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Abstract. We first show that there exist no real hypersurfaces M2n−1 which are
Kenmotsu manifolds with respect to the almost contact metric structure (φ, ξ, η, g)
on M induced from the Kähler structure of a complex n(= 2)-dimensional nonflat

complex space form fMn(c). Next, weakening this condition, we classify normal real

hypersurfaces M2n−1 in fMn(c) and give some necessary and sufficient conditions for a
real hypersurface M to be normal from the viewpoint of submanifold theory.

1 Introduction We denote by M̃n(c) a complex n-dimensional complete and simply con-
nected Kähler manifold of constant holomorphic sectional curvature c(6= 0), namely it is
holomorphically isometric to either an n-dimensional complex projective space CPn(c) of
constant holomorphic sectional curvature c or an n-dimensional complex hyperbolic space
CHn(c) of constant holomorphic sectional curvature c according as c is positive or nega-
tive, which is called an n-dimensional nonflat complex space form of constant holomorphic
sectional curvature c.

In order to bridge between submanifold theory and contact geometry, we study real
hypersurfaces M2n−1 isometrically immersed into M̃n(c). We take and fix a unit normal
vector field N locally on M . It is well-known that every real hypersurface M2n−1 of M̃n(c)
admits an almost contact metric structure (φ, ξ, η, g) from the Kähler structure (J, g) of
the ambient space M̃n(c). Making use of such a structure, many geometers have studied
real hypersurface in nonflat complex space forms (cf. [14]). On the other hand, contact
geometry has been developed also by many geometers (for examples, see [3, 4, 8]).

In this paper, we pay particular attention to normal real hypersurfaces M in M̃n(c),
that is, M satisfies [φ, φ](X,Y ) + 2dη(X,Y )ξ = 0, where dη is given by dη(X,Y ) =
(1/2){X(η(Y ))−Y (η(X))−η([X,Y ])} and [φ, φ] is the Nijenhuis tensor of φ. Note that nor-
mal almost contact metric manifolds in contact geometry correspond to complex manifolds
in complex differential geometry.

The purpose of this paper is to prove the following:

Theorem. For connected real hypersurfaces M2n−1 isometrically immersed into a nonflat
complex space form M̃n(c), n = 2, the following statements (1) and (2) hold with respect to
the almost contact metric structure (φ, ξ, η, g) on M induced from the Kähler structure of
the ambient space M̃n(c).

(1) There exist no real hypersurfaces M which are Kenmotsu manifolds.
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(2) The following six statements 2a), 2b), 2c), 2d), 2e) and 2f ) are mutually equivalent.

2a) M is locally congruent to a hypersurface of type (A).

2b) M is a normal almost contact metric manifold.

2c) Every geodesic γ = γ(s) on M has constant first curvature κγ := ‖∇̃γ̇ γ̇‖ along
γ, where ∇̃ is the Riemannian connection of the ambient space M̃n(c).

2d) M is locally congruent to a naturally reductive Riemannian homogeneous mani-
fold and expressed as an orbit of a subgroup of the isometry group I(M̃n(c)) of the
ambient space M̃n(c), namely M is a homogeneous real hypersurface of M̃n(c).

2e) M is a Hopf hypersurface and the shape operator A of M is φ-invariant, i.e.,
A satisfies g(AφX,φY ) = g(AX,Y ) for all vecors X and Y orthogonal to the
characteristic vector ξ on M .

2f ) M is locally congruent to a GO-space, and a homogeneous real hypersurface of
M̃n(c).

Due to this fact, we can see that normal real hypersurfaces are nice examples of real
hypersurfaces having many geometric properties in M̃n(c) but they are not Kenmotsu man-
ifolds.

