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(A2) IN A COMPLEX PROJECTIVE SPACE IN TERMS OF THEIR
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Abstract. We characterize minimal real hypersurfaces M2n−1 of type (A2) in a complex

projective space by observing some geodesics on M . Note that there do not exist minimal real
hypersurfaces M2n−1 of type (A2) in a complex hyperbolic space.

1. Introduction

We denote by CPn(c) a complex n-dimensional complex projective space of constant holomor-
phic sectional curvature c(> 0). In this paper we consider real hypersurfaces M2n−1 of CPn(c)
furnished with the canonical Kähler structure J and the standard Riemannian metric g through
an isometric immersion.

Among real hypersurfaces in CPn(c) the following hypersurfaces are typical examples:
(A1) A geodesic sphere of radius r (0 < r < π/

√
c ) in CPn(c);

(A2) A tube of radius r (0 < r < π/
√

c ) around a totally geodesic Kähler submanifold
CP `(c) (1 5 ` 5 n − 2) in CPn(c).

These real hypersurfaces are said to be of type (A1) and of type (A2), respectively.
The following theorem shows the importance of these hypersurfaces.

Theorem A ([5]). For each real hypersurface M2n−1 of CPn(c), n = 2, the length of the derivative
of the shape operator A of M satisfies ‖∇A‖2 = c2(n− 1)/4. The equality holds on M if and only
if M is locally congruent to one of real hypersurfaces of type (A1) and type (A2).

Real hypersurfaces of type (A1) have two distinct constant principal curvatures in CPn(c).
It is well-known that CPn(c) does not admit totally umbilic real hypersurfaces and that a real
hypersurface M2n−1 of CPn(c), n = 3 is of type (A1) if and only if M has at most two distinct
principal curvatures at each point of M . These imply that real hypersurfaces of type (A1) are the
simplest examples of real hypersurfaces in CPn(c) and that there exist no real hypersurfaces M
all of whose geodesics are mapped to circles in CPn(c).

Motivated by these facts, we characterize real hypersurfaces of type (A1) in CPn(c).

Theorem B ([4]). A connected real hypersurface M2n−1 of CPn(c), n = 2 is locally congruent to
a real hypersurface of type (A1) of radius r (0 < r < π/

√
c ) if and only if there exist orthonormal

vectors v1, v2, . . . , v2n−2 perpendicular to the characteristic vector ξx at each point x ∈ M satisfying
the following two conditions:

(i) All geodesics γi = γi(s) on M2n−1 with γi(0) = x and γ̇i(0) = vi (1 5 i 5 2n − 2) are
mapped to circles of positive curvature in CPn(c);
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(ii) All geodesics γij = γij(s) on M2n−1 with γij(0) = x and γ̇ij(0) = (vi + vj)/
√

2
(1 5 i < j 5 2n − 2) are mapped to circles of positive curvature in CPn(c).

The purpose of this paper is to characterize minimal real hypersurfaces of type (A2) in CPn(c)
from the viewpoint of Theorem B (see Theorem).

2. Preliminaries

Let M2n−1 be a real hypersurface with a unit normal local vector field N of CPn(c) furnished
with the standard Riemannian metric g and the canonical Kähler structure J . The Riemann-
ian connections ∇̃ of CPn(c) and ∇ of M are related by the following formulas of Gauss and
Weingarten:

(2.1) ∇̃XY = ∇XY + g(AX,Y )N ,

(2.2) ∇̃XN = −AX

for arbitrary vector fields X and Y on M , where g is the Riemannian metric of M induced from
the ambient space CPn(c) and A is the shape operator of M in CPn(c). An eigenvector of the
shape operator A is called a principal curvature vector of M in CPn(c) and an eigenvalue of A is
called a principal curvature of M in CPn(c). We set Vλ = {v ∈ TM | Av = λv} which is called
the principal distribution associated to the principal curvature λ.

