 = ‖x − w‖2 + ‖y − z‖2 − ‖x − z‖2 − ‖y − w‖2
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for any x, y, z, w ∈ H. Let C be a non-empty subset of H and let T be a mapping from C
into H. We denote by F (T ) the set of fixed points of T . A mapping T from C into H with
F (T ) 6= ∅ is said to be quasi-nonexpansive if ‖x − Ty‖ ≤ ‖x − y‖ for any x ∈ F (T ) and
for any y ∈ C. It is well-known that the set F (T ) of fixed points of a quasi-nonexpansive
mapping T is closed and convex; see Ito and Takahashi [10]. It is not difficult to prove such
a result in a Hilbert space; see, for instace, [21]. Let D be a non-empty closed convex subset
of H and x ∈ H. Then, we know that there exists a unique nearest point z ∈ D such that
‖x− z‖ = infy∈D ‖x− y‖. We denote such a correspondence by z = PDx. The mapping PD

is said to be the metric projection from H onto D. It is known that PD is nonexpansive
and

〈x − PDx, PDx − u〉 ≥ 0

for any x ∈ H and for any u ∈ D; see [18] for more details. For proving a mean convergence
theorem in this paper, we also need the following lemma proved by Takahashi and Toyoda
[20].

Lemma 2.1. Let D be a non-empty closed convex subset of H. Let P be the metric
projection from H onto D. Let {un} be a sequence in H. If ‖un+1 −u‖ ≤ ‖un −u‖ for any
u ∈ D and for any n ∈ N, then {Pun} converges strongly to some u0 ∈ D.

Let l∞ be the Banach space of bounded sequences with supremum norm. Let µ be
an element of (l∞)∗ (the dual space of l∞). Then, we denote by µ(f) the value of µ at
f = (x1, x2, x3, . . .) ∈ l∞. Sometimes, we denote by µn(xn) the value µ(f). A linear
functional µ on l∞ is said to be a mean if µ(e) = ‖µ‖ = 1, where e = (1, 1, 1, . . .). A mean
µ is said to be a Banach limit on l∞ if µn(xn+1) = µn(xn). We know that there exists a
Banach limit on l∞. If µ is a Banach limit on l∞, then for f = (x1, x2, x3, . . .) ∈ l∞,

lim inf
n→∞

xn ≤ µn(xn) ≤ lim sup
n→∞

xn.

In particular, if f = (x1, x2, x3, . . .) ∈ l∞ and xn → a ∈ R, then we obtain µ(f) = µn(xn) =
a. See [17] for the proof of existence of a Banach limit and its other elementary properties.
Using means and the Riesz theorem, we have the following result; see [16] and [17].

Lemma 2.2. Let H be a Hilbert space, let {xn} be a bounded sequence in H and let µ be
a mean on l∞. Then there exists a unique point z0 ∈ co{xn | n ∈ N} such that

µn〈xn, y〉 = 〈z0, y〉

for any y ∈ H.

Kawasaki and Takahashi [12] proved from Lemma 2.2 the following fixed point theorem.

Theorem 2.1. Let H be a real Hilbert space, let C be a non-empty closed convex subset of
H and let T be an (α, β, γ, δ, ε, ζ, η)-widely more generalized hybrid mapping from C into
itself which satisfies the following condition (1) or (2):

(1) α + β + γ + δ ≥ 0, α + γ + ε + η > 0 and ζ + η ≥ 0;

(2) α + β + γ + δ ≥ 0, α + β + ζ + η > 0 and ε + η ≥ 0.

Then T has a fixed point if and only if there exists z ∈ C such that {Tnz | n = 0, 1, . . .} is
bounded. In particular, a fixed point of T is unique in the case of α + β + γ + δ > 0 on the
conditions (1) and (2).
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As a direct consequence of Theorem 2.1, we obtain the following.

Theorem 2.2. Let H be a real Hilbert space, let C be a bounded closed convex subset of H
and let T be an (α, β, γ, δ, ε, ζ, η)-widely more generalized hybrid mapping from C into itself
which satisfies the following condition (1) or (2):

(1) α + β + γ + δ ≥ 0, α + γ + ε + η > 0 and ζ + η ≥ 0;

(2) α + β + γ + δ ≥ 0, α + β + ζ + η > 0 and ε + η ≥ 0.

