A CHARACTERIZATION OF MINIMAL REAL HYPERSURFACES OF TYPE (A_2) IN A COMPLEX PROJECTIVE SPACE IN TERMS OF THEIR GEODESICS

YUICHIRO TANIGUCHI AND SADAHIRO MAEDA

Received October 25, 2011; revised December 16, 2011

ABSTRACT. We characterize minimal real hypersurfaces M^{2n-1} of type (A_2) in a complex projective space by observing some geodesics on M. Note that there do *not* exist minimal real hypersurfaces M^{2n-1} of type (A_2) in a complex hyperbolic space.

1. Introduction

We denote by $\mathbb{C}P^n(c)$ a complex n-dimensional complex projective space of constant holomorphic sectional curvature c(>0). In this paper we consider real hypersurfaces M^{2n-1} of $\mathbb{C}P^n(c)$ furnished with the canonical Kähler structure J and the standard Riemannian metric g through an isometric immersion.

Among real hypersurfaces in $\mathbb{C}P^n(c)$ the following hypersurfaces are typical examples:

- (A₁) A geodesic sphere of radius r (0 < r < π/\sqrt{c}) in $\mathbb{C}P^n(c)$;
- (A₂) A tube of radius r (0 < r < π/\sqrt{c}) around a totally geodesic Kähler submanifold $\mathbb{C}P^{\ell}(c)$ (1 $\leq \ell \leq n-2$) in $\mathbb{C}P^{n}(c)$.

These real hypersurfaces are said to be of type (A_1) and of type (A_2) , respectively. The following theorem shows the importance of these hypersurfaces.

Theorem A ([5]). For each real hypersurface M^{2n-1} of $\mathbb{C}P^n(c)$, $n \geq 2$, the length of the derivative of the shape operator A of M satisfies $\|\nabla A\|^2 \geq c^2(n-1)/4$. The equality holds on M if and only if M is locally congruent to one of real hypersurfaces of type (A_1) and type (A_2) .

Real hypersurfaces of type (A_1) have two distinct constant principal curvatures in $\mathbb{C}P^n(c)$. It is well-known that $\mathbb{C}P^n(c)$ does not admit totally umbilic real hypersurfaces and that a real hypersurface M^{2n-1} of $\mathbb{C}P^n(c)$, $n \geq 3$ is of type (A_1) if and only if M has at most two distinct principal curvatures at each point of M. These imply that real hypersurfaces of type (A_1) are the simplest examples of real hypersurfaces in $\mathbb{C}P^n(c)$ and that there exist no real hypersurfaces M all of whose geodesics are mapped to circles in $\mathbb{C}P^n(c)$.

Motivated by these facts, we characterize real hypersurfaces of type (A_1) in $\mathbb{C}P^n(c)$.

Theorem B ([4]). A connected real hypersurface M^{2n-1} of $\mathbb{C}P^n(c)$, $n \geq 2$ is locally congruent to a real hypersurface of type (A_1) of radius r $(0 < r < \pi/\sqrt{c})$ if and only if there exist orthonormal vectors $v_1, v_2, \ldots, v_{2n-2}$ perpendicular to the characteristic vector ξ_x at each point $x \in M$ satisfying the following two conditions:

(i) All geodesics $\gamma_i = \gamma_i(s)$ on M^{2n-1} with $\gamma_i(0) = x$ and $\dot{\gamma}_i(0) = v_i$ $(1 \le i \le 2n-2)$ are mapped to circles of positive curvature in $\mathbb{C}P^n(c)$;

 $^{2000\} Mathematics\ Subject\ Classification.\ {\it Primary}\ 53C40,\ Secondary\ 53C22.$

Key words and phrases. real hypersurfaces, real hypersurfaces of type (A_2) , complex projective spaces, geodesics, circles

The second author is partially supported by Grant-in-Aid for Scientific Research (C) (No. 23540097), Japan Society for the Promotion of Sciences.

(ii) All geodesics $\gamma_{ij} = \gamma_{ij}(s)$ on M^{2n-1} with $\gamma_{ij}(0) = x$ and $\dot{\gamma}_{ij}(0) = (v_i + v_j)/\sqrt{2}$ $(1 \le i < j \le 2n - 2)$ are mapped to circles of positive curvature in $\mathbb{C}P^n(c)$.

