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ON THE ORE-KRASNER EQUATION

AKRAM LBEKKOURI
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Abstract. It is well known that a finite totally ramified extension of a local field can be defined

by infinitely many Eisenstein polynomials. Let K be a finite extension of Qp.
First O.Ore in [5] and [6] found some congruencies that must be satisfied by the Eisenstein
polynomials of K[X] of degree p defining cyclic extensions. Then M.Krasner in [2], with a different
target defined an equivalence relationship between the Eisenstein polynomials defining the same

extension of any degree n over K, then proved the existence of a privileged representative of
each equivalence class which he called ”Reduite”. In a previous work in [4, I have considered the
normality problem for an Eisenstein polynomials of degree p and of degree p2 in the case of the

base field is K = Qp, when the residue field is simply Fp, the finite field of p elements.
The aim of the present article is the explicit determination of such characteristically polynomials
and their Reduites, in the cyclic case of degree p, where the base field is K a finite extension of
Qp. Also illustrating examples are given.

1. INTRODUCTION

Let p be an odd prime number. Consider K a finite extension of Qp, the field of p-adic numbers.
Write e for the ramification index of K/Qp. Let L/K be a totally ramified extension of degree
p and fix π an uniformiser of L, (L = K(π)) so that it is a root of an Eisenstein polynomial
f(X) =

∑p
i=0 aiX

i. Denote by v(.) the normalized valuation of L such that v (π) = 1. We have
v(p) = ep, indeed v(p) generates v(Q?

p), which is a subgroup of index e in v(K?), which is itself a
subgroup of index p in v(L?) = Z.

1.1. Calculation of the ramification numbers. For σ a K-homomorphism of L in an algebraic
closure, the lower ramification number (jump, break) relative to σ is vσ = v(σ(π)−π

π ), in this case of
degree p, vσ is independent of the choice of σ and satisfies vσ ≤ ep

p−1 , (see [2] ch VI. page 138 and
[7] ch IV.page 88) . The following method due to Krasner (see [2] ch V. page 136) gives the value
of the lower ramification number with respect to the coefficients of the minimal polynomial.
Set g (X) = X−1f (π (X + 1)) =

∑p−1
j=0 djX

j with dj =
∑p

t=j+1 at

(
t

j+1

)
πt, so that the lower rami-

fication number is given by vσ = v(d0)−v(dp−1)
p−1 .

1.2. Needed results:

Lemma 1.1. (Krasner) Let K be a local field, Ka be its algebraic closure, G the Galois group of
Ka/K and w : Ka → Q ∪ {∞}, the normalized valuation with w (K) = Z ∪ {∞}.
If α, β ∈ Ka and one has w (β − α) > supσ∈G;σ(α)6=α (w (σ (α) − α)), then K (α) ⊆ K (β) .

See for example [1] ch:III, §.3 page:69
9
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The Theorems (Th.I Ch.9 and Th.II Ch.9 pages 128-129 in [2] due to M.Krasner) can be sum-
marized in the following theorem:

Theorem 1.2. Let f (X) =
∑n

i=0 aiX
i be a polynomial of coefficients in k, a p-adic field having

tj roots of the same valuation αj corresponding to the segment joining the point
[
ij ; v(aij )

]
to the

point
[
ij + tj ; v(aij+tj )

]
in the Newton polygon of f. Then:

• 1.) These roots satisfy an equation of degree tj the coefficients of which are in k.
• 2.) β is one of the said roots and π is a uniformising element of k then the π−αj β satisfies an
equation of degree tj congruent modulo π to∑ij+tj

i=ij

ai

π
−(i−ij)αj+v(aij )

Xi−ij ≡ 0,

with αj =
v(aij )−v(aij+tj )

tj
.

For details on the Newton-polygon see for example [1].

Lemma 1.3. (Safarevic) Let K/Qp be an extension of degree n , K does not contain the p − th
roots of unity. Let G be a p−group of order pm, having d generators. Denote by α the number of
automorphisms of G. If d ≤ n + 1 then the number of galois extensions of K having G as galois
group is
α−1p(n+1)(m−d)

(
pn+1 − 1

) (
pn+1 − p

)
........

(
pn+1 − pd−1

)
.

See [4]
• Note: The number of all cyclic totally ramified extensions of degree p is then pn+1−1

p−1 − 1, since
only one is unramified. And when K = Qp the number is p.

2. Normality and Eisenstein polynomials

2.1. First conditions on the coefficients of f : Let f(X) =
∑p

i=0 aiX
i, be an Eisenstein poly-

nomial with coefficients in K a finite extension of Qp and f (π) = 0.
From the paragraph above we have v = v(d0)−v(dp−1)

p−1 , with d0 =
∑p

t=1 at

(
t
1

)
πt, and dp−1 = πp, that

is v = v(d0)−p
p−1 .