Then T has a fixed point. In particular, a fixed point of T is unique in the case of α + β +
γ + δ > 0 on the conditions (1) and (2).

3 Fixed point theorem Let H be a real Hilbert space and let C be a non-empty subset
of H. A mapping T from C into H was said to be widely more generalized hybrid if there
exist α, β, γ, δ, ε, ζ, η ∈ R such that

α‖Tx − Ty‖2 + β‖x − Ty‖2 + γ‖Tx − y‖2 + δ‖x − y‖2(3.1)
+ε‖x − Tx‖2 + ζ‖y − Ty‖2 + η‖(x − Tx) − (y − Ty)‖2 ≤ 0

for any x, y ∈ C; see Introduction. Such a mapping T is said to be (α, β, γ, δ, ε, ζ, η)-
widely more generalized hybrid; see [12]. An (α, β, γ, δ, ε, ζ, η)-widely more generalized
hybrid mapping is generalized hybrid in the sense of Kocourek, Takahashi and Yao [13] if
α + β = −γ − δ = 1 and ε = ζ = η = 0. Moreover it is an extension of widely generalized
hybrid mappings in the sence of Kawasaki and Takahashi [11]. Using Theorem 2.2, we prove
a fixed point theorem for widely more generalized hybrid non-self mappings in a Hilbert
space.

Theorem 3.1. Let H be a real Hilbert space, let C be a non-empty bounded closed convex
subset of H and let T be an (α, β, γ, δ, ε, ζ, η)-widely more generalized hybrid mapping from
C into H which satisfies the following condition (1) or (2):

(1) α + β + γ + δ ≥ 0, α + γ + ε + η > 0, and there exists λ ∈ R such that λ 6= 1 and
(α + β)λ + ζ + η ≥ 0;

(2) α + β + γ + δ ≥ 0, α + β + ζ + η > 0, and there exists λ ∈ R such that λ 6= 1 and
(α + γ)λ + ε + η ≥ 0.

Suppose that for any x ∈ C, there exist m ∈ R and y ∈ C such that 0 ≤ (1 − λ)m ≤ 1 and
Tx = x + m(y − x). Then T has a fixed point. In particular, a fixed point of T is unique in
the case of α + β + γ + δ > 0 on the conditions (1) and (2).

Proof. Let S = (1 − λ)T + λI. Since

Sx = (1 − λ)Tx + λx

= (1 − λ)(x + m(y − x)) + λx

= (1 − (1 − λ)m)x + (1 − λ)my ∈ C

for any x ∈ C, S is a mapping from C into itself. Since λ 6= 1, we obtain that F (S) = F (T ).
Moreover from (2.1) we obtain that

α

∥∥∥∥(
1

1 − λ
Sx − λ

1 − λ
x

)
−

(
1

1 − λ
Sy − λ

1 − λ
y

)∥∥∥∥2
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+β

∥∥∥∥x −
(

1
1 − λ

Sy − λ

1 − λ
y

)∥∥∥∥2

+ γ

∥∥∥∥(
1

1 − λ
Sx − λ

1 − λ
x

)
− y

∥∥∥∥2

+δ‖x − y‖2

+ε

∥∥∥∥x −
(

1
1 − λ

Sx − λ

1 − λ
x

)∥∥∥∥2

+ ζ

∥∥∥∥y −
(

1
1 − λ

Sy − λ

1 − λ
y

)∥∥∥∥2

+η

∥∥∥∥(
x −

(
1

1 − λ
Sx − λ

1 − λ
x

))
−

(
y −

(
1

1 − λ
Sy − λ

1 − λ
y

))∥∥∥∥2

= α

∥∥∥∥ 1
1 − λ

(Sx − Sy) − λ

1 − λ
(x − y)

∥∥∥∥2

+β

∥∥∥∥ 1
1 − λ

(x − Sy) − λ

1 − λ
(x − y)

∥∥∥∥2

+γ

∥∥∥∥ 1
1 − λ

(Sx − y) − λ

1 − λ
(x − y)