The purpose of this paper is to characterize *minimal* real hypersurfaces of type (A_2) in $\mathbb{C}P^n(c)$ from the viewpoint of Theorem B (see Theorem).

2. Preliminaries

Let M^{2n-1} be a real hypersurface with a unit normal local vector field \mathcal{N} of $\mathbb{C}P^n(c)$ furnished with the standard Riemannian metric g and the canonical Kähler structure J. The Riemannian connections $\widetilde{\nabla}$ of $\mathbb{C}P^n(c)$ and ∇ of M are related by the following formulas of Gauss and Weingarten:

(2.1)
$$\widetilde{\nabla}_X Y = \nabla_X Y + g(AX, Y) \mathcal{N},$$

$$(2.2) \widetilde{\nabla}_X \mathcal{N} = -AX$$

for arbitrary vector fields X and Y on M, where g is the Riemannian metric of M induced from the ambient space $\mathbb{C}P^n(c)$ and A is the shape operator of M in $\mathbb{C}P^n(c)$. An eigenvector of the shape operator A is called a *principal curvature vector* of M in $\mathbb{C}P^n(c)$ and an eigenvalue of A is called a *principal curvature* of M in $\mathbb{C}P^n(c)$. We set $V_{\lambda} = \{v \in TM \mid Av = \lambda v\}$ which is called the principal distribution associated to the principal curvature λ .

It is known that M admits an almost contact metric structure (ϕ, ξ, η, g) induced from the Kähler structure J of $\mathbb{C}P^n(c)$. The characteristic vector field ξ of M is defined as $\xi = -J\mathcal{N}$ and this structure satisfies

$$\phi^2 = -I + \eta \otimes \xi$$
, $\eta(\xi) = 1$ and $g(\phi X, \phi Y) = g(X, Y) - \eta(X)\eta(Y)$,

where I denotes the identity map of the tangent bundle TM of M. It follows from (2.1), (2.2) and $\widetilde{\nabla} J = 0$ that

$$(\nabla_X \phi)Y = \eta(Y)AX - g(AX, Y)\xi,$$

$$(2.4) \nabla_X \xi = \phi A X.$$

The following is the so-called equation of Codazzi:

$$(2.5) \qquad (\nabla_X A)Y - (\nabla_Y A)X = (c/4) \left(\eta(X)\phi Y - \eta(Y)\phi X - 2g(\phi X, Y)\xi \right).$$

We usually call M a Hopf hypersurface if the characteristic vector ξ of M is a principal curvature vector at each point of M. The following is useful for Hopf hypersurfaces in $\mathbb{C}P^n(c)$.

Proposition A ([5]). Suppose that ξ is a principal curvature vector at each point of M^{2n-1} in $\mathbb{C}P^n(c)$ and the corresponding principal curvature is δ . Then δ is locally constant on M. In addition, $A\phi X = ((\delta \lambda + (c/2))/(2\lambda - \delta))\phi X$ holds for any $X \in V_{\lambda}$ which is perpendicular to ξ .

In Proposition A, we remark that $2\lambda - \delta \neq 0$, since c > 0. Furthermore, every tube of sufficiently small constant radius around each Kähler submanifold of $\mathbb{C}P^n(c)$ is a Hopf hypersurface. This fact means that the notion of Hopf hypersurfaces is natural in the theory of real hypersurfaces in $\mathbb{C}P^n(c)$.

In $\mathbb{C}P^n(c)$ $(n \ge 2)$, a Hopf hypersurface all of whose principal curvatures are constant is locally congruent to one of the following (cf. [3, 6, 7]):

- (A₁) A geodesic sphere of radius r, where $0 < r < \pi/\sqrt{c}$;
- (A₂) A tube of radius r around a totally geodesic $\mathbb{C}P^{\ell}(c)$ $(1 \le \ell \le n-2)$, where $0 < r < \pi/\sqrt{c}$;
- (B) A tube of radius r around a complex hyperquadric $\mathbb{C}Q^{n-1}$, where $0 < r < \pi/(2\sqrt{c}$);
- (C) A tube of radius r around $\mathbb{C}P^1(c) \times \mathbb{C}P^{(n-1)/2}(c)$, where $0 < r < \pi/(2\sqrt{c})$ and $n \ (\geq 5)$ is odd:
- (D) A tube of radius r around a complex Grassmann $\mathbb{C}G_{2,5}$, where $0 < r < \pi/(2\sqrt{c})$ and n = 9;
- (E) A tube of radius r around a Hermitian symmetric space SO(10)/U(5), where $0 < r < \pi/(2\sqrt{c})$ and n = 15.

