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NEW MULTIPLE WEIGHTS AND THE ADAMS INEQUALITY ON
WEIGHTED MORREY SPACES
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Abstract. We introduce a new multiple weights class and generalize the Adams
inequality to the multilinear fractional integral operator on weighted Morrey spaces. We
also investigate the boundedness of the multilinear fractional integral operator from
weighted Morrey spaces to BMO or Lipschitz spaces.

1 Introduction It is well known that fractional integral operator plays important roles
in harmonic analysis and other fields, such as partial differential equations and quantum
mechanics. Also, weighted and Morrey norm estimates have relevance to partial differential
equations and quantum mechanics. On the other hand, there are many papers with respect
to multilinear operators, since A. P. Calderén proposed to the conjecture related to the
bilinear Hilbert transforms(cf. [3]).

Furthermore, multilinear fractional integral operators have been studied by Grafakos [2]
and Kenig and Stein [6].

In this paper, we investigate the boundedness of multilinear fractional integral operators
on product of weighted Morrey spaces.

1.1 Some preliminaries and notation We will use the following notation: For 1 <
p < oo, we define p’ = p%' We write a ball of radius R centered at xzo by B(xg, R) :=
{z;|z — xo| < R} and aB(xo, R) := B(x,aR), for any a > 0. We denote the characteristic
function of E by xg. |E| is the Lebesgue measure of E. We call a nonnegative locally
integrable function w on R™ a weight function. We denote w(E) = [, w(x)dx. The letter
C shall always denote a positive constant which is independent of essential parameters and
not necessarily the same at each occurrence.

Firstly, we need some preparatory definitions and works. In 1975, Adams [1] proved
the boundedness of the fractional integral operator I,, on classical Morrey spaces LP:*(R™).

The definition of ordinary fractional integral operator I, is as follows.
Definition 1.1. For 0 < a < n, we define
I, f(x) ::/ %dy.
R |2 =yl
Moreover, the definition of classical Morrey spaces LP**(R") is as follows.
Definition 1.2. For 1 <p < oo and 0 < A\ < 1,

LPAR™) = {f € Lige(R") : || fll por zny < 00},
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where .

1 / )P
oA (mny (= SU — x)|Pdx ] .
Flinsgeny = s (s [ 170
Adams showed the celebrated theorem.

—a._1_ Then

e} n 1 _ 1
Theorem A. Let0<a<n, 0<A<1l-21<p< (1—/\)‘md5—5 n 1-X

a
there exists a constant C > 0 such that

||Iocf||LqA(]R") < C Hf”Lp,A(Rn) .

Remark 1. When A = 0, Theorem A is the Hardy, Littlewood and Sobolev theorem.

To investigate Theorem A with respect to weighted norm inequalities, we define weighted
Lebesgue spaces.

Definition 1.3 (Weighted Lebesgue spaces). Let 0 < p < co. Suppose that w is a weight
function on R".

17(w) = {f: i = ([ |f<x>|pw<w>dx>; < oo}.

The definition of A, , weight is as follows.

Definition 1.4. Let 1 < p,¢ < co. One says that a weight w is in the class A, 4(R") if

1 1
1/ i/ A
sup | — wqux> (/wx pdx) < 0.
EACIACONC IS

In 1974, as it is well-known, Muckenhoupt and Wheeden [11] characterized the weight w,
for which the fractional integral operator I,: LP(wP) — Li(w?) for 0 <a <n,1<p< 2

and % = % — +. That is, they showed the next theorem.

Theorem B. Let0 <a<n,1<p<Z and % = % — =. Then the inequality

HIOéf”LQ(wq) S C ||f||Lp(wp)
holds if and only if w is in the class Ay, (R™).

To consider recent results with the boundedness of I,, we define weighted Morrey
spaces(see [7]).

Definition 1.5 (Weighted Morrey spaces). Let 0 < p < 00, 0 < A < 1 and w, v are weight
functions on R™.