∥∥∥∥2

+ δ‖x − y‖2

+ε

∥∥∥∥ 1
1 − λ

(x − Sx)
∥∥∥∥2

+ ζ

∥∥∥∥ 1
1 − λ

(y − Sy)
∥∥∥∥2

+η

∥∥∥∥ 1
1 − λ

(x − Sx) − 1
1 − λ

(y − Sy)
∥∥∥∥2

=
α

1 − λ
‖Sx − Sy‖2 +

β

1 − λ
‖x − Sy‖2

+
γ

1 − λ
‖Sx − y‖2 +

(
− λ

1 − λ
(α + β + γ) + δ

)
‖x − y‖2

+
ε + γλ

(1 − λ)2
‖x − Sx‖2 +

ζ + βλ

(1 − λ)2
‖y − Sy‖2

+
η + αλ

(1 − λ)2
‖(x − Sx) − (y − Sy)‖2 ≤ 0.

Then S is an
(

α
1−λ , β

1−λ , γ
1−λ ,− λ

1−λ (α + β + γ) + δ, ε+γλ
(1−λ)2 , ζ+βλ

(1−λ)2 , η+αλ
(1−λ)2

)
-widely more gen-

eralized hybrid mapping. Furthermore, we obtain that

α

1 − λ
+

β

1 − λ
+

γ

1 − λ
− λ

1 − λ
(α + β + γ) + δ = α + β + γ + δ ≥ 0,

α

1 − λ
+

γ

1 − λ
+

ε + γλ

(1 − λ)2
+

η + αλ

(1 − λ)2
=

α + γ + ε + η

(1 − λ)2
> 0,

ζ + βλ

(1 − λ)2
+

η + αλ

(1 − λ)2
=

(α + β)λ + ζ + η

(1 − λ)2
≥ 0.

Therefore by Theorem 2.2 we obtain F (S) 6= ∅.
Next suppose that α + β + γ + δ > 0. Let p1 and p2 be fixed points of T . Then

α‖Tp1 − Tp2‖2 + β‖p1 − Tp2‖2 + γ‖Tp1 − p2‖2 + δ‖p1 − p2‖2

+ε‖p1 − Tp1‖2 + ζ‖p2 − Tp2‖2 + η‖(p1 − Tp1) − (p2 − Tp2)‖2

= (α + β + γ + δ)‖p1 − p2‖2 ≤ 0

and hence p1 = p2. Therefore a fixed point of T is unique.
In the case of the condition (2), we can obtain the result by replacing the variables x

and y.
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Example 3.1. Let H = R, let C =
[
0, π

2

]
, let Tx = (1 + 2x) cos x − 2x2 and let α = 1,

β = γ = 11, δ = −22, ε = ζ = −12 and η = 1. Then T is an (α, β, γ, δ, ε, ζ, η)-widely more
generalized hybrid mapping from C into H, α+β +γ +δ = 1 ≥ 0 and α+γ +ε+η = 1 > 0.
Let λ = 2+3π

3(1+π) and let m = 1+π. Then 0 ≤ (1−λ)m = 1
3 < 1 and (α+β)λ+ζ+η = π−3

1+π ≥ 0.

Let y = x + (1+2x)(cos x−x)
1+π for any x ∈ C. Then Tx = x + m(y − x) and y ∈ C. Therefore

by Theorem 3.1 T has a unique fixed point.

4 Nonlinear ergodic theorems In this section, using the technique developed by Taka-
hashi [16], we prove mean convergence theorems of Baillon’s type in a Hilbert space. Before
proving the results, we need the following lemmas.

Lemma 4.1. Let H be a real Hilbert space, let C be a non-empty closed convex subset of
H and let T be an (α, β, γ, δ, ε, ζ, η)-widely more generalized hybrid mapping from C into
H which has a fixed point and satisfies the condition:

α + γ + ε + η > 0, or α + β + ζ + η > 0.

Then F (T ) is closed.