2 Definitions in contact geometry It is well-known that an almost contact metric
manifold (M,φ, ξ, η, g) satisfies

φξ = 0, η(φX) = 0, η(ξ) = 1, φ2X = −X + η(X)ξ, g(X, ξ) = η(X),
g(φX, φY ) = g(X,Y ) − η(X)η(Y )

for vector fields X and Y on M .
We can define an almost complex structure J on M × R by

J

(
X, f

d

dt

)
=

(
φX − fξ, η(X)

d

dt

)
,

where f is a smooth function on M×R. Then the almost complex structure J is integrable if
and only if [φ, φ](X,Y )+2dη(X,Y )ξ = 0. An almost contact metric manifold (M,φ, ξ, η, g)
is said to be normal if the almost complex structure J on M × R is integrable. We can see
that an almost contact metric manifold M is normal if and only if

(2.1) (φ∇Xφ)Y − (∇φXφ)Y − (∇Xη)(Y ) · ξ = 0 for all X,Y ∈ TM,

where ∇ denotes the Riemannian connection to the Riemannian metric g of M (see page
171 in [18]). An almost contact metric manifold (M,φ, ξ, η, g) is called a Kenmotsu manifold
if M satisfies the following two equalities:

(2.2) (∇Xφ)Y = −η(Y )φX − g(X,φY )ξ and ∇Xξ = X − η(X)ξ

for vector fields X and Y on M . It follows from (2.1) and (2.2) that every Kenmotsu
manifold is normal. We next recall the definition of Sasakian manifolds. An almost contact
metric manifold (M,φ, ξ, η, g) is called a Sasakian manifold if M satisfies the following
equation:

(2.3) (∇Xφ)Y = g(X,Y )ξ − η(Y )X for all X,Y ∈ TM.
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It follows from (2.1) and (2.3) that every Sasakian manifold is a normal almost contact
metric manifold. A Sasakian manifold M is called a Sasakian space form if every φ-sectional
curvature K(u, φu) := g(R(u, φu)φu, u) associated to a unit vector u(∈ TM) orthogonal o
ξ does not depend on the choice of u, where R is the curvature tensor of M . Sasakian
manifolds and Sasakian space forms are analogues to Kähler manifolds and complex space
forms, respectively.

3 Preliminaries on real hypersurfaces M2n−1 in M̃n(c) Let M2n−1 be a real hyper-
surface with a unit normal local vector field N of an n(= 2)-dimensional nonflat complex
space form M̃n(c) with the standard Riemannian metric g and the canonical Kähler struc-
ture J . The Riemannian connections ∇̃ of M̃n(c) and ∇ of M are related by the following
formulas of Gauss and Weingarten:

(3.1) ∇̃XY = ∇XY + g(AX,Y )N ,

(3.2) ∇̃XN = −AX

for arbitrary vector fields X and Y on M , where g is the Riemannian metric of M induced
from the ambient space M̃n(c) and A is the shape operator of M in M̃n(c). An eigenvector of
the shape operator A is called a principal curvature vector of M in M̃n(c) and an eigenvalue
of A is called a principal curvature of M in M̃n(c). We denote by Vλ the eigenspace
associated with the principal curvature λ, namely we set Vλ = {v ∈ TM |Av = λv}.

On M it is well-known that an almost contact metric structure (φ, ξ, η, g) associated
with N is canonically induced from the structure (J, g) of the ambient space M̃n(c), which
is defined by

g(φX, Y ) = g(JX, Y ), ξ = −JN and η(X) = g(ξ,X) = g(JX,N ).

It follows from (3.1), (3.2) and ∇̃J = 0 that

(3.3) (∇Xφ)Y = η(Y )AX − g(AX,Y )ξ,

(3.4) ∇Xξ = φAX.

Denoting the curvature tensor of M by R, we have the equation of Gauss given by

g((R(X,Y )Z,W ) = (c/4){g(Y,Z)g(X,W ) − g(X,Z)g(Y,W )(3.5)
+ g(φY,Z)g(φX,W ) − g(φX,Z)g(φY,W ) − 2g(φX, Y )g(φZ,W )}
+ g(AY,Z)g(AX,W ) − g(AX,Z)g(AY,W ).

We have the Codazzi equation given by

(3.6) (∇XA)Y − (∇Y A)X = (c/4){η(X)φY − η(Y )φX − 2g(φX, Y )ξ}.

