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Abstract. Dyson’s Circular Orthogonal, Unitary, and Symplectic Ensembles are
measure spaces modeling families of physical systems with specific spin and time-
reversal properties. In this paper, it is shown that each of the three ensembles carries
a transitive right quasigroup structure, such that automorphisms of the measure space
are automorphisms of the quasigroup structure.

1 Introduction. In a classical paper [3], the physicist Freeman Dyson studied three
statistical-mechanical ensembles designed to model whole families of physical systems, under
three different assumptions about the nature of systems from the family and their behavior
under time-reversal:

• The Circular Orthogonal Ensemble T1(n), for even-spin systems invariant under time-
reversal;

• The Circular Unitary Ensemble T2(n), for systems that are not invariant under time-
reversal;

• The Circular Symplectic Ensemble T4(n), for odd-spin systems invariant under time-
reversal;

each for a positive integer n. Dyson exhibited the Circular Ensembles as compact measure
spaces, normalizable to probability spaces giving the statistics of the ensemble. In particular,
the Circular Unitary Ensemble T2(n) is just the unitary group U(n) equipped with Haar
measure [4,6]. Dyson remarked that although the Circular Orthogonal and Symplectic
Ensembles are subsets of unitary groups, they themselves are not generally closed under
any natural group structure [3, pp. 142, 146]. Thus the aim of the current paper is to
indicate the algebra structure which is common to all three ensembles: the structure of a
transitive right quasigroup (Definition 2.2). The essential features of the main results of
the paper (Theorems 5.9, 6.2, and 7.10) may be collated as follows:

Theorem 1.1. Let n be a positive integer, and let Td(n) (for d = 1, 2, 4 ) be one of Dyson’s
Circular Ensembles.

(a) Td(n) forms a transitive right quasigroup under the core operation x ◦ y = yx−1y.

(b) The automorphism group of the measure space Td(n) is an automorphism group of the
right quasigroup

(
Td(n), ◦

)
.
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Note that even in the unitary case T2(n), the right quasigroup is more closely related
to the measure space than is the group, since measure space automorphisms are not group
automorphisms in general.

The basic definitions from quasigroup theory are listed in Section 2, while properties
of the core are presented in Section 3. Section 4 recalls the definitions of the unitary and
symplectic groups. The Circular Orthogonal, Unitary, and Symplectic Ensembles are then
studied in Sections 5–7 respectively. It is worth remarking that although in this paper the
Circular Symplectic Ensemble is treated with elementary methods, Dyson described that
ensemble in terms of matrix algebra over the quaternions, including use of the conjugate
mapping studied by Iséki [5].

2 Basic definitions. This section records some basic definitions. Readers may consult
[8,9] for further explanation, or for other basic notation or algebraic conventions used here
without explicit clarification.

A magma1 (M, ∗) is a set M that is equipped with a binary operation

M2 → M ; (x, y) 7→ x ∗ y ,

often called multiplication, and occasionally denoted merely by the juxtaposition xy of its
arguments. If m is an element of a magma (M, ∗), the right multiplication R∗(m) is the map
M → M ; x 7→ x ∗m, while the left multiplication L∗(m) is the map M → M ; x 7→ m ∗ x. If
the multiplication is denoted by juxtaposition, then no suffix is placed on the R or L.

Definition 2.1. Let (M, ·) be a magma.

1. The magma is a (combinatorial) right quasigroup if, for all y and z in M , there is a
unique element x of M such that x · y = z.

2. The magma is a(n equational) right quasigroup (M, ·, /) if there is a binary operation
(x, y) 7→ x/y of right division such that the identities (x · y)/y = x = (x/y) · y hold in
M .

3. The magma is a(n equational) left quasigroup (M, ·, \) if there is a binary operation
(x, y) 7→ x\y of left division such that the identities y\(y · x) = x = y · (y\x) hold in
M .

4. The magma is a (two-sided) quasigroup (M, ·, /, \) if it forms both a right quasigroup
(M, ·, /) and a left quasigroup (M, ·, \). In this case one often says that (M, ·) is a
quasigroup.