Proof. Suppose that {xn | n = 1, 2, . . .} ⊂ F (T ) is convergent to x ∈ H. We show x ∈ F (T ).
Putting y = xn in (3.1), we obtain that

α‖Tx − Txn‖2 + β‖x − Txn‖2 + γ‖Tx − xn‖2 + δ‖x − xn‖2

+ε‖x − Tx‖2 + ζ‖xn − Txn‖2 + η‖(x − Tx) − (xn − Txn)}2 ≤ 0

and hence

(4.1) (α + γ)‖Tx − xn‖2 + (β + δ)‖x − xn‖2 + (ε + η)‖x − Tx‖2 ≤ 0.

Letting n → ∞, we obtain that

(4.2) (α + γ + ε + η)‖Tx − x‖2 ≤ 0.

Since α + γ + ε + η > 0, from (4.2) we obtain that x ∈ F (T ). Therefore F (T ) is closed.
Similarly, we can obtain the desired result for the case of α + β + ζ + η > 0.

Lemma 4.2. Let H be a real Hilbert space, let C be a non-empty closed convex subset of
H and let T be an (α, β, γ, δ, ε, ζ, η)-widely more generalized hybrid mapping from C into
H which has a fixed point and satisfies the condition (1) or (2):

(1) α + β + γ + δ ≥ 0 and α + γ + ε + η > 0;

(2) α + β + γ + δ ≥ 0 and α + β + ζ + η > 0.

Then F (T ) is convex.

Proof. For x1, x2 ∈ F (T ) and λ ∈ R with 0 ≤ λ ≤ 1, put x = (1 − λ)x1 + λx2. We show
that x ∈ F (T ). Putting y = x1 in (3.1), we obtain that

α‖Tx − Tx1‖2 + β‖x − Tx1‖2 + γ‖Tx − x1‖2 + δ‖x − x1‖2

+ε‖x − Tx‖2 + ζ‖x1 − Tx1‖2 + η‖(x − Tx) − (x1 − Tx1)‖2 ≤ 0

and hence

(4.3) (α + γ)‖Tx − x1‖2 + (β + δ)λ2‖x1 − x2‖2 + (ε + η)‖x − Tx‖2 ≤ 0.
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Similarly, putting y = x2 in (3.1), we obtain that

(4.4) (α + γ)‖Tx − x2‖2 + (β + δ)(1 − λ)2‖x1 − x2‖2 + (ε + η)‖x − Tx‖2 ≤ 0.

Therefore from (4.3) we obtain that

(α + γ)‖Tx − x1‖2 + (β + δ)λ2‖x1 − x2‖2

+(ε + η)(‖Tx − x1‖2 + λ2‖x1 − x2‖2 + 2λ〈Tx − x1, x1 − x2〉) ≤ 0.

Thus we obtain that

(α + γ + ε + η)‖Tx − x1‖2 + (β + δ + ε + η)λ2‖x1 − x2‖2(4.5)
+2(ε + η)λ〈Tx − x1, x1 − x2〉) ≤ 0.

Similarly, from (4.4) we obtain that

(α + γ + ε + η)‖Tx − x2‖2 + (β + δ + ε + η)(1 − λ)2‖x1 − x2‖2(4.6)
−2(ε + η)(1 − λ)〈Tx − x2, x1 − x2〉) ≤ 0.

Using (2.1), (4.5), (4.6), α + γ + ε + η > 0 and α + β + γ + δ ≥ 0, we obtain that

‖Tx − x‖2

= ‖Tx − ((1 − λ)x1 + λx2)‖2

= (1 − λ)‖Tx − x1‖2 + λ‖Tx − x2‖2 − λ(1 − λ)‖x1 − x2‖2

≤ (1 − λ)
(
− (β + δ + ε + η)λ2

α + γ + ε + η
‖x1 − x2‖2

− 2(ε + η)λ
α + γ + ε + η

〈Tx − x1, x1 − x2〉
)

+λ

(
− (β + δ + ε + η)(1 − λ)2

α + γ + ε + η
‖x1 − x2‖2

+
2(ε + η)(1 − λ)
α + γ + ε + η

〈Tx − x2, x1 − x2〉
)

−λ(1 − λ)‖x1 − x2‖2

= − (β + δ + ε + η)λ2(1 − λ)
α + γ + ε + η

‖x1 − x2‖2

− (β + δ + ε + η)λ(1 − λ)2

α + γ + ε + η
‖x1 − x2‖2

+
2(ε + η)λ(1 − λ)
α + γ + ε + η

‖x1 − x2‖2

−λ(1 − λ)‖x1 − x2‖2

= − (α + β + γ + δ)λ(1 − λ)
α + γ + ε + η

‖x1 − x2‖2 ≤ 0

and hence x ∈ F (T ). Thus F (T ) is convex. Similarly, we can obtain the desired result in
the case of α + β + γ + δ ≥ 0 and α + β + ζ + η > 0.