We usually call M a Hopf hypersurface if the characteristic vector ξ is a principal cur-
vature vector at each point of M . Every tube of sufficiently small constant radius around
each Kähler submanifold of M̃n(c) is a Hopf hypersurface. This fact means that the notion
of Hopf hypersurfaces is natural in the theory of real hypersurfaces in a nonflat complex
space form.



22 B. H. KIM, S. MAEDA AND H. TANABE

Lemma A ([11, 7]). Let M be a Hopf hypersurface of a nonflat complex space form
M̃n(c), n = 2. Then the following hold.

(1) If a nonzero vector v ∈ TM orthogonal to ξ satisfies Av = λv, then (2λ − δ)Aφv =
(δλ + (c/2))φv, where δ is the principal curvature associated with ξ. In particular,
when c > 0, we have Aφv =

(
(δλ + (c/2))/(2λ − δ)

)
φv.

(2) The principal curvature δ associated with ξ is locally constant.

We here recall the following real hypersurfaces which are the simplest examples of Hopf
hypersurfaces.
When c > 0,

(A1) a geodesic sphere G(r) of radius r (0 < r < π/
√

c ) in CPn(c),

(A2) a tube of radius r (0 < r < π/
√

c ) around a totally geodesic complex submanifold
CP `(c) with 1 5 ` 5 n−2 in CPn(c).

When c < 0,

(A0) a horosphere HS in CHn(c),

(A1,0) a geodesic sphere G(r) of radius r (0 < r < ∞) in CHn(c),

(A1,1) a tube of of radius r (0 < r < ∞) around a totally geodesic complex hypersurface
CHn−1(c) in CHn(c),

(A2) a tube of radius r (0 < r < ∞) around a totally geodesic complex submanifold CH`(c)
with 1 5 ` 5 n−2.

Unifying these real hypersurfaces in M̃n(c), n = 2, we call them hypersurfaces of type (A).
The following shows the importance of hypersurfaces of type (A) in the theory of real
hypersurfaces in M̃n(c) (for example, see [14]).

Theorem A. For every real hypersurface M in a nonflat complex space form M̃n(c), n = 2,
the length of the derivative of the shape operator A of M satisfies ‖∇A‖2 = (c2/4)(n−1) > 0
at its each point. In particular, ‖∇A‖2 = (c2/4)(n − 1) holds on M if and only if M is
locally congruent to a hypersurface of type (A).

The following gives a characterization of hypersurfaces of type (A) in M̃n(c).

Theorem B. Let M be a connected real hypersurface of a nonflat complex space M̃n(c), n =
2. Then the following conditions are mutually equivalent:

(1) M is locally congruent to a hypersurface of type (A);

(2) φA = Aφ holds on M , where φ is the structure tensor of M and A is the shape
operator of M in M̃n(c);

(3) The shape operator A of M in M̃n(c) satisfies

(3.7) g((∇XA)Y,Z) = (c/4)
(
−η(Y )g(φX,Z) − η(Z)g(φX, Y )

)
for arbitrary vectors X,Y and Z on M .
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It is well-known that every hypersurface of type (A) is a homogeneous real hypersurface
in M̃n(c), namely it is an orbit of some subgroup of the isometry group I(M̃n(c)) of the
ambient space M̃n(c). For other homogeneous real hypersurfaces in M̃n(c), see the classifi-
cation theorems of all homogeneous real hypersurfaces in a nonflat complex space form (cf.
[16, 5]).

In the rest of this section, we recall the notion of ruled real hypersurfaces, which are
typical examples non-Hopf hypersurfaces in M̃n(c). A real hypersurface M in a nonflat
complex space form M̃n(c), n = 2 is ruled if the holomorphic distribution T 0M = {X ∈
TM |X ⊥ ξ} is integrable and each of its leaves is locally congruent to a totally geodesic
complex hypersurface Mn−1(c) of the ambient space M̃n(c). By this definition we find that
a real hypersurface M is ruled if and only if ∇̃XY ∈ T 0M for all X,Y ∈ T 0M , where ∇̃
is the Riemannian connection of M̃n(c). This, together with (3.1) and (3.4), shows that a
real hpersurface M is ruled if and only if g(AX,Y ) = 0 for all X,Y ∈ T 0M .