5. A quasigroup (M, ·) is a loop (M, ·, 1) if there is an element 1 of M , the so-called
identity element, such that the identities 1 · x = x = x · 1 hold in M .

6. An element x of a loop (M, ·, 1) is said to be invertible if there is an element x−1 of
M (the inverse of x), such that x · x−1 = 1 = x−1 · x.

7. A loop (M, ·, /, \, 1) is diassociative if for each at most 2-element subset S of M , the
subloop generated by the elements of the subset S (under all the operations ·, /, \, 1)
is associative, and thus forms a group. In particular, each element of a diassociative
loop is invertible.

1Øystein Ore’s earlier term “groupoid” is now often applied to denote categories in which all the arrows
are invertible.
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8. A loop (M, ·) is said to be a Moufang loop if it satisfies any of the following equivalent
identities:

(a) The first or left Moufang identity ((z · y) · z) · x = z · (y · (z · x));

(b) The second or right Moufang identity ((x · y) · z) · y = x · (y · (z · y));

(c) The third or middle Moufang identity (z · x) · (y · z) = (z · (x · y)) · z;

(compare [9,I,Prop.4.1.5]).

If a magma (M, ·) is a combinatorial right quasigroup, then the unique solution x to
the equation x · y = z may be taken as z/y. Conversely, if (M, ·, /) is an equational right
quasigroup, then the unique solution x to the equation x · y = z may be given as z/y.
Thus the concepts of Definition 2.1(1) and (2) are equivalent: one simply uses the term
right quasigroup. Similar equivalences exist for left and two-sided quasigroups, justifying
the unqualified terms left quasigroup and quasigroup.

If a magma (M, ·) is a right quasigroup, each right multiplication R.(y) by an element
y of M is invertible, with z/y = zR.(y)−1 for z ∈ M . Similarly, left multiplications of
left quasigroups are invertible. For a right quasigroup (M, ·), the set {R.(m) | m ∈ M} of
all right multiplications is a subset of M !, the group of all permutations of M . The right
multiplication group of (M, ·) is the subgroup RMltM of M ! generated by {R.(m) | m ∈ M}.
If (M, ·) is a quasigroup, the multiplication group of (M, ·) is the subgroup MltM of M !
generated by {R.(m), L.(m) | m ∈ M}.

For the purposes of the current paper, a further definition is required. Rather surpris-
ingly, this concept does not seem to be well-known in the literature.

Definition 2.2. A right quasigroup is said to be transitive if its right multiplication group
acts transitively.

Example 2.3. Each quasigroup is a transitive right quasigroup. On the other hand, let
M be a set with at least two elements. Then the multiplication x · y = x and right division
x/y = x on M yield a right quasigroup (M, ·, /) which is not transitive.

3 The core of a diassociative loop. Let M be a diassociative loop, in which the
multiplication is denoted by juxtaposition. For example, one may consider the case of a
Moufang loop, since by Moufang’s Theorem, Moufang loops are diassociative [2, §VII.4].
The core of M is defined as the magma (M, ◦) with x ◦ y = yx−1y. (Note that this is the
opposite of Bruck’s original definition for Moufang loops [2,VII(5.1)]. The current choice
gives a better match to other notational conventions.)

If M is a diassociative loop, then one may extend a group-theoretical definition [7] by
calling substructures of the pointed magma (M, ◦, 1) twisted subsets of M . Similarly, one
may define a twisted subloop of a general loop M to be a substructure of the pointed magma
(M, M, 1) with x M y = y(xy), extending the twisted subgroup terminology of [1]. Note that
the set N of natural numbers (0 included!) is a twisted subgroup of the additive group Z,
but not a twisted subset. For Part (a) of the following, recall that an algebraic structure
(A,Ω′) on a set A is said to be derived from a structure (A,Ω) on A if each operation ω
of Ω′ may be expressed (as a derived operation — compare [9,IV §1.3]) in terms of the
operations from Ω.

Proposition 3.1. Let M be a diassociative loop.

(a) The structure (M,M, 1) is derived from (M, ◦, 1).

(b) Each twisted subset of M is a twisted subloop of M .
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(c) If M is finite, then each twisted subloop of M is a twisted subset of M .