172w, 0) = {1+ 1l sy < 00}

where

s = s (s [ 1@ utedar) "

Recently, we have introduced A, \(R") (see [5]).
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Definition 1.6. Let 1 < p < oo and 0 < A < 1. One says that a w is in the class A, \(R")

if
A 1
sup <1/ w(x)dx)p (1/ w(m)_wdac> : < 00
Bcrr \|B| Jp 1Bl /5 '

We proved the Adams inequality on weighted Morrey spaces:

_a, 1
n

Theorem C (see [5]). Let0<a<n, 0<A<1-2 1<p<2(1-]) and% = -

If w € A, \(R™) then there exists a constant C' > 0 such that

||L1fHqu>\(w>‘,w) <C ||f||LPw>\(wA,w) '

1
p

According to Kenig and Stein [6], we define the multilinear fractional integral operator
I m and modified multilinear fractional integral operator o .

Definition 1.7. Let 0 < a < mn and f:: (f1y-ees frm)-
(1) We define the multilinear fractional integral operator:

Lo (f) (2) = /mn 0 Jilyn) -+ fm(yv;)"m_a di,

T—=Yiy---»T —Ym

where

2 2
@ = 1w =yl = 2 — 1P e+ o =yl
and dy := dyy -+ - Ay,
(2) We define the modified multilinear fractional integral operator:

- 5 1
Tom (f) (z) = /mn <|(I P L

1
o )|mn—aX{|(yl7~--aym)\21}(y1>'“aym)

|(y17 ey YUm
i) -+ frn(ym)dy.

To consider the boundedness of two multilinear operators on product of weighted Lebesgue
spaces, we define two multiple weights classes:

Definition 1.8. Let 1 < py,...,pm < 00, % = p%+...+% and P := (P1y- -y DPm)-
(1) (see [8]). One says that a vector of weights @ := (w1, ..., w,) is in the class Az(R") if

i [, o)
sup | —= [ vg(a)dx
sov (737 oot

where vg(x) == wl(z)% oW () P
(2) (see [10]). Let 1/m < p < ¢ < oo. One says that a vector of weights & is in the class

Ap (R if

1

m 1 _L; A
H <|B|/Bwj(9c) Pj dx) < 00,

Jj=1

(SN

Q=
-

sup ﬁ/Bij(x)qu ﬁ (|;|/Bwj(:v)_P3d:c>p' < 0.

BCR™ =1 =1
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Moen [10] extended Theorem B to multilinear fractional integral operator.

Theorem D (see [10]). Suppose that 0 < a <mn, 1 < p1,...,pm < 00 and % = p%+~-~+
pi satisfies 1/m < p < n/a. Moreover q is defined by % =

o (7

holds if and only if W satisfies the Ap q(R”) condition.

o
n

% . Then the inequality

La((w1

0 < CH ||fJHLP7 (wﬁ.’j)
j=1

To consider the case p > 2(1 — A), we define BM O and Lipschitz spaces.

Definition 1.9 (BMO and Lipschitz spaces). We define BMO and Lipschitz spaces.

BMOR") := {f € L,o(R") : || prron) < 0

where
1l Brro@n) = Su]gn éfel(c |B|/ |f(z) = c|dz.
For0<e <1,
Lipe(R™) i= { £ + |/l ip. ) < 0
where
|f(x) — f(y)]
fll7. ony i= sup ———-2"2,
H ||sz5(]R ) ety |(,E _ y‘

Tang [14] proved the following theorems.
Theorem E. Let 0 < a < mn, 1 < p1,...,pm < 00, 0 < A < 1 and ¢ := o+

p1 Pm

(1) Ife =0 andp%+~~+ﬁ<l, then we have

o (7

(2) If 0 < e < 1, then we have

m

sroy < O L llirsian

< H 15l o5 > @)

(Rn

In this paper, we introduce another multiple weights class which is a generalization of
w E Azn A(R™) and extend the Adams inequality to I, ,», on product of weighted Morrey
spaces. We also extend Tang’s results to weighted Morrey spaces. These results show that
our multiple weights class adapt to the multilinear fractional integral operator I, .

In Section 2, we define another multiple weights class and give main results. In Section
3, we prove main results.
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2 Main results We define the multiple weights class(cf. [5]).

Definition 2.1. Let1<p1,...,pm<m,0<A<1,ﬁ:(p1,...,pm) and%zp%+-~-—|—
1

5.+ One says that a vector of weights « is in the class fl};,)\(R") if

1/ )2’" 1/ STy o\
sup | — | vg(x)dz — [ wji(x) P dx < 00,
s (i [, vt H<|B| 5 )

Jj=1

where vg(x) = wl(x)% e wm(m)%

We have some remarks with respect to three multiple weights classes.

Remark 2.
(1) Let 1 < p1y...,pm < o0 and 0 < A < 1.