These real hypersurfaces are said to be of types (A_1) , (A_2) , (B), (C), (D) and (E). Summing up, real hypersurfaces of types (A_1) and (A_2) , we call them hypersurfaces of type (A). The numbers of distinct principal curvatures of these real hypersurfaces are 2, 3, 3, 5, 5, 5, respectively.

A direct calculation yields the following lemma.

Lemma 1. Every real hypersurface of types $(A_1), (A_2), (B), (C), (D)$ and (E), which is a tube of radius r, is minimal in the following cases:

- (A₁) $\cot(\sqrt{c} r/2) = 1/\sqrt{2n-1}$;
- (A₂) $\cot(\sqrt{c} r/2) = \sqrt{(2\ell+1)/(2n-2\ell-1)}$;
- (B) $\cot(\sqrt{c} r/2) = \sqrt{n} + \sqrt{n-1}$;
- (C) $\cot(\sqrt{c} r/2) = (\sqrt{n} + \sqrt{2})/\sqrt{n-2}$;
- (D) $\cot(\sqrt{c} r/2) = \sqrt{5}$;
- (E) $\cot(\sqrt{c} r/2) = (\sqrt{15} + \sqrt{6})/3$.

At the end of this section we review the definition of circles in Riemannian geometry. A real smooth curve $\gamma = \gamma(s)$ parametrized by its arclength s in a Riemannian manifold M with Riemannian connection ∇ is called a *circle* of curvature k if it satisfies the ordinary differential equations $\nabla_{\dot{\gamma}}\dot{\gamma} = kY_s$ and $\nabla_{\dot{\gamma}}Y_s = -k\dot{\gamma}$, where k is a nonnegative constant and Y_s is the unit normal vector of γ . A circle of null curvature is nothing but a geodesic. The definition of circles is equivalent to the equation

(2.6)
$$\nabla_{\dot{\gamma}}(\nabla_{\dot{\gamma}}\dot{\gamma}) + g(\nabla_{\dot{\gamma}}\dot{\gamma}, \nabla_{\dot{\gamma}}\dot{\gamma})\dot{\gamma} = 0.$$

3. Statements of results

Theorem. A connected minimal real hypersurface M^{2n-1} of $\mathbb{C}P^n(c)$, $n \geq 3$ is locally congruent to a tube of radius $r = (2/\sqrt{c})\cot^{-1}\sqrt{(2\ell+1)/(2n-2\ell-1)}$ $(0 < r < \pi/\sqrt{c})$ around a totally geodesic $\mathbb{C}P^{\ell}(c)$ with $1 \leq \ell \leq n-2$ if and only if there exist a function $d: M \to \mathbb{N}$ and orthonormal vectors $v_1, v_2, \ldots, v_{2n-2}$ perpendicular to the characteristic vector ξ_x at each point $x \in M$ satisfying the following two conditions:

- (i) All geodesics $\gamma_i = \gamma_i(s)$ on M^{2n-1} with $\gamma_i(0) = x$ and $\dot{\gamma}_i(0) = v_i$ $(1 \le i \le 2n-2)$ are mapped to circles of positive curvature in $\mathbb{C}P^n(c)$;
- (ii) All geodesics $\gamma_{ij} = \gamma_{ij}(s)$ on M^{2n-1} with $\gamma_{ij}(0) = x$ and $\dot{\gamma}_{ij}(0) = av_i + \sqrt{1-a^2}v_j$ $(1 \le i \le d_x < j \le 2n-2)$ are mapped to geodesics in $\mathbb{C}P^n(c)$, where $a = \sqrt{(2\ell+1)/(2n)}$.

In this case, d is automatically expressed as $d = 2\ell$.