Proof. For (a), consider elements x, y of M . Then x M y = y(xy) = x−1 ◦ y = (x ◦ 1) ◦ y.
The statement (b) is an immediate consequence of (a). Now for (c), suppose that N is
a twisted subloop of M , with M finite. Let x and y be elements of N . If x has even
order 2r with a positive integer r, then xRM(x)r−1 = x2r−1 = x−1, so x ◦ y = yx−1y =(
xRM(x)r−1

)
M y ∈ N . On the other hand, if x has odd order 2s+1 with a positive integer

s, then x−1 = x2s = xLM(1)s, so again x ◦ y = yx−1y =
(
xLM(1)s

)
M y ∈ N .

For the following, compare [2,§VII.5].

Proposition 3.2. Let M be a diassociative loop.

(a) The core (M, ◦) of M is a right quasigroup.

(b) Inversion in M is an automorphism of (M, ◦).

(c) If M is a Moufang loop, then the multiplication group MltM of M is a transitive
group of automorphisms of (M, ◦).

Proof. Consider x, y in M . For (a), note that xR◦(y)2 = y(yx−1y)−1y = yy−1xy−1y = x ,

so the right multiplication R◦(y) is an involution. For (b), one has (x◦y)−1 =
(
yx−1y

)−1 =
x−1◦y−1. For (c), first note that the multiplication group of any quasigroup acts transitively.
Now suppose that z is an element of M . Then

(xy) ◦ (xz) = (xz)(xy)−1(xz) = (xz)
(
y−1x−1

)
(xz)

=
(
(xz)y−1

)(
x−1(xz)

)
by the middle Moufang identity

=
(
(xz)y−1

)
z

= x
(
z

(
y−1z

) )
by the right Moufang identity

= x(y ◦ z) ,

so each left multiplication in M is an automorphism of (M, ◦). Dually, each right multipli-
cation in M is an automorphism of (M, ◦).

4 Unitary and symplectic groups. Let n be a positive integer. Recall that an n × n
matrix u over the complex numbers is unitary if uu∗ = 1 = u∗u, with u∗ as the conjugate
transpose of u. (Thus if the ij-entry of u is z, then the ji-entry of u∗ is z.) The group of
all such matrices is the unitary group U(n). A real matrix r is unitary if and only if it is
orthogonal : rrT = 1 = rT r.

Now consider the 2n × 2n matrix

(1) j =
[

0 1
−1 0

]
⊕ · · · ⊕

[
0 1
−1 0

]

with n summands (the block matrix with diagonal blocks
[

0 1
−1 0

]
and all other entries

zero). Note that j2 = −1. Then {b ∈ U(2n) | j = bjbT } is the symplectic group Sp(n). 2

Lemma 4.1. Let b be an element of Sp(n). Then the following hold:

(a) jbT j−1 = b−1;
2This group is sometimes written as Sp(2n), but the current convention better matches Dyson’s notation

for the circular ensembles.
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(b) j
(
b−1

)T
j−1 = b.

Proof. (a): The defining relation for the symplectic group is j = bjbT . Then b−1j = jbT ,
so b−1 = jbT j−1.

(b): From (a), one has j
(
b−1

)T
j−1 =

(
b−1

)−1 = b.

5 The Circular Orthogonal Ensemble. Let n be a positive integer. Define

T1(n) = {s ∈ U(n) | sT = s} ,

the set of symmetric unitary n × n matrices. This set (with an appropriate measure) is
Dyson’s Circular Orthogonal Ensemble [3]. As he observed [op. cit., p.142], it does not form
a subgroup of U(n) for n > 1, although T1(1) = U(1), the unit circle {exp(2πiθ) | θ ∈ R}.

Proposition 5.1. The Circular Orthogonal Ensemble T1(n) is a twisted subset of U(n).

Proof. Suppose x, y ∈ T1(n), so x and y are symmetric and unitary. Set u = x−1 ∈ U(n),
and note x ◦ y = yx−1y ∈ U(n). Furthermore, xu = 1 implies 1 = uT xT = uT x, so
uT = x−1 = u, and u ∈ T1(n). Then

(yx−1y)T = (yuy)T = yT uT yT = yuy = yx−1y ,

so yx−1y ∈ T1(n).