It is known that M admits an almost contact metric structure (φ, ξ, η, g) induced from the
Kähler structure J of CPn(c). The characteristic vector field ξ of M is defined as ξ = −JN and
this structure satisfies

φ2 = −I + η ⊗ ξ, η(ξ) = 1 and g(φX, φY ) = g(X,Y ) − η(X)η(Y ),

where I denotes the identity map of the tangent bundle TM of M . It follows from (2.1), (2.2) and
∇̃J = 0 that

(2.3) (∇Xφ)Y = η(Y )AX − g(AX,Y )ξ,

(2.4) ∇Xξ = φAX.

The following is the so-called equation of Codazzi:

(2.5) (∇XA)Y − (∇Y A)X = (c/4)
(
η(X)φY − η(Y )φX − 2g(φX, Y )ξ

)
.

We usually call M a Hopf hypersurface if the characteristic vector ξ of M is a principal curvature
vector at each point of M . The following is useful for Hopf hypersurfaces in CPn(c).

Proposition A ([5]). Suppose that ξ is a principal curvature vector at each point of M2n−1 in
CPn(c) and the corresponding principal curvature is δ. Then δ is locally constant on M . In
addition, AφX =

(
(δλ + (c/2))/(2λ − δ)

)
φX holds for any X ∈ Vλ which is perpendicular to ξ.

In Proposition A, we remark that 2λ−δ 6= 0, since c > 0. Furthermore, every tube of sufficiently
small constant radius around each Kähler submanifold of CPn(c) is a Hopf hypersurface. This
fact means that the notion of Hopf hypersurfaces is natural in the theory of real hypersurfaces in
CPn(c).

In CPn(c) (n = 2), a Hopf hypersurface all of whose principal curvatures are constant is locally
congruent to one of the following (cf. [3, 6, 7]):

(A1) A geodesic sphere of radius r, where 0 < r < π/
√

c ;
(A2) A tube of radius r around a totally geodesic CP `(c) (1 5 ` 5 n−2), where 0 < r < π/

√
c ;

(B) A tube of radius r around a complex hyperquadric CQn−1, where 0 < r < π/(2
√

c );
(C) A tube of radius r around CP 1(c) × CP (n−1)/2(c), where 0 < r < π/(2

√
c ) and n (= 5)

is odd;
(D) A tube of radius r around a complex Grassmann CG2,5, where 0 < r < π/(2

√
c ) and

n = 9;
(E) A tube of radius r around a Hermitian symmetric space SO(10)/U(5), where 0 < r <

π/(2
√

c ) and n = 15.
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These real hypersurfaces are said to be of types (A1), (A2), (B), (C), (D) and (E). Summing up,
real hypersurfaces of types (A1) and (A2), we call them hypersurfaces of type (A). The numbers
of distinct principal curvatures of these real hypersurfaces are 2, 3, 3, 5, 5, 5, respectively.

A direct calculation yields the following lemma.

Lemma 1. Every real hypersurface of types (A1), (A2), (B), (C), (D) and (E), which is a tube of
radius r, is minimal in the following cases:

(A1) cot(
√

c r/2) = 1/
√

2n − 1 ;
(A2) cot(

√
c r/2) =

√
(2` + 1)/(2n − 2` − 1) ;

(B) cot(
√

c r/2) =
√

n +
√

n − 1 ;
(C) cot(

√
c r/2) = (

√
n +

√
2 )/

√
n − 2 ;

(D) cot(
√

c r/2) =
√

5 ;
(E) cot(

√
c r/2) = (

√
15 +

√
6 )/3.

At the end of this section we review the definition of circles in Riemannian geometry. A
real smooth curve γ = γ(s) parametrized by its arclength s in a Riemannian manifold M with
Riemannian connection ∇ is called a circle of curvature k if it satisfies the ordinary differential
equations ∇γ̇ γ̇ = kYs and ∇γ̇Ys = −kγ̇, where k is a nonnegative constant and Ys is the unit
normal vector of γ. A circle of null curvature is nothing but a geodesic. The definition of circles
is equivalent to the equation

(2.6) ∇γ̇(∇γ̇ γ̇) + g(∇γ̇ γ̇,∇γ̇ γ̇)γ̇ = 0.