Proof. We first investigate the "only if" part of our Theorem. It is known that a real hypersurface M of type (A_2) with radius r $(0 < r < \pi/\sqrt{c})$ has three distinct constant principal curvatures $\lambda_1 = (-\sqrt{c}/2)\tan(\sqrt{c}\,r/2), \lambda_2 = (\sqrt{c}/2)\cot(\sqrt{c}\,r/2)$ and $\delta = \sqrt{c}\cot(\sqrt{c}\,r) = \lambda_1 + \lambda_2$. As our real hypersurface M of type (A_2) is minimal, the principal curvatures λ_1 and λ_2 are expressed as follows (see Lemma 1):

(3.1)
$$\lambda_1 = -\frac{\sqrt{c}}{2} \sqrt{\frac{2n - 2\ell - 1}{2\ell + 1}} \quad \text{and} \quad \lambda_2 = \frac{\sqrt{c}}{2} \sqrt{\frac{2\ell + 1}{2n - 2\ell - 1}}.$$

Take orthonormal vectors $v_1, v_2, \ldots, v_{2n-2}$ orthogonal to ξ at an arbitrary point x of M in such a way that $v_1, v_2, \ldots, v_{2\ell}$ and $v_{2\ell+1}, \ldots, v_{2n-2}$ are principal curvature vectors with principal curvatures λ_1 and λ_2 , respectively. Then by virtue of Lemma in [4] we find that these vectors satisfy Condition (i). That is, we have the following:

- (i) All geodesics $\gamma_i = \gamma_i(s)$ on M with $\gamma_i(0) = x$ and $\dot{\gamma}_i(0) = v_i$ $(1 \le i \le 2\ell)$ are circles of positive curvature $|\lambda_1|$ in $\mathbb{C}P^n(c)$;
- (ii) All geodesics $\gamma_i = \gamma_i(s)$ on M with $\gamma_i(0) = x$ and $\dot{\gamma}_i(0) = v_i$ $(2\ell + 1 \le i \le 2n 2)$ are circles of positive curvature λ_2 in $\mathbb{C}P^n(c)$.

We next take the geodesic $\gamma_{ij} = \gamma_{ij}(s)$ on M^{2n-1} with $\gamma_{ij}(0) = x$ and $\dot{\gamma}_{ij}(0) = av_i + \sqrt{1 - a^2}v_j$ $(1 \le i \le d_x = 2\ell < j \le 2n - 2)$, where $a = \sqrt{(2\ell + 1)/(2n)}$. It is well-known that the shape operator A of our real hypersurface M satisfies (cf. [5]):

(3.2)
$$q((\nabla_X A)X, X) = 0$$
 for each $X \in TM$.

It follows from (2.1), (3.1) and (3.2) that

$$g(\widetilde{\nabla}_{\dot{\gamma}_{ij}}\dot{\gamma}_{ij}, \mathcal{N}) = g(A\dot{\gamma}_{ij}(s), \dot{\gamma}_{ij}(s)) = g(A\dot{\gamma}_{ij}(0), \dot{\gamma}_{ij}(0))$$
$$= a^2\lambda_1 + (1 - a^2)\lambda_2 = 0,$$

which yields Condition (ii).

We shall investigate the "if" part of our Theorem. We consider a connected real hypersurface M^{2n-1} satisfying Conditions (i) and (ii). We explain the discussion in [1] in detail. We first concentrate our attention on Condition (i). We study on an open dense subset

$$\mathcal{U} = \left\{ x \in M^{2n-1} \middle| \begin{array}{l} \text{the multiplicity of each principal curvature of } M^{2n-1} \text{ in} \\ \mathbb{C}P^n(c) \text{ is constant on some neighborhood } \mathcal{V}_x(\subset \mathcal{U}) \text{ of } x \end{array} \right\}$$

of M^{2n-1} . We take the geodesic $\gamma_i = \gamma_i(s)$ $(1 \le i \le 2n-2)$ on \mathcal{U} with initial vector v_i given by Condition (i). Since the curve γ_i , considered as a curve in $\mathbb{C}P^n(c)$, is a circle of positive curvature (, say) k_i , Equation (2.6) shows

$$\widetilde{\nabla}_{\dot{\gamma}_i} \widetilde{\nabla}_{\dot{\gamma}_i} \dot{\gamma}_i = -k_i^2 \dot{\gamma}_i.$$