Since in the sum d0 the valuations of the various terms v (t) + v (at) + t, are different in pairs thus,
there exists only one i0 ; 1 ≤ i0 ≤ p such that v (d0) = v (i0) + v (ai0) + i0. Here two cases are to
be distinguished:
First case 1 ≤ i0 ≤ p − 1, and
Second case i0 = p.
First case:

Assume that there exists an index i0, 1 ≤ i0 ≤ p − 1, such that the coefficient ai0 satisfies:
v (d0) = v (i0) + v (ai0) + i0 = (p − 1) v + p, thus neither v(d0) nor v are divisible by p.
Furthermore since v (d0) < v (pπp), we get v < v(p)

p−1 = ep
p−1 .

Then we have the following:
• v (ai0) + i0 = (p − 1) v + p.
• v (ai0) ≤ v (p) = ep.
• v (aj) ≥ v (ai0) for 1 ≤ j ≤ p − 1.
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• v (aj) > v (ai0) for j < i0.
The results above can be so recapitulated:

Proposition 2.1. Let K(π)/K be a totally ramified extension of degree p , where K is a finite
extension of Qp and π a root of an Eisenstein polynomial f (X) =

∑p
i=0 aiX

i.
Assume that v the lower ramification number of K(π)/K is a strictly positive integer.
Then we have:
1. v < ep

p−1 , and
2. p does not divide v.
If and only if there exists one and only one coefficient ai0 of f ; 1 ≤ i0 ≤ p − 1; such that:
• v (ai0) + i0 = (p − 1) v + p.
• v (ai0) ≤ v (p) = ep.
• v (aj) ≥ v (ai0) for 1 ≤ j ≤ p − 1.
• v (aj) > v (ai0) for j < i0.

Second case:
In this case, i0 = p, and v (d0) = v (pπp), so v (d0) = (e + 1) p.
Since v(pπp)−p

p−1 = ep
p−1 , thus v = ep

p−1 , v being integer also (p − 1) divides e and p divides v.
From v (d0) = (e + 1) p, we get v (ai) ≥ (e + 1) p, for 1 ≤ i ≤ p − 1.

2.2. Normality and coefficients of f : According to Krasner’s Lemma, it is clear that an exten-
sion K(π)/K of degree p defined by an Eisenstein polynomial f (X) =

∑p
i=0 aiX

i , f (π) = 0, is
normal, that is cyclic, if and only if:
• 1.) The lower ramification number v is integer.
• 2.) The roots σ(π) of f have an Hensel expansion till the order v + 1 in K(π) that is
σ(π) = π + ψπv+1 + A(π) with A(π) ∈ K(π), v(A(π)) > v + 1, ψ a (pf0 − 1)-th root of unity
belonging to K, and f0 the residual degree of K(π) that is of K. For more details see [3].

Consider K (π) /K a totally ramified extension of degree p (where K is a finite extension of Qp),
such that the ramification number v is an integer.
Define g(X) = f(X + π)) =

∑p
t=0 btX

t. So,
g(X) =

∑p
t=0

∑p
i=t ai

(
i
t

)
πi−tXt , with bt =

∑p
i=t ai

(
i
t

)
πi−t , bo = 0 and bp = 1.

The roots of g must be 0 and (p − 1) roots β of valuation v + 1.
Hence the Newton-polygon (See for example [1] Chap. III) of g, will have:
• One infinite vertical segment, the semi line {(1, y) , v (b1) ≤ y ≤ ∞}, and
• An oblique segment joining the point [1; v (b1)] to the the point [p; 0].
By application of Theorem (1.2) above, the condition (2.) is satisfied if and only if the π−(v+1)β,
are roots of the congruence:

p∑
t=1

btX
t−1

πv(b1)−(t−1)(v+1)
≡ 0 modulo π. (2.1)

Therefore, we have:
p∑

t=1

btX
t−1

πv(b1)−(t−1)(v+1)
≡ ω

(
Xp−1 − ψp−1

)
modulo π, (2.2)
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ω being an element of F ?
p . Also the residue classes of the π−(v+1)β, that are the jψ with 1 ≤ j ≤ p−1

and ψ is a (pf0 − 1)-th root of unity , form the elements of the set F ?
p ψ exactly.

Since v(bt) > v(b1) − (t − 1)(v + 1), for 1 < t ≤ p − 1, then 2.2 is reduced to:

bpX
p−1

πv(b1)−(p−1)(v+1)
+

b1

πv(b1)
≡ ω(Xp−1 − ψp−1) modulo π. (2.3)

By taking into account the inequalities of (Proposition (2.1) First case) we get v (b1) = (p − 1) (v + 1).
So,

Xp−1 +
b1

πv(b1)
≡ ω

(
Xp−1 − ψp−1

)
modulo π. (2.4)

Therefore, ω = 1.