3. Statements of results

Theorem. A connected minimal real hypersurface M2n−1 of CPn(c), n = 3 is locally congruent
to a tube of radius r = (2/

√
c ) cot−1

√
(2` + 1)/(2n − 2` − 1) (0 < r < π/

√
c ) around a totally

geodesic CP `(c) with 1 5 ` 5 n−2 if and only if there exist a function d : M → N and orthonormal
vectors v1, v2, . . . , v2n−2 perpendicular to the characteristic vector ξx at each point x ∈ M satisfying
the following two conditions:

(i) All geodesics γi = γi(s) on M2n−1 with γi(0) = x and γ̇i(0) = vi

(1 5 i 5 2n − 2) are mapped to circles of positive curvature in CPn(c);
(ii) All geodesics γij = γij(s) on M2n−1 with γij(0) = x and γ̇ij(0) = avi +

√
1 − a2 vj (1 5

i 5 dx < j 5 2n − 2) are mapped to geodesics in CPn(c), where a =
√

(2` + 1)/(2n) .
In this case, d is automatically expressed as d = 2`.

Proof. We first investigate the “only if” part of our Theorem. It is known that a real hypersurface
M of type (A2) with radius r (0 < r < π/

√
c ) has three distinct constant principal curvatures

λ1 = (−
√

c /2) tan(
√

c r/2), λ2 = (
√

c /2) cot(
√

c r/2) and δ =
√

c cot(
√

c r) = λ1 + λ2. As our
real hypersurface M of type (A2) is minimal, the principal curvatures λ1 and λ2 are expressed as
follows (see Lemma 1):

(3.1) λ1 = −
√

c

2

√
2n − 2` − 1

2` + 1
and λ2 =

√
c

2

√
2` + 1

2n − 2` − 1
.

Take orthonormal vectors v1, v2, . . . , v2n−2 orthogonal to ξ at an arbitrary point x of M in such a
way that v1, v2, . . . , v2` and v2`+1, . . . , v2n−2 are principal curvature vectors with principal curva-
tures λ1 and λ2, respectively. Then by virtue of Lemma in [4] we find that these vectors satisfy
Condition (i). That is, we have the following:

(i) All geodesics γi = γi(s) on M with γi(0) = x and γ̇i(0) = vi (1 5 i 5 2`) are circles of
positive curvature |λ1| in CPn(c);

(ii) All geodesics γi = γi(s) on M with γi(0) = x and γ̇i(0) = vi (2` + 1 5 i 5 2n − 2) are
circles of positive curvature λ2 in CPn(c).

We next take the geodesic γij = γij(s) on M2n−1 with γij(0) = x and γ̇ij(0) = avi+
√

1 − a2 vj (1 5
i 5 dx = 2` < j 5 2n − 2), where a =

√
(2` + 1)/(2n) . It is well-known that the shape operator

A of our real hypersurface M satisfies (cf. [5]):

(3.2) g((∇XA)X,X) = 0 for each X ∈ TM.
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It follows from (2.1), (3.1) and (3.2) that

g(∇̃γ̇ij γ̇ij ,N ) = g(Aγ̇ij(s), γ̇ij(s)) = g(Aγ̇ij(0), γ̇ij(0))

= a2λ1 + (1 − a2)λ2 = 0,

which yields Condition (ii).
We shall investigate the “if” part of our Theorem. We consider a connected real hypersurface

M2n−1 satisfying Conditions (i) and (ii). We explain the discussion in [1] in detail. We first
concentrate our attention on Condition (i). We study on an open dense subset

U =
{

x ∈ M2n−1

∣∣∣∣the multiplicity of each principal curvature of M2n−1 in
CPn(c) is constant on some neighborhood Vx(⊂ U) of x

}
of M2n−1. We take the geodesic γi = γi(s) (1 5 i 5 2n − 2) on U with initial vector vi given by
Condition (i). Since the curve γi, considered as a curve in CPn(c), is a circle of positive curvature
(, say) ki, Equation (2.6) shows

(3.3) ∇̃γ̇i∇̃γ̇i γ̇i = −k2
i γ̇i.