On the other hand, using (2.1) and (2.2), we see that

$$\widetilde{\nabla}_{\dot{\gamma}_i}\widetilde{\nabla}_{\dot{\gamma}_i}\dot{\gamma}_i = -g(A\dot{\gamma}_i,\dot{\gamma}_i)A\dot{\gamma}_i + g((\nabla_{\dot{\gamma}_i}A)\dot{\gamma}_i,\dot{\gamma}_i)\mathcal{N}.$$

Comparing the tangential components of Equations (3.3) and (3.4), we have

$$g(A\dot{\gamma}_i,\dot{\gamma}_i)A\dot{\gamma}_i=k_i^2\dot{\gamma}_i.$$

This, together with $k_i \neq 0$, shows that at s=0 either $Av_i=k_iv_i$ or $Av_i=-k_iv_i$ holds for $i=1,2,\ldots,2n-2$. This means that our real hypersurface M^{2n-1} is a Hopf hypersurface with $A\xi=\delta\xi$ and that the linear subspace $T^0_xM^{2n-1}=\{v\in T_xM^{2n-1}|v\perp\xi_x\}$ of T_xM^{2n-1} is decomposed as:

$$T_x^0 M^{2n-1} = \{ v \in T_x^0 M \mid Av = -k_{i_1} v \} \oplus \{ v \in T_x^0 M \mid Av = k_{i_1} v \}$$
$$\oplus \cdots \oplus \{ v \in T_x^0 M \mid Av = -k_{i_2} v \} \oplus \{ v \in T_x^0 M \mid Av = k_{i_2} v \},$$

where $0 < k_{i_1} < k_{i_2} < \ldots < k_{i_g}$ and g is the number of distinct positive k_i $(i = 1, \ldots, 2n - 2)$. We decompose $T_x^0 M^{2n-1}$ in such a way at each point $x \in \mathcal{U}$.

Note that each k_{i_j} is a smooth function on \mathcal{V}_x for each $x \in \mathcal{U}$. We shall show the constancy of each k_{i_j} . It suffices to check the case of $Av_{i_j} = k_{i_j}v_{i_j}$. As k_{i_j} is a constant function along the curve γ_{i_j} in the ambient space $\mathbb{C}P^n(c)$, we have $v_{i_j}k_{i_j} = 0$. For any v_{ℓ} $(1 \leq \ell \neq i_j \leq 2n - 2)$, since A is symmetric, we have

(3.5)
$$g((\nabla_{v_{i_j}} A) v_{\ell}, v_{i_j}) = g(v_{\ell}, (\nabla_{v_{i_j}} A) v_{i_j}).$$

In order to compute Equation (3.5) easily, we extend the vectors $v_{\ell}, v_{i_j} (\in T_x^0 M)$ on some sufficiently small neighborhood $\mathcal{W}_x(\subset \mathcal{V}_x)$ in the following manner.

We define a smooth vector field V_{ℓ} on \mathcal{W}_x satisfying that $(V_{\ell})_x = v_{\ell}$ and V_{ℓ} is perpendicular to ξ . Next we shall define V_{ij} . First we define a smooth unit vector field W_{ij} on some "sufficiently small" neighborhood $\mathcal{W}_x(\subset \mathcal{V}_x)$ by using parallel displacement for the vector v_{ij} along each geodesic with origin x. We note that in general W_{ij} is not principal on \mathcal{W}_x , but $AW_{ij} = k_{ij}W_{ij}$ on the geodesic $\gamma_{ij} = \gamma_{ij}(s)$ with $\gamma_{ij}(0) = x$ and $\dot{\gamma}_{ij}(0) = v_{ij}$. We here define the vector field U_{ij} on \mathcal{W}_x as: $U_{ij} = \left(\prod_{\alpha \neq k_{ij}} (A - \alpha I)\right)W_{ij}$, where α runs over the set of all distinct principal curvatures of M^{2n-1} except for the principal curvature k_{ij} . We remark that $U_{ij} \neq 0$ on the neighborhood \mathcal{W}_x , because $(U_{ij})_x \neq 0$. Moreover, the vector field U_{ij} satisfies $AU_{ij} = k_{ij}U_{ij}(\perp \xi)$ on \mathcal{W}_{ij} . We define V_{ij} by normalizing U_{ij} in some sense. That is, when $\prod_{\alpha \neq k_{ij}} (k_{ij} - \alpha)(x) > 0$ (resp. $\prod_{\alpha \neq k_{ij}} (k_{ij} - \alpha)(x) < 0$), we define $V_{ij} = U_{ij}/\|U_{ij}\|$ (resp. $V_{ij} = -U_{ij}/\|U_{ij}\|$). Then we know that $AV_{ij} = k_{ij}V_{ij}$ on \mathcal{W}_x and $(V_{ij})_x = v_{ij}$. Furthermore, our construction shows that the integral curve of V_{ij} through the point x is a geodesic on M^n , so that in particular $\nabla_{V_{ij}}V_{ij} = 0$ at the point x.