Ap(R™) G Ap  (R).

(2) Ifw € 121]37)\(]1%") then we have (w7, ... ,w%n) € As(R™).
(3) A vector of weights w is in the class Az, (R") if and only if a vector of weights

A A
<w1”1 ,...,wﬁ{”) is in the class A3 p/)\(R").

In the following, we always assume that 0 < o < mn,0 < A< land1 < p1,...,py < 00.
We denote % = p% + et pi. We obtain the following results.

Theorem 1. If0 <A <1— -2, % = % — %ﬁ >0 and W € AﬁA(R"), then we have
o Dl =T 110
o j=

When p > 2(1 — \), we obtain the following results.

1

Theorem 2. If0 <A< 1— -2 1%— 2 =0< % <1 and W€ flﬁ)\(R"), then we have

e (7

Remark 3. When m = 1, the above theorem is Theorem 2 for € = 0 in lida, Komori-Furuya
and Sato [5]. When wy = --+ = w,, = 1, Theorem 2 is corresponding to Theorem E (1).
Moreover, when m = 1 and wy = 1, Theorem 2 is corresponding to the Peetre theorem([13]).

m
BMO(R™) = le;ll Hfj”LpM(w?v“lﬁ) '

n(A—1)

Theorem 3. Suppose that 0 < e = a + =

e (7

Remark 4. When wy = - -+ = w,, = 1, Theorem 3 is corresponding to Theorem E (2).

<1landweAp \(R™), then we have

m
<C ill 7050 .
Lip.(R") — 31;[1 il ) va)

When m = 1, we have a corollary:
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Corollary 3.1. Let 0 < a <n, 0 < A< 1land 1l < p < co. Suppose that 0 < € =
o+ w < 1. Ifwe A, x(R™), then we have

iaf <C ||f||LPv*(w>‘,w) :

‘ Lipe (R™)

Remark 5. Corollary 3.1 improves the condition of weights comparing with Theorem 3
and Theorem 2 for ¢ > 0 in Iida, Komori-Furuya and Sato [5]. Moreover, when w = 1,
Corollary 3.1 is corresponding to the Peetre theorem([13]).

3 Proofs of main theorems We use the following lemmas about weights.

Definition 3.1. One says that a weight w is in the class Ao (R™) if there exist C' > 0,e > 0
such that for every balls B and all measurble subsets A of B,

€
w0 o (14)
w(B) Bl
Note that if w € A (R™) then w satisfies doubling condition: w(2B) < Cw(B).
Lemma 3.1 ([10]; Theorem 3.4). If w € A (R") then [[;2, w;? € As(R").

By Remark 2 (3) and Lemma 3.1 we obtain the next lemma.
Lemma 3.2. If @ € As, (R") then vg = H;”Zl w]pj € A (R™).

3.1 Proof of Theorem 1 To prove Theorem 1, we use the following. Firstly according
to Lerner et al [8], we define two multi(sub)linear maximal operators.

Definition 3.2. Let 0 < 8 < m and f = (f1,..., fm).

=\

M@m:%ﬁgéwwm,

5 1 4
My (f) (z) == %ggwj]:[l/jgfj(yj)ldw-

The following two lemmas are variants of the results by Adams [1] (see also [3], [4], [9]).

Lemma 3.3. Under the condition of Theorem 1, we have the pointwise inequality:

Lo (F) @) < CM, a0 (F) @' FM(F) @)F.

Proof. For any x € R™ and § > 0, we have

Qs

P LAyl | fm (ym)] .
Lam (f> (z)‘ = /mn (2 —y1,. oy x—ym)|™" " @
|f1(y1)|‘fm(ym)| di
(= y1, o —ym) [

/17 —_ / — —
‘( Y1,..,T ym)\<5 \(w Yly-eer® ym)\>6




67

Firstly we estimate I:

= |f1(y1)‘|fm(ym)| —
I= d

I-185<| (2 =1 m—ym)| <2796 [(T = Y1, .., T — Ym

1
<C m/ |fiy)l - [ (ym) | dy
2 (2776) P e

=0

< 06 M (f) (2).