On the other hand, using (2.1) and (2.2), we see that

(3.4) ∇̃γ̇i∇̃γ̇i γ̇i = −g(Aγ̇i, γ̇i)Aγ̇i + g((∇γ̇iA)γ̇i, γ̇i)N .

Comparing the tangential components of Equations (3.3) and (3.4), we have

g(Aγ̇i, γ̇i)Aγ̇i = k2
i γ̇i.

This, together with ki 6= 0, shows that at s = 0 either Avi = kivi or Avi = −kivi holds for
i = 1, 2, . . . , 2n − 2. This means that our real hypersurface M2n−1 is a Hopf hypersurface with
Aξ = δξ and that the linear subspace T 0

xM2n−1 = {v ∈ TxM2n−1|v ⊥ ξx} of TxM2n−1 is
decomposed as:

T 0
xM2n−1 = {v ∈ T 0

xM | Av = −ki1v} ⊕ {v ∈ T 0
xM | Av = ki1v}

⊕ · · · ⊕ {v ∈ T 0
xM | Av = −kigv} ⊕ {v ∈ T 0

xM | Av = kigv},

where 0 < ki1 < ki2 < . . . < kig and g is the number of distinct positive ki (i = 1, . . . , 2n − 2).
We decompose T 0

xM2n−1 in such a way at each point x ∈ U .
Note that each kij is a smooth function on Vx for each x ∈ U . We shall show the constancy

of each kij . It suffices to check the case of Avij = kij vij . As kij is a constant function along the
curve γij in the ambient space CPn(c), we have vij kij = 0. For any v` (1 5 ` 6= ij 5 2n − 2),
since A is symmetric, we have

(3.5) g((∇vij
A)v`, vij ) = g(v`, (∇vij

A)vij ).

In order to compute Equation (3.5) easily, we extend the vectors v`, vij (∈ T 0
xM) on some suffi-

ciently small neighborhood Wx(⊂ Vx) in the following manner.
We define a smooth vector field V` on Wx satisfying that (V`)x = v` and V` is perpendicular to ξ.

Next we shall define Vij . First we define a smooth unit vector field Wij on some “sufficiently small”
neighborhood Wx(⊂ Vx) by using parallel displacement for the vector vij along each geodesic with
origin x. We note that in general Wij is not principal on Wx, but AWij = kij Wij on the geodesic
γij = γij (s) with γij (0) = x and γ̇ij (0) = vij . We here define the vector field Uij on Wx as:

Uij =
(∏

α6=kij
(A − αI)

)
Wij , where α runs over the set of all distinct principal curvatures of

M2n−1 except for the principal curvature kij . We remark that Uij 6= 0 on the neighborhood
Wx , because (Uij )x 6= 0. Moreover, the vector field Uij satisfies AUij = kij Uij (⊥ ξ) on Wij .
We define Vij by normalizing Uij in some sense. That is, when

∏
α6=kij

(kij − α)(x) > 0 (resp.∏
α6=kij

(kij − α)(x) < 0), we define Vij = Uij /‖Uij‖ (resp. Vij = −Uij /‖Uij‖). Then we know
that AVij = kij Vij on Wx and (Vij )x = vij . Furthermore, our construction shows that the integral
curve of Vij through the point x is a geodesic on Mn, so that in particular ∇Vij

Vij = 0 at the
point x.
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Since the Codazzi equation (2.5) yields that g((∇XA)Y,Z) = g((∇Y A)X,Z) for any X,Y, Z(⊥
ξ), at the point x we have

(the left-hand side of (3.5)) = g((∇v`
A)vij , vij )

= g((∇V`
A)Vij , Vij )

= g(∇V`
(kij Vij ) − A∇V`

Vij , Vij )

= g((V`kij )Vij + (kij I − A)∇V`
Vij , Vij )

= v`kij

and

(the right-hand side of (3.5)) = g(V`, (∇Vij
A)Vij )

= g(V`,∇Vij
(kij Vij ) − A∇Vij

Vij )

= g(v`, (vij kij )vij ) = 0.