Lemma 4.3. Let H be a real Hilbert space, let C be a non-empty closed convex subset of
H and let T be an (α, β, γ, δ, ε, ζ, η)-widely more generalized hybrid mapping from C into
H which has a fixed point and satisfies the condition (1) or (2):
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(1) α + β + γ + δ ≥ 0, α + γ > 0 and ε + η ≥ 0;

(2) α + β + γ + δ ≥ 0, α + β > 0 and ζ + η ≥ 0.

Then T is quasi-nonexpansive.

Proof. From (3.1) we have that for any x ∈ C and for any y ∈ F (T ),

α‖Tx − Ty‖2 + β‖x − Ty‖2 + γ‖Tx − y‖2 + δ‖x − y‖2

+ε‖x − Tx‖2 + ζ‖y − Ty‖2 + η‖(x − Tx) − (y − Ty)‖2

= (α + γ)‖Tx − y‖2 + (β + δ)‖x − y‖2 + (ε + η)‖x − Tx‖2 ≤ 0.

From α + γ > 0 we obtain that

‖Tx − y‖2 ≤ − β + δ

α + γ
‖x − y‖2 − ε + η

α + γ
‖x − Tx‖2.

Since − β+δ
α+γ ≤ 1 from α + β + γ + δ ≥ 0 and − ε+η

α+γ ≤ 0 from ε + η ≥ 0, we obtain that

‖Tx − y‖2 ≤ ‖x − y‖2

and hence

‖Tx − y‖ ≤ ‖x − y‖.

Thus T is quasi-nonexpansive. Similarly, we can obtain the desired result for the case of
α + β + γ + δ ≥ 0, α + β > 0 and ζ + η ≥ 0.

Moreover we obtain the following.

Lemma 4.4. Let H be a real Hilbert space, let C be a non-empty closed convex subset of
H and let T be an (α, β, γ, δ, ε, ζ, η)-widely more generalized hybrid mapping from C into
H which has a fixed point and satisfies the condition (1) or (2):

(1) α+β+γ+δ ≥ 0, and there exists λ ∈ R such that 0 ≤ (α+γ)λ+ε+η < α+γ+ε+η;

(2) α+β+γ+δ ≥ 0, and there exists λ ∈ R such that 0 ≤ (α+β)λ+ζ+η < α+β+ζ+η.

Then (1 − λ)T + λI is quasi-nonexpansive.

Proof. Let S = (1 − λ)T + λI. As in the proof of Theorem 3.1, we have that S is an(
α

1−λ , β
1−λ , γ

1−λ ,− λ
1−λ (α + β + γ) + δ, ε+γλ

(1−λ)2 , ζ+βλ
(1−λ)2 , η+αλ

(1−λ)2

)
-widely more generalized hy-

brid mapping from C into H and F (S) = F (T ). Furthermore, we obtain that

α

1 − λ
+

β

1 − λ
+

γ

1 − λ
− λ

1 − λ
(α + β + γ) + δ = α + β + γ + δ ≥ 0,

α

1 − λ
+

γ

1 − λ
=

α + γ

1 − λ
> 0,

ε + γλ

(1 − λ)2
+

η + αλ

(1 − λ)2
=

(α + γ)λ + ε + η

(1 − λ)2
≥ 0.

By Lemma 4.3 S is quasi-nonexpansive. Similarly, we can obtain the desired result for the
case of the condition (2).
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Now we first obtain the following mean convergence theorem for widely more generalized
hybrid mappings in a Hilbert space.