Since the Codazzi equation (2.5) yields that $g((\nabla_X A)Y, Z) = g((\nabla_Y A)X, Z)$ for any $X, Y, Z(\bot \xi)$, at the point x we have

$$\begin{split} \text{(the left-hand side of (3.5))} &= g((\nabla_{v_\ell} A) v_{i_j}, v_{i_j}) \\ &= g((\nabla_{V_\ell} A) V_{i_j}, V_{i_j}) \\ &= g(\nabla_{V_\ell} (k_{i_j} V_{i_j}) - A \nabla_{V_\ell} V_{i_j}, V_{i_j}) \\ &= g((V_\ell k_{i_j}) V_{i_j} + (k_{i_j} I - A) \nabla_{V_\ell} V_{i_j}, V_{i_j}) \\ &= v_\ell k_{i_j} \end{split}$$

and

(the right-hand side of (3.5)) =
$$g(V_{\ell}, (\nabla_{V_{i_j}} A) V_{i_j})$$

= $g(V_{\ell}, \nabla_{V_{i_j}} (k_{i_j} V_{i_j}) - A \nabla_{V_{i_j}} V_{i_j})$
= $g(v_{\ell}, (v_{i_j} k_{i_j}) v_{i_j}) = 0$.

Thus we can see that $Xk_{i_j} = 0$ for any $X(\perp \xi) \in T_xM$. Next, we shall show that $\xi k_{i_j} = 0$. It follows from (2.4) and Proposition A that

$$\begin{split} (\nabla_{\xi}A)V_{i_j} - (\nabla_{V_{i_j}}A)\xi &= \nabla_{\xi}(AV_{i_j}) - A\nabla_{\xi}V_{i_j} - \nabla_{V_{i_j}}(\delta\xi) + A\nabla_{V_{i_j}}\xi \\ &= \nabla_{\xi}(k_{i_j}V_{i_j}) - A\nabla_{\xi}V_{i_j} - \delta\phi AV_{i_j} + A\phi AV_{i_j} \\ &= (\xi k_{i_j})V_{i_j} + (k_{i_j}I - A)\nabla_{\xi}V_{i_j} - k_{i_j}\Big(\delta - \frac{\delta k_{i_j} + (c/2)}{2k_{i_j} - \delta}\Big)\phi V_{i_j}. \end{split}$$

On the other hand, the Codazzi equation (2.5) implies

$$g((\nabla_{\xi} A)V_{i_j} - (\nabla_{V_{i_j}} A)\xi, V_{i_j}) = 0.$$

Hence, $\xi k_{i_j} = 0$. Therefore we can see that the differential dk_{i_j} of k_{i_j} vanishes at the point x, which shows that every k_{i_j} (> 0) is constant on \mathcal{W}_x , since we can take the point x as an arbitrarily fixed point of \mathcal{W}_x . So the principal curvature function k_{i_j} is locally constant on the open dense subset \mathcal{U} of M^{2n-1} . This, together with the continuity of k_{i_j} and the connectivity of M^{2n-1} , implies that k_{i_j} is constant on the hypersurface M^{2n-1} . Hence all principal curvatures of M^{2n-1} are constant if M^{2n-1} satisfies Condition (i).

Next, we consider Condition (ii). Since the above argument tells us that every v_i $(1 \le i \le 2n-2)$ is principal, we can set $Av_i = \mu_i v_i$. On the other hand, Condition (ii) shows that $g(A\dot{\gamma}_{ij}(0),\dot{\gamma}_{ij}(0)) = 0$, so that

(3.6)
$$a^2 \mu_i + (1 - a^2) \mu_j = 0 \text{ for } 1 \le \forall i \le d_x < \forall j \le 2n - 2.$$

This, combined with $0 < a^2 = (2\ell + 1)/(2n) < 1$, implies that M is a Hopf hypersurface with three distinct constant principal curvatures δ, μ_i and μ_j satisfying Equation (3.6). Hence M is of either type (A₂) or type (B). Needless to say, all minimal real hypersurfaces of type (A₂) satisfy Equation (3.6) (see the "only if" part of the proof of our Theorem).