Corollary 5.2. The Circular Orthogonal Ensemble T1(n) is a twisted subgroup of U(n).

For the following, see [3,Th.4].

Proposition 5.3. For an element s of T1(n), there is a real orthogonal matrix r and a
complex diagonal matrix e such that s = r−1er, and the diagonal elements of e lie on the
unit circle {exp(2πiθ) | θ ∈ R}.

Proposition 5.4. The right multiplication group RMlt
(
T1(n), ◦

)
of the right quasigroup(

T1(n), ◦
)

acts transitively on
(
T1(n), ◦

)
.

Proof. Given an element s of T1(n), it will be shown that there is an element x of T1(n)
such that 1R◦(x) = s. The desired result then follows.

By Proposition 5.3, there is a real orthogonal matrix r and diagonal matrix

e = diag
(
exp(2πiθ1), . . . , exp(2πiθn)

)
with θj ∈ R for 1 ≤ j ≤ n such that s = r−1er. Define

(2) d = diag
(
exp(πiθ1), . . . , exp(πiθn)

)
and x = r−1dr. Note that d and x are both unitary, while d2 = e. Now

xT = (r−1dr)T = (rT dr)T = rT dT r = r−1dr = x ,

so x ∈ T1(n). Finally

1 ◦ x = x1x = x2 = r−1drr−1dr = r−1d2r = r−1er = s ,

as required.
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Remark 5.5. The matrix d of (2) may be replaced by

diag
(

exp
(
πi(θ1 + λ1)

)
, . . . , exp

(
πi(θn + λn)

))
for any vector (λ1, . . . , λn) in the unit cube {0, 1}n. This means that the solution x to
1 ◦ x = s is not unique, so

(
T1(n), ◦

)
is not a quasigroup.

For the following, compare [3,Th.1]. Dyson’s theorem states that the measure of the
Circular Orthogonal Ensemble is the unique measure on the set T1(n) that is invariant
under the U(n)-action (3).

Proposition 5.6. Let n be a positive integer. Then T1(n) is a transitive right U(n)-set
under the action

(3) A1(u) : T1(n) → T1(n); s 7→ uT su

for each element u of U(n).

Corollary 5.7. The Canonical Orthogonal Ensemble may be written as

T1(n) = {uT u | u ∈ U(n)}

for each positive integer n.

Proof. Note that {uT u | u ∈ U(n)} is the orbit of 1 under the transitive U(n)-action of
Proposition 5.6.

Proposition 5.8. Under the action (3), the unitary group U(n) acts as a transitive group
of automorphisms of the right quasigroup

(
T1(n), ◦

)
.

Proof. Consider x, y ∈ T1(n) and u ∈ U(n). Then

xA1(u) ◦ yA1(u) =
(
uT xu

)
◦

(
uT yu

)
=

(
uT yu

) (
uT xu

)−1 (
uT yu

)
= uT yx−1yu =

(
yx−1y

)
A1(u) = (x ◦ y)A1(u)

as required.

The results of this section may be summarized as follows.

Theorem 5.9. Let n be a positive integer, and let T1(n) be Dyson’s Canonical Orthogonal
Ensemble.

(a) T1(n) is a twisted subset of the unitary group U(n).

(b) T1(n) forms a transitive right quasigroup under the core operation x ◦ y = yx−1y.

(c) The automorphism group U(n) of the measure space T1(n) is an automorphism group
of the right quasigroup

(
T1(n), ◦

)
.
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6 The Circular Unitary Ensemble. Let n be a positive integer. Dyson designated
the unitary group U(n) (with Haar measure [4,6]) as the Circular Unitary Ensemble T2(n)
[3]. For current purposes, the Circular Unitary Ensemble will be taken as the magma(
T2(n), ◦

)
. By Proposition 3.2(a),

(
T2(n), ◦

)
is a right quasigroup. Proposition 5.1 shows

that
(
T1(n), ◦

)
is a right subquasigroup of

(
T2(n), ◦

)
, so Remark 5.5 already implies that(

T2(n), ◦
)

is not a quasigroup. However, in parallel with Propositions 5.4 and 7.5, one may
observe the following.

