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CHARACTERIZATION OF DIAGONALITY FOR OPERATORS
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Received May 11, 2012; revised June 5, 2012

ABSTRACT. Let A be an invertible n x n matrix over C. If the k-th power A® of A and
the k-th power A°* of Schur product of A equals (k= 1,2,...,n41), then A becomes
diagonal. In the case that A is an invertible bounded linear operator on an infinite
dimensional Hilbert space H, we can also define Schur product of operators, and we
can show that A is diagonal, if it satisfies A® = A°* for any k=1,2,....

1 Introduction We denote by M, (C) the set of all n x n matrices over C. For A, B €
M., (C), we define their Schur product (or Hadamard product) A o B as follows:

AoB= (aijbij)zjzl,
where A = (a;;)}' ;= and B = (b;;)7;—;. We denote the k-th power of Schur product of A

by
k

—~—

A% =AoAo---0A.
By definition, for any diagonal matrix A, we have
Ak _ Aok

forall k=1,2,3,....

In the field of operator inequality, many results are known related to Schur product
([1],[2]). In other words, Schur product is useful for topics related to self-adjoint or positive
operators. For example, if A is self-adjoint, i.e., A = A*, then we can easily check that
the property A2 = A°2 implies the diagonality of A. But, without the assumption of self-
adjointness of operators, we remark that the property A* = A°* for any k does not imply
the diagonality of A. The following matrix A is not diagonal, but A satisfies this property:

A= ((1) (1)) €My(C), A= A=A% forany k=1,2,3,....
In this paper, first we show the following fact:
Theorem 1.1. Let A be an n X n matriz over C satisfying
Ak = A°F k=1,2,...,n+1.
Then we have the followings:
(1) A% = A°F for any positive integer k.

(2) If A is invertible, then A is diagonal.
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As the infinite dimensional case, we consider a bounded linear operator on a (infinite
dimensional) Hilbert space. Let H be a Hilbert space. We fix the completely orthonormal
system {&;}ier of H. Let A be a bounded linear operator on H with

Agj = Zaijfi, (aij € (C, j € I)

i€l

Then we denote A € B(H) by (asj)i,jer. For two operators A = (a;j)i jer, B = (bij)ijer €
B(H), we can define Ao B € B(H) as follows([4]):

AoB = (aijbij)iJe[.

Since A is bounded, we have

Z |aij|2 < 00, Z |a¢j|2 < 00.

JjeI i€l

Z laikpar;| < oo

kel

We remark that

and the set {k € I | a;xar; # 0} is at most countable for any 4, j € I. Then we can show
the following theorem as infinite dimensional version of Theorem 1.1.

Theorem 1.2. Let A be a bounded invertible linear operator on H with
A" = A°" foranyn=1,23,....

Then A is diagonal, i.e., a;; =0 when i # j.
Let A € M3(C) be as follows:
1 2 2
A=10 1 0
0 0 1
Then A is invertible, is not diagonal and satisfies

A% = A°% and A3 #£ A°3.

In the last section, we determine the smallest integer m satisfying that, for any invertible
A e M, (C),
AP =A% (k=1,2,...,m)

implies the diagonality of A.
2 Proof of Theorem 1.1 In this section, we give a proof of Theorem 1.1.

Proof. (1) Let p(t) = det(tl,, — A) be a characteristic polynomial of A. Then we have, by
Cayley-Hamilton theorem,
p(A) =0.
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We define N
q(t) =t"" —tp(t) = bit”,
k=1

then we have g (A4) = A",
We assume that N > n + 1 and it holds
A=A 1=1,2,...,N.
If we can show that ANt = A°(V+1) then (1) holds by induction. It follows from

A°(N+1) — go(N—n) (Ao(n+1)) — A°o(N-n) (An+1) — A°(N—n) 4 q1(A)

— Ao(an) o (Z bkAk) — Ao(an) o (Z bkAOk)

b AP TR =N " ANTTE (since 0 < N —n+ k < N)
1 k=1

[
M=

=~
Il

N—n(zbkAk) _ AN—nql(A) _ AN+1.

(2) Since A is invertible, if we define

t) — det(A)
QQ(t) - p(() )EH—I det () Z akt

we can get qz(A4) = I,.
Then we have

Aol, =Aoq(A) :AO(ZakAk) :Ao(ZakAOk)

_ iakAokJrl _ zn:akAk+1
Z arAF) = Agy(A) = AI, = A.

Since A o I, is diagonal, so is A. O

3 Proof of Theorem 1.2

Lemma 3.1. Let (2;):2, be a 1-summable sequence of complex numbers, i.e., >, |x;| <
oo. If it holds that

ng:(), forallj=1,2,3,...,

then x; =0 for alli=1,2,3,....