The construction of ruled real hypersurfaces is as follows. We take an arbitrary real
smooth curve γ = γ(s) defined on some open interval I on R in M̃n(c) and consider the
totally geodesic complex hypersurface, say M

(s)
n−1(c) of M̃n(c) through the point γ(s) in

such a way that the tangent space Tγ(s)M
(s)
n−1 at the point γ(s) is orthogonal to the real

plane spanned by γ̇(s) and Jγ̇(s) for each point γ(s). Then the real hypersurface M given
by M =

⋃
s∈I

M
(s)
n−1 is a ruled real hypersurface in M̃n(c). Note that in general ruled real

hypersurfaces M have singular points, i.e., M is not smooth at those points. So, in order
to remove such singular points, we consider ruled real hypersurfaces locally. Moreover, we
remark that the set M∗ defined by M∗ = {p ∈ M |ξp is not a principal curvature vector} is
an open dense subset of a ruled real hypersurface M . When we treat ruled real hypersurfaces
M , we study the open dense subset M∗ of M . At the end of this section we review the
following fundamental of Hopf hypersurfaces.

Proposition 1. For each Hopf hypersurface M in a nonflat complex space form M̃n(c), n =
2 the holomorphic distribution T 0M is not integrable.

4 Naturally reductive homogeneous Riemannian manifolds We recall the follow-
ing characterization of homogeneous Riemannian manifolds.

Lemma B ([1]). A complete and simply connected Riemannian manifold M is homogeneous
if and only if there exits a tensor field T of type (1, 2) on M such that

(i) g(TXY,Z) + g(Y, TXZ) = 0,

(ii) (∇XR)(Y,Z) = [TX , R(Y,Z)] − R(TXY,Z) − R(Y, TXZ),

(iii) (∇XT )Y = [TX , TY ] − TTXY

for X,Y and Z ∈ TM . Here g, ∇ and R denote the Riemannian metric, the Riemannian
connection and the Riemannian curvature tensor of M , respectively.

We here review the definition of a naturally reductive homogeneous Riemannian mani-
fold. Let M = G/K be a Riemannian homogeneous space with Riemannian metric g, and
denote by g and k the Lie algebras of G and K, respectively. We call M = G/K reductive
if there is an AdK-invariant subspace m of g satisfying

g = k + m, k ∩ m = 0,
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which is called a reductive decomposition. A Riemannian homogeneous space M is said to be
naturally reductive if it is naturally reductive with respect to some transitive Lie subgroup
of isometry group. Here, M = G/K is naturally reductive with respect to G if there is a
reductive decomposition g = k + m such that

g([X,Z]m, Y ) + g(Z, [X,Y ]m) = 0 for all X,Y, Z ∈ m.

Note that [ , ]m denotes the canonical projection onto m with respect to the decomposition
g = k + m. This notion gives us some geometric properties. For example, it is known that
every geodesic γ = γ(s) on each naturally reductive Riemannian homogeneous space M is
a homogeneous curve, namely the curve γ is an orbit of some one-parameter subgroup of
the isometry group I(M) of M . In fact, a geodesic γ = γ(s) with γ(0) = o is an orbit of
the one-parameter subgroup generated by X := γ̇(0) ∈ m, where we canonically identify m
and the tangent space ToM at the origin o (for details, see [9]). A Riemannian manifold all
of whose geodesics are homogeneous curves is called a geodesic orbit space or a GO-space.
Naturally reductive homogeneous spaces are GO-spaces, but the converse does not hold.
We refer to, for examples, [2, 17].

The following is a characterization of naturally reductive homogeneous Riemannian man-
ifolds, which is derived from the viewpoint of Lemma B.