Proposition 6.1. The right multiplication group RMlt
(
T2(n), ◦

)
of the right quasigroup(

T2(n), ◦
)

acts transitively on
(
T2(n), ◦

)
.

Proof. Given an element s of T2(n), it will be shown that there is an element x of T2(n)
such that 1R◦(x) = s. The desired result then follows.

There is a unitary matrix u and diagonal matrix

e = diag
(
exp(2πiθ1), . . . , exp(2πiθn)

)
with θj ∈ R for 1 ≤ j ≤ n such that s = u−1eu. Define

d = diag
(
exp(πiθ1), . . . , exp(πiθn)

)
and x = u−1du. Note that d and x are both unitary, while d2 = e. Then

1 ◦ x = x1x = x2 = u−1duu−1du = u−1d2u = u−1eu = s ,

as required.

Since the unitary group U(n) is compact, its Haar measure is both left- and right-
invariant. As a consequence, the multiplication group MltU(n) of the unitary group U(n)
is a group of automorphisms of the measure space U(n), the Circular Unitary Ensemble
T2(n). Proposition 3.2(c) may then be invoked to yield the second statement of the following
theorem, which summarizes those algebraic properties of the Circular Unitary Ensemble
that have analogues for the Orthogonal and Symplectic Ensembles.

Theorem 6.2. Let n be a positive integer, and let T2(n) be Dyson’s Canonical Unitary
Ensemble.

(a) T2(n) forms a transitive right quasigroup under the core operation x ◦ y = yx−1y.

(b) The automorphism group MltU(n) of the measure space T2(n) is an automorphism
group of the right quasigroup

(
T2(n), ◦

)
.

7 The Circular Symplectic Ensemble. Let n be a positive integer. With the matrix
j of (1), an element u of U(2n) is described as self-dual if juT j−1 = u. (Self-duality in this
sense is the mathematical equivalent of the time-reversal behavior appropriate for odd-spin
systems in the Circular Symplectic Ensemble.) Define

T4(n) = {u ∈ U(2n) | juT j−1 = u}

to be the set of self-dual unitary 2n× 2n matrices. This set (with an appropriate measure)
is Dyson’s Circular Symplectic Ensemble [3]. As he observed [op. cit., p.146], it does not
form a subgroup of U(2n) in general, although the case n = 1 is again exceptional.

Proposition 7.1. The set T4(1) is the scalar unit circle subgroup {exp(2πiθ)I2 | θ ∈ R} of
U(2). In particular, U(1) = T1(1) = T2(1) ∼= T4(1).
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Proof. Consider a complex (2 × 2)-matrix

u =
[
u11 u12

u21 u22

]
.

Then the self-duality criterion juT j−1 = u for T4(1),

juT j−1 = −juT j =
[

u22 −u12

−u21 u11

]
=

[
u11 u12

u21 u22

]
,(4)

is equivalent to u12 = u21 = 0 and u11 = u22. For u ∈ U(2), this means u11 = u22 =
exp(2πiθ) for θ ∈ R.

Proposition 7.2. For each positive integer n, the Circular Symplectic Ensemble T4(n) is
a twisted subset of U(2n).

Proof. Suppose x, y ∈ T4(n), so x and y are self-dual and unitary. Set u = x−1 ∈ U(2n),
and note x ◦ y = yx−1y ∈ U(2n). Furthermore, xu = 1 implies 1 = (xu)T , so

1 = j(xu)T j−1 = jutxT j−1 = juT j−1 · jxT j−1 = (juT j−1)x .

Thus juT j−1 = u, and u ∈ T4(n). Then

j(yx−1y)T j−1 = j(yuy)T j−1 = jyT uT yT j−1

= jyT j−1 · juT j−1 · jyT j−1 = yuy = yx−1y ,

so yx−1y ∈ T4(n).

Corollary 7.3. The Circular Symplectic Ensemble T4(n) is a twisted subgroup of U(2n).