Secondly we estimate I1:

[(x=y1,. s 2—=Ym )| 28 |($ — Y- T = Ym

)|mnfoc
_ - |f1(y1)||f7n(y7n)| -
- Z mn—o dy
=0 /200 @y, —y) <2516 (T = Y1 T = Y|
> 1 n(14221) j1 oy n(142=2)
<03 L (orrgn(HE) L (grrig) (i
P (Qk(s)mn—a ( )

1 i /
x - 15| dy;
|2k+1B<z,a>m“fjr-[1< fomgglsabris

< "M, o (F) (@)

By taking

o (Mm+*; () <x>)"“ .

we obtain the desired result. O

Suppose that zg € R™, r > 0, B = B(xzg,r) and = € B. Let fjo(yj) = [i(yj)x2B(Y;),
f2(y;) = fi(yi)x @By (y;) and

ve(fie)= | F150) i) 5

T=Y1,.-,Z—Ym)|<p

Lemma 3.4. Under the condition of Theorem 1, we have
’Ia,m(ffv sty fl()? flofla R f;:lo)(x)’ S C/ pa—mn—le(]E" p)dpa
forl=0,...,m=1. Whenl =0, weregard Lo ,m(f7,- -, [, [0 [o2) (@) as Tom (f5°, - ..

Proof. Since H;:1(2B) x 1721 2B)° C {(y1, - ym) (@ =915z —ym)| > 7}, we

[ ) (@)
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have
‘Ia7m(f10a RS flo7 flo-ila RS f;zo)(x)‘
</ ) )|
(@—y1,z—ym)|>r (T = Y1, T = Ym)|
k=0 2k p < (T—Y1,ee ey T —Ym )| <2FT1r |(-T — Y., T — ym)|
oo 1 . .
< E+1,.\ ( k ))
< kZ:O Ty (va (F250tr) = vi (T2t
i 1 1
<C Velf,pld
- I;O (2k+2r)mnfa 2k+2y /2k+1T (f p) P
S C/ pocfmnfl . Vm (‘f;p) dp
Therefore we obtain the desired result. O

Proposition 1 (see [8]). Let 1 < p1,...,pm < o0 and % = p% + -+ 1%. Then the
inequality

[M ()]

holds if and only if W is in the class Ap(R™).

Lr (’L}f,

) <cC H ||fjHLPj(wj)
j=1

Finally, we will prove Theorem 1.

Proof of Theorem 1. For any 2o € R™ and r > 0, let B = B(zo,7) C R*, f)(z) =
fi(@)x2p(z) and f7°(z) = fj(z)x(2B)(z). For any z € B, we obtain

Lon (F) @) = Lam(f o )@+ X Lamfl o i)(@)
(11,5l )#(0,...,0)

=1+ Z In, . 1.

(I15-5lm)#(0,...,0)

Firstly we estimate I. By Lemma 3.3 and the definition of A 5 (R™) we obtain a pointwise
inequality:

P
q

m 1_»
Tam(f2, - fo)@)| < CT] [KET P va)M(f?, s S (@) e
j=1 o

By Remark 2 (2), we have (wf,...,w),) € Az(R"). Hence, we can use Proposition 1 for
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the weights (w?,...,w),). By Lemma 3.2, we obtain

1

([ Hamtsts o s@) ot )

< CH ”fJHLpJ (w3 va) ( M( fl,...,f%)(x)Pv@(x)Adx>

_cgnfjum . H(/ @) wy (e )Adx)”lj

5 |
Qs

b
q

m
A
< Cvg(B)a H ||fj||L”j‘A(w?7vm) ’
j=1

Secondly we estimate I1;, . ;. Firstly, we estimate V, (f, p).

v (F0) < f[(/ y7<pfj<yj>|dyj>

IN

IA

o F I e E R}

<
I

—
<
I

—

IN

n(m+2=1 .
Cp (m+%5 )H||fjHij~*(w]%7w)~

Jj=1

Therefore by Lemma 3.4, we obtain

,,,,, | < C1B(xo,r Huf]nw o)

Thus, by Holder’s inequality, we have the desired inequality:

( / \IL, .1,

3.2 Proof of Theorem 2 To prove Theorem 2, we use the next proposition.

1

qvw(x)’\dx> < CTTI s
j=1 '

Proposition 2 (see [12]). If w € A (R™), then we have

o ~ sup 18 s [ /(@) = elu@)de < oo

Proof of Theorem 2. For any 2o € R™,r > 0,let B = B(xo,7) C R", f2(y;) = f;(y;)x28(y;)
and f7°(y;) = fi(yj)xeB)-(y;)-

Let o o
Co ::_/ fl(yl)fmr(ngﬁ‘fi)adg,
[1seesye) |21 [(Y15 - Ym) |
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b i () where (I, ... 1) # (0, ...