Thus we can see that Xkij = 0 for any X(⊥ ξ) ∈ TxM . Next, we shall show that ξkij = 0. It
follows from (2.4) and Proposition A that

(∇ξA)Vij − (∇Vij
A)ξ = ∇ξ(AVij ) − A∇ξVij −∇Vij

(δξ) + A∇Vij
ξ

= ∇ξ(kij Vij ) − A∇ξVij − δφAVij + AφAVij

= (ξkij )Vij + (kij I − A)∇ξVij − kij

(
δ −

δkij + (c/2)
2kij − δ

)
φVij .

On the other hand, the Codazzi equation (2.5) implies

g((∇ξA)Vij − (∇Vij
A)ξ, Vij ) = 0.

Hence, ξkij = 0. Therefore we can see that the differential dkij of kij vanishes at the point x,
which shows that every kij (> 0) is constant on Wx, since we can take the point x as an arbitrarily
fixed point of Wx. So the principal curvature function kij

is locally constant on the open dense
subset U of M2n−1. This, together with the continuity of kij and the connectivity of M2n−1,
implies that kij

is constant on the hypersurface M2n−1. Hence all principal curvatures of M2n−1

are constant if M2n−1 satisfies Condition (i).
Next, we consider Condition (ii). Since the above argument tells us that every vi (1 5 i 5

2n − 2) is principal, we can set Avi = µivi. On the other hand, Condition (ii) shows that
g(Aγ̇ij(0), γ̇ij(0)) = 0, so that

(3.6) a2µi + (1 − a2)µj = 0 for 1 5 ∀i 5 dx < ∀j 5 2n − 2.

This, combined with 0 < a2 = (2` + 1)/(2n) < 1, implies that M is a Hopf hypersurface with
three distinct constant principal curvatures δ, µi and µj satisfying Equation (3.6). Hence M is of
either type (A2) or type (B). Needless to say, all minimal real hypersurfaces of type (A2) satisfy
Equation (3.6) (see the “only if” part of the proof of our Theorem).

Finally we shall check the case of type (B). We know that a real hypersurface M of type
(B) with radius r (0 < r < π/(2

√
c )) has three distinct constant principal curvatures λ1 =

(
√

c /2) cot
(
(
√

c r)/2−π/4
)
, λ2 = (

√
c /2) cot

(
(
√

c r)/2+π/4
)

and δ =
√

c cot(
√

c r). As our real
hypersurface M of type (B) is minimal, the principal curvatures λ1 and λ2 are expressed as (see
Lemma 1):

(3.7) λ1 = −
√

c

2
1 +

√
n√

n − 1
and λ2 =

√
c

2

√
n − 1√
n − 1

.

The rest of the proof is to show that the principal curvatures λ1 and λ2 in (3.7) satisfy neither
a2λ1 + (1 − a2)λ2 = 0 nor a2λ2 + (1 − a2)λ1 = 0. Suppose that a2λ1 + (1 − a2)λ2 = 0. Then
we have −(2` + 1)(1 +

√
n ) + (2n − 2` − 1)(

√
n − 1) = 0, so that

√
n = n − 2` − 1. Hence we

can set
√

n = p for some p ∈ N, which implies that p = p2 − 2` − 1. Thus we obtain the equality
p(p− 1) = 2` + 1, which is a contradiction. We next suppose that a2λ2 + (1− a2)λ1 = 0. By easy
computation we get (2` + 1)(

√
n − 1) − (2n − 2` − 1)(1 +

√
n ) = 0, so that −

√
n = n − 2` − 1.
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Then by the same discussion as in the case of
√

n = n − 2` − 1 we also obtain a contradiction in
this case. ¤
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