Theorem 4.1. Let H be a real Hilbert space, let C be a non-empty closed convex subset of
H and let T be an (α, β, γ, δ, ε, ζ, η)-widely more generalized hybrid mapping from C into
H which has a fixed point and satisfies the condition (1) or (2):

(1) α + β + γ + δ ≥ 0, α + γ > 0 and ε + η ≥ 0;

(2) α + β + γ + δ ≥ 0, α + β > 0 and ζ + η ≥ 0.

Then for any x ∈ C(T ; 0) = {z | Tnz ∈ C, ∀n ∈ N ∪ {0}},

Snx =
1
n

n−1∑
k=0

T kx

is weakly convergent to a fixed point p of T , where P is the metric projection from H onto
F (T ) and p = limn→∞ PTnx.

Proof. Let x ∈ C(T ; 0). We first consider the case of the condition (2). Since F (T ) is
non-empty and by Lemma 4.3 T is quasi-nonexpansive, we obtain that

‖Tn+1x − y‖ ≤ ‖Tnx − y‖

for any n ∈ N∪{0} and for any y ∈ F (T ) and hence {Tnx} is bounded for any x ∈ C(T ; 0).
Since

‖Snx − y‖ ≤ 1
n

n−1∑
k=0

‖T kx − y‖ ≤ ‖x − y‖

for any n ∈ N ∪ {0} and for any y ∈ F (T ), {Snx | n = 0, 1, . . .} is also bounded. Therefore
there exist a strictly increasing sequence {ni} and p ∈ H such that {Snix | i = 0, 1, . . .}
is weakly convergent to p. Since C is closed and convex, C is weakly closed. Thus p ∈ C.
We show that p ∈ F (T ). Since T is an (α, β, γ, δ, ε, ζ, η)-widely more generalized hybrid
mapping from C into H, we obtain that

α‖Tz − T k+1x‖2 + β‖z − T k+1x‖2 + γ‖Tz − T kx‖2 + δ‖z − T kx‖2

+ε‖z − Tz‖2 + ζ‖T kx − T k+1x‖2 + η‖(z − Tz) − (T kx − T k+1x)‖2 ≤ 0

for any k ∈ N ∪ {0} and for any z ∈ C. By (2.2) we obtain that

‖(z − Tz) − (T kx − T k+1x)‖2

= ‖z − Tz‖2 + ‖T kx − T k+1x‖2 − 2〈z − Tz, T kx − T k+1x〉
= ‖z − Tz‖2 + ‖T kx − T k+1x‖2 + ‖z − T kx‖2 + ‖Tz − T k+1x‖2

−‖z − T k+1x‖2 − ‖Tz − T kx‖2.

Thus we obtain that

(α + η)‖Tz − T k+1x‖2 + (β − η)‖z − T k+1x‖2 + (γ − η)‖Tz − T kx‖2

+(δ + η)‖z − T kx‖2 + (ε + η)‖z − Tz‖2 + (ζ + η)‖T kx − T k+1x‖2 ≤ 0.
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From

(γ − η)‖Tz − T kx‖2

= (α + γ)(‖z − Tz‖2 + ‖z − T kx‖2 − 2〈z − Tz, z − T kx〉)
−(α + η)‖Tz − T kx‖2,

we obtain that

(α + η)‖Tz − T k+1x‖2 + (β − η)‖z − T k+1x‖2

+(α + γ)(‖z − Tz‖2 + ‖z − T kx‖2 − 2〈z − Tz, z − T kx〉)
−(α + η)‖Tz − T kx‖2 + (δ + η)‖z − T kx‖2

+(ε + η)‖z − Tz‖2 + (ζ + η)‖T kx − T k+1x‖2 ≤ 0.

and hence

(α + η)(‖Tz − T k+1x‖2 − ‖Tz − T kx‖2) + (β − η)‖z − T k+1x‖2

+(α + γ + δ + η)‖z − T kx‖2 − 2(α + γ)〈z − Tz, z − T kx〉
+(α + γ + ε + η)‖z − Tz‖2 + (ζ + η)‖T kx − T k+1x‖2 ≤ 0.

By α + β + γ + δ ≥ 0, we obtain that

−(β − η) = −(β + δ) + δ + η ≤ α + γ + δ + η.