Proof. We set x,, = r,e2™0"V=L (r, =|z,| > 0). We assume that some of x;’s is not equal
to 0. Arranging the sequence, we may assume that

l=r1>ry>--- and Zrn<f
n=k+1
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for some k. Since T = {z € C | |z| = 1} is compact, we can choose an infinite subset Ny of
N such that

s,t €Ny = |€27r301\/?1 _e2ﬂt91\/jl| < 1

) 3 *

By the same method, we can choose an infinite subset Ny of Nj such that

s,t € Ny = |€2ﬂ-302\/jl — 62ﬂt92\/j| < é
Continuing this argument, we can choose numbers s,t € N such that
| 27505 V=T 2mt05 v/ =T o % for all j =1,2,...,k.
We set K = |s — t|. Then we have
[1— ezﬂm)j‘/jl\ < % forall j =1,2,...,k.

This means that

Re(eQ’TKef‘/jl) > forall j =1,2,...,k.

[SCAI )

By the assumption, we have
K K = 1
\nglxn | < n:;_lrn < n:Zk—Hrn < 3
We also have

k k k
D ak = Re(Yal) =Y riRe(e2 VT
n=1 n=1

n=1

This contradicts to
oo

K _
z, =0.

n=1

Proposition 3.2. Let (z;)2, be a 1-summable sequence of complex numbers. For some
a € C, it holds that

oo ' .
dal=al,  forallj=1,23,....
=1

Then there is a number ig such that

Q, i =1
Z; = .
0, otherwise.
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Proof. Put r,, = |x,|. In the case a = 0, it follows from the preceding lemma. So we may
assume that

1
a=1, r >ry;>--- and Z rn<§
n=k+1

for some k. Then we show that r; > 1. Assume that 71 < 1. We can choose a number Ny
satisfying

oL
2k

So we have

|ZxN°|<Z7’N°+ZTN°<k +Z7’n<170¢

n=k+1 n=k+1

This is a contradiction.
We set
rE>re 22 21> 214> 2T

Using the same argument in the proof of Lemma 3.1, for any positive integer N, we can
choose a positive integer K (N) satisfying that

[\]

Re (e KININOV=T) 3 forallj=12.. k

Then we have

k k
RG(Z xTIL((N)N) _ Z 7,é((N)N}{e(eQﬂ'K(N)NG,L\/771)

n=1 n=1
ZTK(N)N 4 Z K(N)N) §l
n=Il+1
and
K(N)N K(N)N KMNN-1 _ 1 gvN-1
\ an() | < Zrn() < ZrnrkH < 3Tk .
n=k+1 n=k+1 n=k+1
For a sufficiently large IV, we may assume that
1 gvN 1
2Tk+1 < §

Since
k

(o) o0 1
1-R K(N)NY| — |R, K(N)Ny| < KE(N)N| o =
| oY af N = Re( Y af™MN)<| Y 2 <3

n=1 n=k+1 n=k+1
we have [ = 1 and get the relation 7y > 1 > 19 > -+ > 7.

4
If 11 > 1, then we may also assume that r; KINN 5 9 e, Re(z:k,1 xf(N)N) >3- This

contradicts to Yo | 2 KMIN — 1 S0 we have = 1.

If 1 # 1, we can choose a sequence of integers

0<m(l)<m(2)<---<m(k)<---
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such that
lim xT(k) =V #1

k—oo

for some real 8. For a sufficiently large k, we may assume

m 1
11— ay (k)| > §|1 — V=T and

oo B o0 1 -
|32 a0 < oY ) < 11— V7T
n=2 n=2
This contradicts to Eff:l xﬁ(k) =1. So we have z; = 1.

Therefore we have the following relation:
0 .
d al=0, forallj=1,2,3,....
=2

By Lemma 3.1, we can get xo = x3 =--- =0. O

Now we can give the proof for Theorem 1.2 as follows:

Proof. By the assumption, we have
AP AP — AT AT — A2n _ Ao(2n)’

that is,

n_ n _ . An _ . 2n
E aisasj*E (aisas;) = Qyy

sel sel

foralln=1,2,3,... and 4,5 € I. We fix t. When ¢ = j, we can get the relation:
Z (aisasi)" =0.
sel\{:}

By Lemma 3.1, we have a;ja;; =0 (j # ¢).
We set
K={sel|as=0}\{i}, J=I\K.

For j € J\ {i}, a;; # 0 implies a,;; = 0. When j € K, it holds
Z(aisasj)” = a?f =0.
sel

By Lemma 3.1 we have a;sas; = 0 for all s. For s € J\ {i}, a;s # 0 implies a;; = 0.
Therefore we have

as; =0 (se d, j€K),
ag; =0 (s € J\ {i}).