2.2.1. First case. In this case we have, 0 < i0 < p.
From v (ai0) + v (i0) + i0 = v (p − 1) + p, v is integer if and only if (p − 1) divides v (ai0) + i0 − p.
To sum up the extension is normal if and only if
• 1.) (p − 1) divides v(ai0) + i0 − p
• 2.)

b1

πv(b1)
≡ −ψp−1 modulo π. (2.5)

We have: b1 ≡ i0ai0π
i0−1 modulo π(p−1)(v+1)+1. Set πp = uτ , with u a unit, and write v (ai0) = n0p

that is a0 = τα0 with α0 a unit of K.
So, we want

i0ai0π
i0−1

π(p−1)(v+1)
≡ −ψp−1 modulo π. (2.6)

That is, we must have

i0ai0τ
−n0 ≡ −ψp−1un0 modulo π. (2.7)

First prove that u ≡ τ−1N (π) modulo π, (where N (π) = NK(π)/K (π)), which is equivalent to the
fact that v (N (π) − πp) > p .
Indeed the conjugates of π (distinct from π ) can be written in the form π + πzi, where
v (zi) = v (the lower ramification number), N (π) = π (π + πz1) ...... (π + πzp−1), that is
N (π) = πp +

∑
πpzi1zi2 ....zir , with r ≥ 1 that is, v (N (π) − πp) > p.

Now, N (π) = (−1)p
a0 = −a0 , p is odd, finally we get u ≡ −α0 modulo π, so that (2.7) becomes

i0ai0 ≡ (−1)(n0+1)
ψp−1an0

0 modulo τn0+1 .

Conversely, it is clear that if there exists a coefficient ai0 satisfying (2.7) with n0 =
v(ai0)

p , then by
equivalence, every root σ (π) of f (x) = 0, will have an Hensel expansion till the order v + 1 in the
form σ (π) = π + λπv+1 + ......, where λ is a primitive (pf0 − 1)-th root of unity of K.
Finally, the normality holds according to Krasner’s Lemma.
Therefore the result established above can be formulated as

Theorem 2.2. (Normality theorem First version) Let f (X) =
∑p

i=0 aiX
i, f (π) = 0, be an Eisen-

stein polynomial of degree p; the coefficients of which are integer in K; K being a finite extension
of Qp, and f0 the residue degree of K.
Assume that there exists an index i0, 1 ≤ i0 ≤ p − 1, such that v(ai0) + i0 = inf1≤i≤p(v( ai) + i).
Then K(π)/K is normal if and only if :
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• 1.) (p − 1) divides n0 + i0 − p ; with n0 =
v(ai0)

p .
• 2.) There exists ψ a

(
pf0 − 1

)
-th root of unity of K, such that

i0ai0 ≡ (−1)n0+1
ψp−1an0

0 modulo τn0+1. (2.8)

(Note that in this case v(ai0 )+i0−p

p−1 = n0p+i0−p
p−1 = v, is the lower ramification number of K(π)/K,

and τ is a uniformizer of K.)

Remark:
It is easy to notice that the principal index i0 can be expressed as i0 = p − v; v being the integer
belonging to {1, 2, ..., p − 1} such that v ≡ v modulo p. We can too express the number n0 as
n0 = v − v−v

p .
So, a second version of the result above, can be formulated as follows:

Theorem 2.3. (Normality theorem Second version) Let f (X) =
∑p

i=0 aiX
i, f (π) = 0, be an

Eisenstein polynomial of degree p; the coefficients of which are integer in K; K being a finite
extension of Qp, and f0 the residue degree of K.
Assume that the lower ramification number v of K(π)/K, is a positive integer not divisible by p.
Then K(π)/K is normal if and only if:
There exists ψ a (pf0 − 1) -th root of unity of K, such that

(p − v)ap−v ≡ (−1)v+1−((v−v)/p)
ψp−1a

v−((v−v)/p)
0 modulo τv+1−((v−v)/p). (2.9)

(τ being a uniformizer of K.)

The following little lemma will be necessary:

Lemma 2.4. Let K(π)/K be a cyclic wildly ramified extension of degree p , K being a finite
extension of Qp and π a uniformizer of K(π).
Then there exists a suitable uniformizer τ of K such that:
N(π) ≡ τ modulo τv+1, where N(π) is the norm of π in the extension K(π)/K and v (an integer
strictly positive) is the lower ramification number of K(π)/K.

Proof. Since the extension is cyclic, then for any generator σ of gal(K(π)/K), we have
σi(π) ≡ π + iξπv+1 modulo πv+2 for 1 ≤ i ≤ p − 1 with ξ a suitable root of unity of K(π).
Take for example π′ = π + πv+1. Then σ(π)

π′ = 1+ξπv+...
1+πv . Hence σ(π)

π′ ∈ Uv
K(π) , where Uv

K(π) is the
subgroup of units z of K(π) such that z − 1 ≡ 0 modulo πv.
Furthermore we know that U1

K ⊇ NK(π)/K(U1
K(π)) and NK(π)/K(U1

K(π)) is a subgroup of index p

of U1
K in the case that K(π)/K is normal and totally ramified.