From this inequality and ζ + η ≥ 0, we obtain that

(α + η)(‖Tz − T k+1x‖2 − ‖Tz − T kx‖2)
+(β − η)(‖z − T k+1x‖2 − ‖z − T kx‖2)
−2(α + γ)〈z − Tz, z − T kx〉 + (α + γ + ε + η)‖z − Tz‖2 ≤ 0

for any k ∈ N ∪ {0} and for any z ∈ C. Summing up these inequalities with respect to
k = 0, 1, . . . , n − 1 and dividing by n, we obtain that

α + η

n
(‖Tz − Tnx‖2 − ‖Tz − x‖2) +

β − η

n
(‖z − Tnx‖2 − ‖z − x‖2)

−2(α + γ)〈z − Tz, z − Snx〉 + (α + γ + ε + η)‖z − Tz‖2 ≤ 0.

Replacing n by ni, we obtain that

α + η

ni
(‖Tz − Tnix‖2 − ‖Tz − x‖2) +

β − η

ni
(‖z − Tnix‖2 − ‖z − x‖2)

−2(α + γ)〈z − Tz, z − Snix〉 + (α + γ + ε + η)‖z − Tz‖2 ≤ 0.

Letting i → ∞, we obtain that

−2(α + γ)〈z − Tz, z − p〉 + (α + γ + ε + η)‖z − Tz‖2 ≤ 0.

Putting z = p, we obtain that

(α + γ + ε + η)‖p − Tp‖2 ≤ 0.

Since α+γ +ε+η > 0, we obtain that Tp = p. Since by Lemmas 4.1 and 4.2 F (T ) is closed
and convex, the metric projection P from H onto F (T ) is well-defined. By Lemma 2.1 there
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exists q ∈ F (T ) such that {PTnx | n = 0, 1, . . .} is convergent to q. To complete the proof,
we show that q = p. Note that the metric projection P satisfies

〈z − Pz, Pz − u〉 ≥ 0

for any z ∈ H and for any u ∈ F (T ); see [17]. Therefore

〈T kx − PT kx, PT kx − y〉 ≥ 0

for any k ∈ N ∪ {0} and for any y ∈ F (T ). Since P is the metric projection and T is
quasi-nonexpansive, we obtain that

‖Tnx − PTnx‖ ≤ ‖Tnx − PTn−1x‖
≤ ‖Tn−1x − PTn−1x‖,

that is, {‖Tnx − PTnx‖ | n = 0, 1, . . .} is non-increasing. Therefore we obtain

〈T kx − PT kx, y − q〉 ≤ 〈T kx − PT kx, PT kx − q〉
≤ ‖T kx − PT kx‖ · ‖PT kx − q‖
≤ ‖x − Px‖ · ‖PT kx − q‖.

Summing up these inequalities with respect to k = 0, 1, . . . , n − 1 and dividing by n, we
obtain 〈

Snx − 1
n

n−1∑
k=0

PT kx, y − q

〉
≤ ‖x − Px‖

n

n−1∑
k=0

‖PT kx − q‖.

Since {Snix | i = 0, 1, . . .} is weakly convergent to p and {PTnx | n = 0, 1, . . .} is convergent
to q, we obtain that

〈p − q, y − q〉 ≤ 0.

Putting y = p, we obtain

‖p − q‖2 ≤ 0

and hence q = p. This completes the proof.
Similarly, we can obtain the desired result for the case of the condition (1).

Moreover we obtain the following.

Theorem 4.2. Let H be a real Hilbert space, let C be a non-empty closed convex subset of
H and let T be an (α, β, γ, δ, ε, ζ, η)-widely more generalized hybrid mapping from C into
H which has a fixed point and satisfies the condition (1) or (2):

(1) α+β+γ+δ ≥ 0, and there exists λ ∈ R such that 0 ≤ (α+γ)λ+ε+η < α+γ+ε+η;

(2) α+β+γ+δ ≥ 0, and there exists λ ∈ R such that 0 ≤ (α+β)λ+ζ+η < α+β+ζ+η.