,0). Then we have

fa,m (f) () —co — Z Cly,olm

(I1,5-5lm)#(0,...,0)
< am(fL, - £2)(@)]

1 1
+ Z / mn—o mn—ao
(a2 (0., ma | (T — Y1y @ — Ym)| [(xo — Y1,y T0 — Ym)]

X ‘ff(yl)’m IfT;L"(ydeﬁ

N SR
(1ol ) (0,.,0)

We estimate 11, . ;, . For x € B, we have

occr ol tse)

[(Zo=Y1seesT0—Ym )| >T |(l’o*y1,-~~71‘0*ym)|

o0

<cry” | L1l ()|

k=0 Y 2k r<|(zo—y1,....z0—Ym)|<2FF1r [(xo — y1,-

—

)|mnfa+1 Y

Lo — Ym
) 1
- 2k+1B) H w, D (2k+1B) v}
e (S S o
32 ( @) o
e w U = |2kB|
A—1
oo 2k+1B|T+m
<C7"H||fj||L"J |—
(w 7'Uw) m—2+
j=1 o |26B["T
<C H ”fj”L”J"A(w?wm) ’
j=1

A

wit, . Wt ) By Lemma 3.2, we have

We estimate I. By Remark 2 (3), we can use Theorem D for the vector of weights
( A

EB)/I va(x)de
= 13 (/ e (f0, o £)@)] ¥ 0 (x)dx)z.vw(g)(i)'

(/ o (f2 o SO (e )yi< ﬁ"'Wﬁ%‘)(x)idxy

m

< Cvg(B) "7 II (/23 | £ (ys) [P 'wj(yj)%'pjdy) ’

j=1

< CTT Ml oy

Jj=1
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Therefore we obtain

m
Ia7m (f) HBMO(?)m) S CJZII ||fjHij’*(w?,vm) )

where
i1 sup it (o [ 1£(0) - clvata)as
:= sup in ) — c|vg(x)dz
BMO(vg) Bcﬂgn ceC ’Uu-;(B) B
By Proposition 2, we obtain the desired result. O

3.3 Proof of Theorem 3

Proof of Theorem 3. For any x # y € R", let r = |z —y| > 0 and B = B(xz,r). We will
prove a inequality:

an (P) @) = T (F) )] < Cli =l Tl -
j=1

Let fjo(yj) = f;(y;)x28(y;) and ffo(yj) = [;(y;)x 2By (yj). Same as in the proof of Theo-
rem 2 we write

Lo (F) @) = Taum () W)
< Y fam @) Lo £ )

l1,...,lm€{0,00}

= I+ Z IIll)“wlm,'
(L1l £(0,...,0)

Since [T72, B(z,2r) C {(y1,-- - ym); [(& = y1,...,2 — ym)| < 2¢/mr}, by Holder’s inequal-
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ity, we obtain

Lam(f1, - ) ()]
Syl | (ym)| .
< d
/|(I Y1, Y

ca—yml<2vimr |(@ =1, w = y) [T
= 1
< Z mn—a
= (27Fy/mr)
m j m P,' EN
I/ )P wi) gy |- [Lw, ™ @4 vmB)™
j=1 \Ylz—y;|<2=F1ymr j=1
<C | TTI Lo
Jj=1
% v(k+1\/>B%m iy et L
5> LN PR RN o
k=0 (2 k\/i " ':
<c|B|* H 155125 03 0 Zz ke
<Clz—yl H 13 ll Loi > (3 ) -
i=1 !
The similarly estimate holds for I, ., (f{, ..., f%)(y).
Lastly we estimate I1;, . ;.. We have
1,1,
<Cle i | Ll ey
(Z—=Y1,ee,@—Ym )| >27 |(.’IJ —Yly.. - T — ym)l
L})\ 1
va (2R B) P [0 w, ™ (M1 B) 7S
<Clx— =l
| y|H||f]||LpJ (w 7vw)2 |2kB| % %
e—1
< Clz —y| H ||fj||LPjv*(wJ%,vm) Z ‘2kB| !
j=1 k=1
< Ol =y [Tl s -
j=1
Therefore we obtain the desired result. O
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