By use of the Herbrand function ψ (see [7] ch:IV §.3 page 73) we get ψ(v) = v (see [7] ch:V §.3 page
83). By Proposition:4 of [7]( ch:V §.3 page 84), we have Uv

K ⊇ NK(π)/K(Uv
K(π)). Therefore we can

affirm that NK(π)/K(π)/NK(π)/K(π′) ∈ Uv
K . By taking NK(π)/K(π′) = τ , the result follows. ¤

Consequences:
In this case we easily can notice the following:
• 1.) From the expression of the lower ramification number v, we have v ≡ p − i0 modulo p.
• 2.) Since vK(ai) ≥ vK(ai0) = n0, for any 1 ≤ i ≤ p − 1, we can deduce that:
vK(ai) ≥ v − b v

pc, for any 1 ≤ i ≤ p − 1, where bαc is the greater integer less or equal to α.
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Indeed, 1 ≤ i0 ≤ p − 1 thus v+i0
p − 1 < v

p ; (we know that v+i0
p is integer ) hence we have:

v+i0
p − 1 ≤ b v

pc and then n0 = v − (v+i0
p − 1) ≥ v − b v

pc .
• 3.) According to the lemma 2.4 above we have that: a0 ≡ τ modulo τv+1, for some suitable
uniformizer τ .
Note: If v 6= 1, it is not true that a0 ≡ τ modulo τv+1 for any uniformizer τ of K.

Example:
Consider f(X) = X3 + 3X2 + 3 as a polynomial of Q3[X] with f(π) = 0. f is an Eisenstein
polynomial, and the ramification number of the extension Q3(π)/Q3 is 1. Although the integrity
of the ramification number the extension is not normal.
Now the discriminant of f and that of the extension Q3 (π) /Q3 is, −567 = (9

√
−7)2, the splitting

field of f over Q3 is Q3(π,
√
−7). Q3(

√
−7)/Q3 is a quadratic extension generated by a root of

X2 + 7 and X2 + 7 ≡ X2 + 1 modulo 3 . Furthermore, X2 + 1 being irreducible in Z/3Z [X], so
the residue degree of Q3

(√
−7

)
/Q3 is 2. That is Q3

(√
−7

)
/Q3 is unramified and contains ζ32−1

a 8 − th root of unity. Then we have that f is still Eisenstein as polynomial of Q3

(√
−7

)
[X].

Therefore, the formula
i0ai0 ≡ (−1)n0+1

ψp−1an0
0 modulo τn0+1. (2.10)

is satisfied.
Indeed p = 3, i0 = 2, ai0 = a0 = 3, and n0 = 1, also it suffices to take τ = 3, and ζ32−1 = i hence
we get 6 ≡ −3 modulo 9.
Then we can say that Q3

(
π,

√
−7

)
/Q3

(√
−7

)
is normal which is a foregone conclusion.

2.2.2. Second case. In this case we have: i0 = p, v = ep
p−1 , and v(ai) ≥ (e + 1)p for 1 ≤ i ≤ p − 1.

Furthermore we verify that the coefficient b1 of g (X) = f (X + π) =
∑p

t=0 btX
t, has the valuation

v(b1) = (p − 1)(v + 1).
Therefore from congruence (2.3) we have that the extension is normal if and only if:
• 1.) v is integer.
• 2.)

b1

πv(b1)
≡ −ψp−1 modulo π. (2.11)

that is:
• 1.) (p − 1) divides e.
• 2.)

pπp−1

πp(e+1)−1
≡ −ψp−1 modulo π. (2.12)

We prove the following Lemma:

Lemma 2.5. For every w ∈ K, with v (w) > 0, the number 1 + w is a (p − 1)-th power of some
element of K.

Proof. The assertion comes from the fact that Xp−1 − 1 − w = 0, has a root in K.
Indeed by passage to the residue classes we get the equation Xp−1 − 1 = 0, which completely splits
in the residue field of K, then Hensel’s Lemma ends the proof. ¤

Therefore, the congruence (2.12) is equivalent to:
−p (−α0τ)−e = ψp−1 (1 + w), with w ∈ K and v (w) > 0.
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Therefore (2.12) holds if, −p is a (p − 1)-th power of some element of K.
Conversely, if −p = z(p−1), with z ∈ K, then we can write z = (−α0τ)e1 (1 + y)ψ, where e1 = e

p−1 ,
y ∈ K with v (y) > 1, and ψ is a

(
pf0 − 1

)
-th root of unity of K, hence (2.12) holds.

On the other hand, it is well known that the extension arising from Qp by adjoining a primitive
p-th root of unity equals the last one obtained by adjoining a (p − 1)-th root of −p, see ([1]ch:III,
exercise:7 page 74 ), ie: Qp(ξp) = Qp( p−1

√
−p).

Then we can state the result:

Theorem 2.6. Let f be an Eisenstein polynomial of degree p ; f (π) = 0; the coefficients of which
are integer in K, a finite extension of Qp. Assume that:
• 1.) (p − 1) divides e.
• 2.) The lower ramification number of K(π)/K is v = ep

(p−1) , (it is also integer).
Then: K(π)/K is normal if and only if −p is p − 1-th power in K.
(That is if and only if K contains the p-th roots of unity).

In such case K(π)/K is a cyclic Kummer extension.