Then for any x ∈ C(T ; λ) = {z | ((1 − λ)T + λI)nz ∈ C, ∀n ∈ N ∪ {0}},

Snx =
1
n

n−1∑
k=0

((1 − λ)T + λI)kx

is weakly convergent to a fixed point p of T , where P is the metric projection from H onto
F (T ) and p = limn→∞ P ((1 − λ)T + λI)nx.
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Proof. Let S = (1 − λ)T + λI. As in the proof of Theorem 3.1, we have that S is an(
α

1−λ , β
1−λ , γ

1−λ ,− λ
1−λ (α + β + γ) + δ, ε+γλ

(1−λ)2 , ζ+βλ
(1−λ)2 , η+αλ

(1−λ)2

)
-widely more generalized hy-

brid mapping from C into H and

α

1 − λ
+

β

1 − λ
+

γ

1 − λ
− λ

1 − λ
(α + β + γ) + δ = α + β + γ + δ ≥ 0,

α

1 − λ
+

γ

1 − λ
=

α + γ

1 − λ
> 0,

ε + γλ

(1 − λ)2
+

η + αλ

(1 − λ)2
=

(α + γ)λ + ε + η

(1 − λ)2
≥ 0.

By Theorem 4.1 {Snx} is weakly convergent to p ∈ F (S) = F (T ). Since by Lemmas 4.1 and
4.2 F (S) is closed and convex, the metric projection P from H onto F (S) is well-defined.
Since by Lemma 4.4 S is quasi-nonexpansive, we obtain that

‖Sn+1x − y‖ ≤ ‖Snx − y‖

for any n ∈ N∪ {0} and for any y ∈ F (S). Therefore we can obtain the desired result as in
the proof of Theorem 4.1.

Similarly, we can obtain the desired result for the case of the condition (2).

Theorem 4.3. Let H be a real Hilbert space, let C be a non-empty bounded closed convex
subset of H and let T be an (α, β, γ, δ, ε, ζ, η)-widely more generalized hybrid mapping from
C into H which satisfies the following condition (1) or (2):

(1) α+β+γ+δ ≥ 0, and there exists λ ∈ R such that 0 ≤ (α+γ)λ+ε+η < α+γ+ε+η;

(2) α+β+γ+δ ≥ 0, and there exists λ ∈ R such that 0 ≤ (α+β)λ+ζ+η < α+β+ζ+η.

Suppose that for any x ∈ C, there exist m ∈ R and y ∈ C such that 0 ≤ (1 − λ)m ≤ 1 and
Tx = x + m(y − x). Then for any x ∈ C,

Snx =
1
n

n−1∑
k=0

((1 − λ)T + λI)kx

is weakly convergent to a fixed point p of T , where P is the metric projection from H onto
F (T ) and p = limn→∞ P ((1 − λ)T + λI)nx.

Proof. Let S = (1− λ)T + λI. Since S = (1− λ)T + λI is a mapping from C into itself, we
have C(T ; λ) = {z | ((1 − λ)T + λI)n

z ∈ C, ∀n ∈ N ∪ {0}} = C. Therefore by Theorem
4.2 we obtain the desired result.

Example 4.1. Let H = R, let C =
[
0, π

2

]
, let Tx = (1 + 2x) cos x − 2x2 and let α = 1,

β = γ = 11, δ = −22, ε = ζ = −12 and η = 1. Then T is an (α, β, γ, δ, ε, ζ, η)-widely more
generalized hybrid mapping from C into H, α+β +γ +δ = 1 ≥ 0 and α+γ +ε+η = 1 > 0.
Let λ = 2+3π

3(1+π) and m = 1 + π. Then 0 ≤ (1 − λ)m = 1
3 < 1 and 0 ≤ (α + γ)λ + ε + η =

π−3
1+π < 1 = α+γ +ε+η. Let y = x+ (1+2x)(cos x−x)

1+π for any x ∈ C. Then Tx = x+m(y−x)
and y ∈ C. Therefore by Theorem 4.3 for any x ∈ C,

Snx =
1
n

n−1∑
k=0

((1 − λ)T + λI)kx

is weakly convergent to a fixed point p of T , where P is the metric projection from H onto
F (T ) and p = limn→∞ P ((1 − λ)T + λI)nx.
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