Lemma C ([19]). A complete and simply connected Riemannian manifold M is naturally
reductive homogeneous if and only if there exits a tensor field T of type (1, 2) on M such
that

(i) g(TXY,Z) + g(Y, TXZ) = 0,

(ii) (∇XR)(Y,Z) = [TX , R(Y,Z)] − R(TXY,Z) − R(Y, TXZ),

(iii) (∇XT )Y = [TX , TY ] − TTXY ,

(iv) TXX = 0

for X,Y and Z ∈ TM . Here g, ∇ and R denote the Riemannian metric, the Riemannian
connection and the Riemannian curvature tensor of M , respectively.

We call T a naturally reductive homogeneous structure on M .

5 Proof of Theorem We shall verify Statement (1). We suppose that there exists a
real hypersurface M2n−1 which is a Kenmotsu manifold isometrically immersed into M̃n(c).
Then by the first equality in (2.2) and (3.3) we have

(5.1) η(Y )φX + g(X,φY )ξ = −η(Y )AX + g(AX,Y )ξ.

Putting X = Y = ξ in (5.1), we see that Aξ = g(Aξ, ξ)ξ, so that M is a Hopf hypersurface
in M̃n(c). So we can take a nonzero vector X in such a way that AX = λX and g(X, ξ) = 0.
For such a vector X and Y = ξ, from (5.1) we find that φX = −λX, which is a contradiction.
Hence we get Statement (1).

Next, we investigate Statement (2). We shall show that Condition 2a) is equivalent to
one of Conditions 2b), 2c), 2d), 2e) and 2f ) one by one.

We suppose Condition 2b). It follows from (3.3) and (3.4) that Equation (2.1) is equiv-
alent to

(5.2) η(Y )(φA − Aφ)X + g((Aφ − φA)X,Y )ξ = 0 for all X,Y ∈ TM.
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Setting X = Y = ξ in (5.2), we see φAξ = 0, so that our real hypersurface M is a Hopf
hypersurface in M̃n(c). Then, putting Y = ξ in (5.2), we know that (φA − Aφ)X = 0 for
any X ∈ TM , so that M is locally congruent to a hypersurface of type (A) (see Theorem
B). Thus we obtain Condition 2a).

Conversely, it follows from φA = Aφ that Equation (5.2) holds. Hence we find that
Condition 2a) implies Condition 2b).

We suppose Condition 2c). Note that Condition 2c) is equivalent to the following equa-
tion:

(5.3) g((∇XA)X,X) = 0 for each X ∈ TM.

Let M be a real hypersurface satisfying (5.3) of M̃n(c). We may easily check that (5.3) is
equivalent to

(5.4) g((∇XA)Y,Z) + g((∇Y A)Z,X) + g((∇ZA)X,Y ) = 0

for any X,Y and Z tangent to M . On the other hand, by virtue of Codazzi equation (3.6)
we have

g((∇ZA)X,Y ) − g((∇XA)Z, Y )(5.5)
= (c/4)(η(Z)g(φX, Y ) − η(X)g(φZ, Y ) − 2η(Y )g(φZ,X)).

Exchanging X and Y , we get

g((∇ZA)Y,X) − g((∇Y A)Z,X)(5.6)
= (c/4)(η(Z)g(φY,X) − η(Y )g(φZ,X) − 2η(X)g(φZ, Y )).

Summing up (5.4), (5.5) and (5.6), we obtain (3.7). Therefore M is locally congruent to a
hypersurface of type (A) (see Theorem B). Hence we have Condition 2a).

Since (5.3) is derived directly from (3.7), the converse is obvious. Then we can see that
Condition 2a) implies Condition 2c).