3. Computation of some Reduites

Let K be a finite extension of Qp containing no primitive p − th root of unity, in his article [2]
M.Krasner established an equivalence relationship between the different Eisenstein polynomials of
a same given degree, with coefficients in K. In the sense that two Eisenstein polynomials f1 and
f2 belong to the same equivalence class if and only if K(π1) = K(π2) with f1(π1) = f2(π2) = 0.
Furthermore he puts and answers the question:
”Under what conditions on their coefficients two Eisenstein polynomials are equivalent?”
Unfortunately the said article is in an old way (1938) written and contains some typing mistakes.
Naturally, M.Krasner is in all innocence of the mistakes. Curiously, when asking some specialists
(some of them having been Krasner’s students) about the Reduite, I couldn’t obtain any answer. I
had the feeling that nobody has read this article. It seems that everybody knows that M.Krasner
has discovered the Reduite, but none can calculate it.
Indeed, M.Krasner in ([2] Theorem:I, ch:10, page: 164) proved the existence of some privileged rep-
resentative of an equivalence class that he called Reduite. Then he described it as far as possible.
A Reduite of a given Eisenstein polynomial, in Krasner’s sense, is an equivalent poly-
nomial having a minimal number of nonzero coefficients, furthermore the nonzero
coefficients have a finite π − adic Hensel expansion with a minimal number of nonzero
terms, with respect to a uniformizer π of K.
Note that a Reduite is not unique. Indeed it especially depends on the chosen uniformizer π of K.

Starting by an Eisenstein polynomial:
f(X) = Xn + an−1X

n−1 + ... + a0 = 0, ai ∈ K,
he wrote ai =

∑∞
t=1 γ

(i)
t πt with γ

(i)
t a pf0 − 1-th root of unity, f0 being the residue degree of K.

Then he made the following reordering of terms:
f(X) = Xn +

∑∞
t=n+1 γ

(t−nb t
n c)

b t
n c πb t

n cXt−nb t
n c + γ

(0)
1 π.

bαc being the greater integer less or equal to α.
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For the special and remarkable case when K(π)/K is galois of prime degree p with the lower rami-
fication number v, he explicitly calculated the said Reduite (see [2] ch:10, page 168), that is:

Xp +
∑

p+v(p−1)≤i<p(v+1);p-i γ
(i−pb i

p c)
b i

p c πb i
p cXi−pb i

p c + γ
(0)
1 π + γ

(0)
v+1π

v+1.

(Note that in the said article, a typing mistake slipped out in this formula, the term γ
(0)
1 π was

missing.)
Through the variable changes: t = i − pb i

pc and j = b i
pc = i−t

p , the form of the Reduite above
becomes:
Xp +

∑p−1
t=p−v+pb v

p c
∑v

j=v−b v
p c γ

(t)
j πjXt + γ

(0)
1 π + γ

(0)
v+1π

v+1.
v being the integer belonging to {1, 2, ..., p − 1} such that v ≡ v modulo p.
It is easy to see that p − v + pb v

pc = p − v.
By taking into consideration the consequence 2) of theorem (2.2) this Reduite can be written, with
respect to the initial coefficients of f , as follows:
Xp+

∑p−1
t=p−v at

(v)Xt+a0, with at
(v) ≡ at modulo πv+1, a0 = γ

(0)
1 π+γ

(0)
v+1π

v+1, when the expansion

of a0 is a0 =
∑∞

i=1 γ
(0)
i πi.

That is by choosing a suitable uniformizer π such that a0 ≡ ξπ modulo πv+1 with ξ a suitable root
of unity; see consequence 3) of theorem (2.2); we can say that:
the Reduite of f is:
Xp +

∑p−1
t=p−v at

(v)Xt + a0
(v+1), with at

(v) ≡ at modulo πv+1, a0
(v+1) ≡ a0 modulo πv+2.

To sum up the Reduite of an Eisenstein polynomial of degree p defining a normal (=cyclic) exten-
sion is simply its reduction, as described above, with respect to a suitable uniformizer.
And as is has been told above in the definition of the reduite, ”the reduite is not unique since it
depends essentially of the chosen uniformizer.”
In this case, when already knowing the form of the Reduite, and by choosing a suitable uniformizer
π such that a0 ≡ ξπ modulo πv+1, with ξ a suitable root of unity, it is easy to verify that effectively
f and its Reduite define the same extension, by means of a simple and classical proof.
Indeed, using the current notations, consider the Eisenstein polynomial, f(X) =

∑p
i=0 aiX

i, with
coefficients in K a finite extension of Qp, and set f(π) = 0, such that K(π)/K is normal.
Denote by g the reduite of f as calculated above. Write π0 for a root of g and π = π1, π2, ...., πp; the
various roots of f . Then compute the following expression f(π0) − g(π0) = f(π0), in two different
ways:
f(π0) =

∏p
i=1(π0 − πi), and f(π0) − g(π0) = πp

0 − πp
0 +

∑p−1
i=1 αiπ

i
0 + α0.

Where αi = ai − ai
(v) for p − v ≤ i ≤ p − 1, and α0 = a0 − a0

(v+1), since we have α0 ≡ 0 modulo
πv+2, and αi ≡ 0 modulo πv+1. v being the ramification number of K(π)/K.
Then according to the normalized valuation of K(π):
v(α0) ≥ p(v + 2) and v(αiπ

i
0) ≥ p(v + 1) + i for 1 ≤ i ≤ p − 1.