Finally we shall check the case of type (B). We know that a real hypersurface M of type (B) with radius r (0 < r < $\pi/(2\sqrt{c}$)) has three distinct constant principal curvatures $\lambda_1 = (\sqrt{c}/2)\cot((\sqrt{c}\,r)/2 - \pi/4), \lambda_2 = (\sqrt{c}/2)\cot((\sqrt{c}\,r)/2 + \pi/4)$ and $\delta = \sqrt{c}\cot(\sqrt{c}\,r)$. As our real hypersurface M of type (B) is minimal, the principal curvatures λ_1 and λ_2 are expressed as (see Lemma 1):

(3.7)
$$\lambda_1 = -\frac{\sqrt{c}}{2} \frac{1 + \sqrt{n}}{\sqrt{n-1}} \quad \text{and} \quad \lambda_2 = \frac{\sqrt{c}}{2} \frac{\sqrt{n-1}}{\sqrt{n-1}}.$$

The rest of the proof is to show that the principal curvatures λ_1 and λ_2 in (3.7) satisfy neither $a^2\lambda_1+(1-a^2)\lambda_2=0$ nor $a^2\lambda_2+(1-a^2)\lambda_1=0$. Suppose that $a^2\lambda_1+(1-a^2)\lambda_2=0$. Then we have $-(2\ell+1)(1+\sqrt{n})+(2n-2\ell-1)(\sqrt{n}-1)=0$, so that $\sqrt{n}=n-2\ell-1$. Hence we can set $\sqrt{n}=p$ for some $p\in\mathbb{N}$, which implies that $p=p^2-2\ell-1$. Thus we obtain the equality $p(p-1)=2\ell+1$, which is a contradiction. We next suppose that $a^2\lambda_2+(1-a^2)\lambda_1=0$. By easy computation we get $(2\ell+1)(\sqrt{n}-1)-(2n-2\ell-1)(1+\sqrt{n})=0$, so that $-\sqrt{n}=n-2\ell-1$.

Then by the same discussion as in the case of $\sqrt{n} = n - 2\ell - 1$ we also obtain a contradiction in this case.

References

- [1] T. Adachi, M. Kimura and S. Maeda, A chracterization of all homogeneous real hypersurfaces in a complex projective space by observing the extrinsic shape of geodesics, Arch. Math. (Basel) 73 (1999), 303–310.
- [2] J. Berndt, Real hypersurfaces with constant principal curvatures in complex hyperbolic space, J. Reine Angew. Math. 395 (1989), 132–141.
- [3] M. Kimura, Real hypersurfaces and complex submanifolds in complex projective space, Trans. Amer. Math. Soc. **296** (1986), 137–149.
- [4] S. Maeda and K. Ogiue, Characterizations of geodesic hyperspheres in a complex projective space by observing the extrinsic shape of geodesics, Math. Z. **225** (1997), 537–542.
- $[5] \ \ Y. \ Maeda, \ On \ real \ hypersurfaces \ of \ a \ complex \ projective \ space, \ J. \ Math. \ Soc. \ Japan \ \mathbf{28} \ (1976), \ 529-540.$
- [6] R. Niebergall and P.J. Ryan, *Real hypersurfaces in complex space forms*, in: Tight and Taut submanifolds, T.E. Cecil and S.S. Chern (eds.), Cambridge Univ. Press, 1998, 233–305.
- [7] R. Takagi, On homogeneous real hypersurfaces in a complex projective space, Osaka J. Math. 10 (1973), 495– 506.

communicated by Yasunao Hattori

Department of Mathematics, Saga University, 1 Honzyo, Saga 840-8502, Japan $E\text{-}mail\ address$: 11634009@edu.cc.saga-u.ac.jp

DEPARTMENT OF MATHEMATICS, SAGA UNIVERSITY, 1 HONZYO, SAGA 840-8502, JAPAN *E-mail address*: smaeda@ms.saga-u.ac.jp