To prove the diagonality of A, it suffices to show the following statement:
(1) (4271 # 0 1mphes Qi = Qj5 = 0 (j 7£ Z)
(2) aii #0.
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(1) Let a;; # 0. For any j € J, we have
Z(aisasj)" = a?f #0.
sel
By Proposition 3.2 it holds that there exists s € I with
QisyUsyj = a?j, a;sas; =0 (s # so).
The fact a;; # 0 (j € J) implies 5o = i. So we have
ajr =0 (jeJ\{i}, kel).
This means
AL (VEeH,jed\{i}).
Since A is invertible, we can get J = {i¢}, that is,
aij =0 (j#1i).

We remark that A* is also invertible and satisfies the condition (A*)™ = (A*)°" for all
n=1,2,3,.... So we have

a;j = aj; =0 (J #1).
(2) Assume that a;; = 0. For i(1) € J\ {i}, we have
Z(aisas,i(l))n = a?,?(l) # 0.
sel

By Proposition 3.2, there exists an i(2) € J \ {i} satisfying

ai(2),i1) 70 and a, ;1) =0 (s € J\ {i,i(2)}).

If i(1) = i(2), then a;(1,i(1) # 0 implies a; ;1) = 0 by (1). This contradicts to i(1) € J\ {i}.
So we have i(1) # i(2). Since a;(),; = 0, we have

0% ajlyy i) = D _(0i2).505:1)"
sel

= Z(ai@),sas,i(l))n

seJ
= (ai(2),i(2)%i(2),i(1))"-
By the fact a;(2),i(2) # 0 and (1), it contradicts to a;(),i(1) # 0. O

4 Conclusions For any positive integer n, we define d(n) the smallest integer m satisfying
that, for any invertible A € M, (C),

Ak = Ak (k=1,2,...,m)

implies the diagonality of A.
Let o be a permutation on {1,2,3,...,n}. For A = (a;;)};—; € M,(C), we define
Ay, € M,,(C) as follows:
Ao = (Ao(i),0 ()i j=1-

Then we can easily check the following remarks:
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(1) A is invertible < A, is invertible.
(2) A is diagonal & A, is diagonal.
(3) For A, B € M, (C), we have

AO-BU = (AB)0'7 Ao‘ OBU = (AoB)J

Proposition 4.1. (1) d(n) <n+ 1.

(2) d(2) = 3.

(3) d(3) = 3.
Proof. (1) It follows from Theorem 1.1 .

(2) By (1), d(2) <3. Let A= ((1) %) € My(C). Then A is invertible, not diagonal and
satisfying
AR = A% (K =1,2).

So we have d(2) > 3. Therefore d(2) = 3.

ailr a2 aig
(3) Let A = | a1 ase azs | be invertible and satisfy A¥ = A°% (k = 1,2,3). We

az1 asz ass
compute
A2:A02 A~A02:A-A22A3:A03.

From the (7, j)-th componet of above calculation, we have the following relation (3, j):

k k ko k+1 _
ainay; + aigas; + azag; = a;; (k=1,2).

We first show that A is diagonal in the case a12 = a1z = 0. Since A is invertible, the

matrix B = (222 223> is also invertible, and satisfies B¥ = B°* (k = 1,2,3). Because
32 (33

d(2) = 3, we have ass = azy = 0. Applying the same argument for (ZH 212>, we can
21 Q22
1 2 3

get as; = 0. Fora—<1 3 9

>, considering A, instead of A, we have ag; = 0. So A is

diagonal.

Next we show that A is diagonal in the case aj3 = 0. By the relation (1,1), we have
a13 = 0 or az;=0. In the case a3 = 0 we heve already shown that A is diagonal. Assume
az1 = 0. By the relation (1,2), we have a;3 = 0 or azs = 0. In the case ags = 0, for
o= (;’ ; ?)7 considering A, instead of A, we can get the diagonality of A.

We consider the case a;, ;, = 0 for some ig, jo(io # jo). We set ko € {1,2,3}\ {i0,Jo}

and 1
__(io Jo k) _(1 2 3
=\1 2 3) i g0 k)

Then the (1, 2)-th component of A, is 0. So A is diagonal.
From the relation (1,1), we have

_ 2 2 _
aj2a21 +aizazy =0, ai203; + ayzasz; = 0.
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Since ajsasias; = algagl, we have a1o = 0, a1 = 0 or as; = az;. We assume that A is not
diagonal. Then a;; # 0 if 7 # j. So we have

az1 = az1 # 0 and a1z = —ai3.
From the relation (2,2) and (3,3), we can get
(a12 = azz # 0 and a1 = —ao3) and (a13 = as3 # 0 and az; = —agzs).
This implies the contradiction
a12 = —Q13 = —A23 = G21 = A31 = —a32 = —a12 # 0.

O
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