So we get v(f(π0) − g(π0)) = v(
∏p

i=1(π0 − πi)) ≥ p(v + 1) + 1, thus there exists at least one i,
1 ≤ i ≤ p, such that v(π0 − πi) ≥ v + 1 + 1

p > v + 1, then Krasner’s Lemma ends the proof.
So we have the result:

Theorem 3.1. Let f(X) =
∑p

i=0 aiX
i be an Eisenstein polynomial of degree p

(p being any odd prime number), with coefficients in K, a finite extension of Qp, f(π) = 0.
Assume that K(π)/K is normal having a lower ramification number v not divisible by p.
Then K(π)/K can be generated by a root of the Reduite of f namely the polynomial:
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Xp +
∑p−1

t=p−v at
(v)Xt + a0

(v+1), with at
(v) ≡ at modulo πv+1, and a0

(v+1) ≡ a0 modulo πv+2.
For π a uniformizer of K such that: a0 ≡ ξπ modulo πv+1, with ξ a suitable root of unity.

Note:
In the special case when the lower ramification number v ≡ 1 modulo p, which is manifestly the
case if the base field K = Qp, we have i0 = p − 1, in the formula (2.9) so n0p = v(p − 1) + 1, then
(2.9) becomes:

(p − 1)ap−1 ≡ (−1)v+1−((v−1)/p)ψp−1a
v−((v−1)/p)
0 modulo πv+1−((v−1)/p). (3.1)

Then for the Reduite we must take:
ap−1

(v) ≡ ap−1 modulo πv+1, that is ap−1
(v) =

∑v
t=v−((v−1)/p) γ

(p−1)
t πt.

Hence the Reduite is the following trinomial polynomial:
Xp + (

∑v
t=v−((v−1)/p) γ

(p−1)
t πt)Xp−1 + (γ(0)

1 π + γ
(0)
v+1π

v+1),

with the normality condition that: γ
(p−1)
v−((v−1)/p) = (−1)v−((v−1)/p)ψp−1(γ(0)

1 )v−((v−1)/p).
That is, if K = Qp :
Xp + γ

(p−1)
1 πXp−1 + (γ(0)

1 π + γ
(0)
2 π2),

with the normality condition that: γ
(p−1)
1 = −γ

(0)
1 .

So, we can deduce the following result:

Corollary 3.2. Let p be any odd prime number. Every cyclic totally ramified extension of degree
p over Qp is generated by a root of an Eisenstein polynomial in the form:
Xp + pXp−1 + (p − 1) p + dp2, with d an integer verifying 0 ≤ d ≤ p − 1.

It is noteworthy that we get exactly p Reduites relative to the different p cyclic totally ramified
extension of degree p of Qp which meets the number computed by Safarevic (1.3).
Particularly let us determine the reduite of the wild ramified subextension Qp (π) of Qp

(
τp2

)
, where

τp2 is a primitive p2−th root of unity.

Consider g a generator of
(
Z/p2Z

)?, and α ≡ gp modulo p2, we can take π =
∏p−1

i=1

(
1 − ταi

p2

)
, with

α1 = α, and αi ≡ αi modulo p2, as primitive generator of the said extension.
Since π = NQp(τp2)/Qp(π)

(
1 − τp2

)
, we get NQp(π)/Qp

(π) = p, that is a0 = −p ≡ (p − 1)
(
p + p2

)
modulo p3, thus the reduite relative to the wild ramified subextension Qp (π) of Qp

(
τp2

)
,

is Xp + pXp−1 + (p − 1)
(
p + p2

)
therefore we have the result:

Corollary 3.3. Let p be any odd prime number. Then the wild ramified subextension of Qp(τp2)
where τp2 is a primitive p2−th root of unity can be generated by the roots of the polynomial:
Xp + pXp−1 + (p − 1)

(
p + p2

)
.

Examples:
As numerical evidence we calculate the Reduites relative to the following extensions K/Qp:

1.K/Qp is the wild ramified subextension of Qp

(
τp2

)
; τp2 is a primitive p2−th root of

unity :

• For p = 3, consider the minimal polynomial f3 of π = (1 − τ9)
(
1 − τ−1

9

)
, with τ9 a primitive 9-th
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root of unity over Q3. Then

f3 (X)
= X3 − 6X2 + 9X − 3
≡ X3 + 21X2 + 9X + 24
≡ X3 +

(
3 + 2.32

)
X2 + 9X + 2

(
3 + 32

)
modulo 27.

(3.2)

So, as reduite we can take: X3 + 3X2 + 2
(
3 + 32

)
.

• For p = 5, consider the minimal polynomial f5 of
π = (1 − τ25)

(
1 − τ−1

25

) (
1 − τ7

25

) (
1 − τ−7

25

)
with τ25 a primitive 25-th root of unity over Q5. Then

f5 (X)
= X5 − 20X4 + 100X3 − 125X2 + 50X − 5
≡ X5 + 105X4 + 100X3 + 50X + 120
≡ X5 +

(
5 + 4.52

)
X4 + 100X3 + 50X + 4

(
5 + 52

)
modulo 125.

(3.3)

So, as reduite we can take: X5 + 5X4 + 4
(
5 + 52

)
.