We suppose Condition 2d). Let M be a Riemannian manifold satisfying Condition 2d).
We take an arbitrary geodesic γ = γ(s) on M . Then the curve γ is a homogeneous curve on
M because M is a naturally reductive homogeneous Riemannian manifold. This, together
with the assumption that M is homogeneous in M̃n(c) through an equivariant isometric
immersion ι : M → M̃n(c), implies that the curve ι ◦ γ is a homogeneous curve in the
ambient space M̃n(c). Hence all the curvatures of the curve ι ◦ γ in the sense of Frenet
formula are constant along ι ◦ γ. So, in particular the first curvature κγ := ‖∇̃γ̇ γ̇‖ is
constant along γ, where we identify ι ◦ γ with γ. This, combined with (3.1), yields that
|g(Aγ̇, γ̇)| is constant along γ. Thus, by the continuity of the function g(Aγ̇, γ̇) we find that
g(Aγ̇, γ̇) is constant along each geodesic γ on M . Then our real hypersurface M satisfies
(5.3). Therefore, by the above discussion we can see that M is locally congruent to a
hypersurface of type (A). Hence we obtain Condition 2a).

Conversely, we suppose Condition 2a). For a hypersurface M of type (A) in M̃n(c), we
take the universal cover M̃ of M . We define the following tensor T of type (1, 2) on M̃ as
follows:

(5.7) TXY = η(Y )φAX − η(X)φAY − g(φAX, Y )ξ for all X,Y ∈ TM.

Using (3.3), (3.4), (3.5), Theorem B and Lemma C repeatedly, we can see that the tensor
T given by (5.7) is a naturally reductive homogeneous structure on M̃ (see Theorem 9 in
[13]). Thus we get Condition 2d).
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We suppose Condition 2e). For a unit vector X orthogonal to ξ with AX = λX, Then by
assumption we have (2λ− δ)g(AφX,φX) = (2λ− δ)g(AX,X), which together with Lemma
A(1), yields λ(2λ− δ) = δλ + (c/2), so that 2λ2 − 2δλ− (c/2) = 0. Thus we know that our
Hopf hypersurface M has either two constant principal curvatures λ1, δ, or λ2, δ or three
constant principal curvatures λ1, λ2, δ with λ1 + λ2 = δ and λ1λ2 = −c/4. This, combined
with Lemma A, shows that M satisfies φA = Aφ (cf. [10]). Then our real hypersurface
M is locally congruent to a hypersurface of type (A) (see Theorem B). Hence we obtain
Condition 2a).

Conversely, we suppose Condition 2a). It is well-known that for each hypersurface M
of type (A) every eigenspace Vλ orthogonal to ξ satisfies φVλ = Vλ. This means that the
shape operator A is φ-invariant. Therefore we have Condition 2e).

We suppose Condition 2f ). Then by the discussion in the assumption 2d) we get Con-
dition 2a).

Conversely, we suppose Condition 2a). Then by the above discussion we have Condition
2d). Hence we get Condition 2f ) (see Section 4).

Therefore we complete the proof of our Theorem.

Remark. (1) In [15, 12], they already proved that in a nonflat complex space form all
hypersurfaces of type (A) are the only examples of normal real hypersurfaces.

(2) If we omit the hypothesis that M is a Hopf hypersurface in Condition 2e), then our
Theorem is no longer true. In fact, for each ruled real hypersurface M in M̃n(c) we
see g(AφX,φY ) = 0 = g(AX,Y ) for all X,Y (⊥ ξ) ∈ TM , so that the shape operator
A of M is φ-invariant in a trivial sense (cf. [10]).

(3) As a consequence of our Theorem 2a) and 2b) we obtain the following:

Fact. Let M be a connected Sasakian real hypersurface of a nonflat complex space
form M̃n(c), n = 2. Then M is locally congruent to one of the following homogeneous
real hypesurfaces of the ambient space M̃n(c) :

i) A geodesic sphere G(r) of radius r with tan(
√

c r/2) =
√

c /2 (0 < r < π/
√

c ) in
CPn(c);

ii) A horosphere in CHn(−4);

iii) A geodesic sphere G(r) of radius r with tanh(
√
|c| r/2) =

√
|c| /2 (0 < r < ∞)

in CHn(c) (−4 < c < 0);

iv) A tube of radius r around a totally geodesic complex hypersurface CHn−1(c) with
tanh(

√
|c| r/2) = 2/

√
|c| (0 < r < ∞) in CHn(c) (c < −4).

In these cases, M is automatically a Sasakian space form. It has constant φ-sectional
curvature c + 1.
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