For the following generalization of Proposition 7.1, see [3,Th.3].

Proposition 7.4. For each element s of T4(n), there is a symplectic matrix b and a complex
diagonal matrix

e = diag
(
exp(2πiθ1), exp(2πiθ1), . . . , exp(2πiθn), exp(2πiθn)

)
with θj ∈ R for 1 ≤ j ≤ n such that s = b−1eb, and the diagonal elements of e appear
doubly.

Proposition 7.5. The right multiplication group RMlt
(
T4(n), ◦

)
of the right quasigroup(

T4(n), ◦
)

acts transitively on
(
T4(n), ◦

)
.

Proof. Given an element s of T4(n), it will be shown that there is an element x of T4(n)
such that 1R◦(x) = s. The desired result then follows.

By Proposition 7.4, there is a symplectic matrix b and a diagonal matrix

e = diag
(
exp(2πiθ1), exp(2πiθ1), . . . , exp(2πiθn), exp(2πiθn)

)
such that s = b−1eb. Define

(5) d = diag
(
exp(πiθ1), exp(πiθ1), . . . , exp(πiθn), exp(πiθn)

)
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and x = b−1db. Note that d and x are both unitary, while d2 = e. Furthermore jdT j−1 = d,
by the chosen ordering of the eigenvalues — compare (4). Then

jxT j−1 = j(b−1db)T j−1 = jbT dT (b−1)T j−1

= jbT j−1 · jdT j−1 · j(b−1)T j−1 = b−1db

by Lemma 4.1, so x ∈ T4(n). Finally

1 ◦ x = x1x = x2 = b−1dbb−1db = b−1d2b = b−1eb = s ,

as required.

Remark 7.6. As in the case of the Circular Orthogonal Ensemble (Remark 5.5), the matrix
d of (5) may be replaced by

diag
(

exp
(
πi(θ1 + λ1)

)
, exp

(
πi(θ1 + λ1)

)
, . . .

. . . , exp
(
πi(θn + λn)

)
, exp

(
πi(θn + λn)

))
for any vector (λ1, . . . , λn) in the unit cube {0, 1}n. This means that the solution x to
1 ◦ x = s is not unique, so

(
T4(n), ◦

)
is not a quasigroup.

For the following, compare [3,Th.5]. Dyson’s theorem states that the measure of the
Circular Symplectic Ensemble is the unique measure on the set T4(n) that is invariant under
the U(2n)-action (6).

Proposition 7.7. Let n be a positive integer. Then T4(n) is a transitive right U(2n)-set
under the action

(6) A4(u) : T4(n) → T4(n); s 7→ juT j−1su

for each element u of U(2n).

Corollary 7.8. The Canonical Symplectic Ensemble may be written as

T4(n) = {juT j−1u | u ∈ U(2n)}

for each positive integer n.

Proof. Note that {juT j−1u | u ∈ U(2n)} is the orbit of 1 under the transitive U(2n)-action
of Proposition 7.7.

Proposition 7.9. Under the action (6), the unitary group U(2n) acts as a transitive group
of automorphisms of the right quasigroup

(
T4(n), ◦

)
.

Proof. Consider x, y ∈ T4(n) and u ∈ U(2n). Then

xA4(u) ◦ yA4(u) =
(
juT j−1xu

)
◦

(
juT j−1yu

)
=

(
juT j−1yu

) (
juT j−1xu

)−1 (
juT j−1yu

)
= juT j−1yu · u−1x−1j

(
uT

)−1
j−1 · juT j−1yu

= juT j−1yx−1yu =
(
yx−1y

)
A4(u) = (x ◦ y)A4(u)

as required.

The results of this section may be summarized as follows.
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Theorem 7.10. Let n be a positive integer, and let T4(n) be Dyson’s Canonical Symplectic
Ensemble.

(a) T4(n) is a twisted subset of the unitary group U(2n).

(b) T4(n) forms a transitive right quasigroup under the core operation x ◦ y = yx−1y.

(c) The automorphism group U(2n) of the measure space T4(n) is an automorphism group
of the right quasigroup

(
T4(n), ◦

)
.
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