• For p = 7, consider the minimal polynomial f7 of
π = (1 − τ49)

(
1 − τ−1

49

) (
1 − τ18

49

) (
1 − τ−18

49

) (
1 − τ19

49

) (
1 − τ−19

49

)
with τ49 a primitive 49-th root of unity over Q7. Then

f7 (X)
= X7 − 42X6 + 539X5 − 2401X4 + 3773X3 − 1470X2 + 196X − 7
≡ X7 + 301X6 + 196X5 + 245X2 + 196X + 336
≡ X7 +

(
7 + 6.72

)
X6 + 196X5 + 245X2 + 196X + 6

(
7 + 72

)
modulo 343.

(3.4)

So, as reduite we can take: X7 + 7X6 + 6
(
7 + 72

)
.

• For p = 11, consider the minimal polynomial f11 of
π = (1 − τ121)

(
1 − τ−1

121

) (
1 − τ3

121

) (
1 − τ−3

121

) (
1 − τ27

121

) (
1 − τ−27

121

)(
1 − τ40

121

) (
1 − τ−40

121

)(
1 − τ112

121

) (
1 − τ−112

121

)
with τ121 a primitive 121-th root of unity over Q11. Then

f11 (X)
≡ X11 + 979X10 + 726X9 + 847X8 + 726X6 + 726X4 + 242X3 + 605X + 1320
≡ X11 +

(
11 + 8.112

)
X10 + 726X9 + 847X8 + 726X6

+726X4 + 242X3 + 605X + 10
(
11 + 112

)
modulo 1331.
(3.5)

So, as reduite we can take: X11 + 11X10 + 10
(
11 + 112

)
.

• For p = 13, consider the minimal polynomial f13 of
π = (1 − τ169)

(
1 − τ−1

169

) (
1 − τ80

169

) (
1 − τ−80

169

) (
1 − τ147

169

) (
1 − τ−147

169

) (
1 − τ99

169

) (
1 − τ−99

169

)(
1 − τ146

169

) (
1 − τ−146

169

) (
1 − τ150

169

) (
1 − τ−150

169

)
with τ169 a primitive 169-th root of unity over Q13.
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Then

f13 (X)
≡ X13 + 1703X12 + 2028X11 + 1352X10 + 338X9 + 2028X8 + 338X7

+338X4 + 845X3 + 1859X2 + 1183X + 2184
≡ X13 +

(
13 + 10.132

)
X12 + 2028X11 + 1352X10 + 338X9 + 2028X8 + 338X7

+338X4 + 845X3 + 1859X2 + 1183X + 12
(
13 + 132

)
modulo 2197.

(3.6)

So, as reduite we can take: X13 + 13X12 + 12(13 + 132).

Qp having exactly p cyclic totally ramified extensions of degree p, in the following example we
determine the (p − 1) other extensions by means of Eisenstein polynomials.

2.The (p − 1) other cyclic totally ramified extensions K/Qp of degree p:
By use of the following program, through the software Pari, for the case p = 7 we have determined
p − 1 various Eisenstein polynomials corresponding respectively to the said extensions.

The input of the program for the case p = 7:

Phi49 = polcyclo(49, z);
Phi29 = polcyclo(29, w);
zeta49 = Mod(z, Phi49);
zeta29 = Mod(w,Phi29);
Eta = 1 + zeta49 + zeta49∧(−1) + zeta49∧(18) + zeta49∧(−18) + zeta49∧(19) + zeta49∧(−19);
Lambda = zeta29 + zeta29∧(−1) + zeta29∧(12) + zeta29∧(−12);
c = vector(7, a, 3∧(a − 1) %49);
d = vector(7, b, 2∧(b − 1) %29);
conjugate(X, g) = {local(Y );
Y = lift(X, z);
Y = subst(Y, z, )z∧(c[g[1]]%7 + 1]));
Y ? = Mod(1, Phi49);
Y = lift(Y,w);
Y = subst(Y,w,w∧(d[[2]]%7 + 1]));
Y ? = Mod(1, Phi29);
return(Y );
}
Tr(X, g) = sum(i = 0, 6, conjugate(X, i?g));
N(X, g) = prod(i = 0, 6, conjugate(X, i?g));
subfield(i) = lift(lift(N(x − Tr(Eta ∗ Lambda, [i, 1]), [1, 0])));
for(i = 1, 6, print(subfield(i)));

And by similar programs, Mutatis Mutandis, for the cases p = 3 and p = 5. I have got the
following outputs .

The output of the program for the case p = 3:
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f1(X)
= X3 + 3X2 − 18X − 48
≡ X3 + 3X2 + 9X + 6 modulo 27.

(3.7)

So, as reduite we can take: X3 + 3X2 + 2.3 + 0.32.

f2 (X)
= X3 + 3X2 − 18X + 15
≡ X3 + 3X2 + 9X + 15 modulo 27.

(3.8)

So, as reduite we can take: X3 + 3X2 + 2.3 + 1.32.

The output of the program for the case p = 5:

f1 (X)
= X5 + 5X4 − 100X3 − 375X2 + 225X + 1145
≡ X5 + 5X4 + 25X3 + 100X + 20 modulo 125.

(3.9)

So, as reduite we can take: X5 + 5X4 + 4.5 + 0.52.

f2 (X)
= X5 + 5X4 − 100X3 + 175X2 + 225X + 45
≡ X5 + 5X4 + 25X3 + 50X2 + 100X + 45 modulo 125.

(3.10)

So, as reduite we can take: X5 + 5X4 + 4.5 + 1.52.

f3 (X)
= X5 + 5X4 − 100X3 − 100X2 + 1600X + 320
≡ X5 + 5X4 + 25X3 + 25X2 + 100X + 70 modulo 125.

(3.11)

So, as reduite we can take: X5 + 5X4 + 4.5 + 2.52.

f4 (X)
= X5 + 5X4 − 100X3 − 925X2 − 2525X − 2155
≡ X5 + 5X4 + 25X3 + 75X2 + 100X + 95 modulo 125.

(3.12)

So, as reduite we can take: X5 + 5X4 + 4.5 + 3.52.

The output of the program for the case p = 7:

f1 (X)
= X7 + 7X6 − 588X5 − 5243X4 + 33124X3 + 84672X2 − 35721X − 5103
≡ X7 + 7X6 + 98X5 + 245X4 + 196X3 + 294X2 + 294X + 42 modulo 343.

(3.13)

So, as reduite we can take: X7 + 7X6 + 6.7 + 0.72.

f2 (X)
= X7 + 7X6 − 588X5 − 2401X4 + 33124X3 − 54586X2 − 35721X + 65947
≡ X7 + 7X6 + 98X5 + 196X3 + 294X2 + 294X + 91 modulo 343.

(3.14)
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So, as reduite we can take: X7 + 7X6 + 6.7 + 1.72.

f3 (X)
= X7 + 7X6 − 588X5 + 3283X4 + 21756X3 − 85848X2 − 354025x − 280777
≡ X7 + 7X6 + 98X5 + 196X4 + 147X3 + 245X2 + 294X + 140 modulo 343.

(3.15)

So, as reduite we can take: X7 + 7X6 + 6.7 + 2.72.

f4 (X)
= X7 + 7X6 − 588X5 − 980X4 + 72912X3 + 84672X2 − 1517824X + 874496
≡ X7 + 7X6 + 98X5 + 49X4 + 196X3 + 294X2 + 294X + 189 modulo 343.

(3.16)

So, as reduite we can take: X7 + 7X6 + 6.7 + 3.72.

f5 (X)
= X7 + 7X6 − 588X5 − 5243X4 + 21756X3 + 152880X2 − 354025X − 476875
≡ X7 + 7X6 + 98X5 + 245X4 + 147X3 + 245X2 + 294X + 238 modulo 343.

(3.17)

So, as reduite we can take: X7 + 7X6 + 6.7 + 4.72.

f6 (X)
= X7 + 7X6 − 588X5 − 2401X4 + 101332X3 + 192668X2 − 5049009X + 4687039
≡ X7 + 7X6 + 98X5 + 147x3 + 245X2 + 294X + 287 modulo 343.

(3.18)
So, as reduite we can take: X7 + 7X6 + 6.7 + 5.72.

Sketch of calculus:

In this Sketch, by use of the reduite, we prove the equivalence (in Krasner’s sens) between two
Eisenstein polynomials defining normal extensions over Q7, that is generating the same extension
over Q7 .
Let f0 be the minimal polynomial (of Eisenstein) of π0:

f0 (X)
= X7 − 42X6 + 10584X4 − 762048X2 − 2286144X + 1959552
≡ X7 + 301X6 + 294X4 + 98X2 + 294X + 336
≡ X7 +

(
7 + 6.72

)
X6 + 294X4 + 98X2 + 294X + 6

(
7 + 72

)
modulo 343.

(3.19)

Hence we can take as corresponding reduite of f0 the polynomial X7 + 7X6 + 6(7 + 72).

With repect to 3.4 Q7 (π0), is the wildly ramified subextension of Q7 (τ49).
On the other hand, consider the polynomial:

f1 (X)
= X7 − 35X6 + 6125X4 − 306250X2 − 765625X + 546875
≡ X7 + 308X6 + 294X4 + 49X2 + 294X + 133
≡ X7 + 2

(
7 + 3.72

)
X6 + 294X4 + 49X2 + 294X +

(
5.7 + 2.72

)
modulo 343.

(3.20)

and call π1 a root of it. Since 4 is the inverse of 2 modulo 7, write π2 = 4π1 and let f2 be the
minimal polynomial of π2 over Q7, we have:
Tr(π1) = 35, and Tr(π2) = 4Tr(π1) = 140 ≡ 42 ≡ −7 modulo 72, where Tr(.) is the trace with
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respect to Q7.
Furthermore we have:
N(π1) = −546875, and N(π2) = 47N(π1), so N(π2) ≡ (16384)N(π1) ≡ −263.133 ≡ 7 modulo 73,
that is: −N(π2) ≡ 336 ≡ 6(7 + 72) modulo 73, where N(.) is the norm with respect to Q7.
In consequence the reduite relative to f2 is X7 + 7X6 + 6

(
7 + 72

)
.

f0 and f2 having the same reduite, hence we can deduce that they are equivalent that is
Q7(π0) = Q7(π2) = Q7(π1).
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