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Abstract. We introduce a notion of rank for C∗-algebras (or Banach algebras), which
is viewed as a replacement of the topological stable rank of Rieffel. We study its basic
properties and close relation with the stable rank. We also consider a replacement of
the connected stable rank of Rieffel.

1 Introduction The (topological) stable rank for C∗-algebras (or Banach algebras) was
introduced by Rieffel [6], and also the real rank for those was done by Brown and Pedersen
[1]. It seems to be known that the definitions of the stable and real ranks are subtly
different in a technical sense that the stable rank is defined from viewing an algebra as a
(left) module in a sense, while the real rank is done from invertivility of operators in a direct
sense. Furthermore, there seems to be a non-trivial step if we view the stable rank as in
the sense of Brown and Pedersen.

We then introduce a notion of rank for C∗-algebras (or Banach algebras), that we call
the corona rank, which is viewed as a replacement of the topological stable rank of Rieffel
by using invertibility of operators. Naming it comes from that we found that this notion is
closely related to the corona theorem in function algebra theory ([2]).

In this paper we study the basic properties of the corona rank and its close relation with
the stable rank, more precisely, we develop a parallel theory by using the corona rank, as
that of the stable rank (or instead of). We also consider a replacement of the connected
stable rank of Rieffel, as in that sense of the corona rank. In particular, we show that the
corona theorem for C∗-algebras in our sense does hold.

2 Corona rank

Definition 2.1. Let A be a unital Banach or C∗-algebra and An its n-direct sum. Denote
by Cn(A) the set of all elements (aj) ∈ An such that

∑n
j=1 |aj | is invertible in A.

Remark. It is easily seen that for a unital C∗-algebra A, C1(A) is just the set A−1
l of all left

invertible elements of A. Indeed, if |a| is invertible in A, then |a|2 = a∗a is also invertible.
Conversely, if a ∈ A−1

l , use the polar decomposition a = u|a| for a partial isometry u.
Hence |a| is invertible in B(H) and also in A, where B(H) is the C∗-algebra of all bounded
operators on a Hilbert space H on which A may act. Thus C1(A) = A−1

l .

Definition 2.2. Let A be a unital Banach or C∗-algebra. We define the corona rank of A
to be the least positive integer n such that Cn(A) is dense in An. Denote n = cor(A). If
there is no such n, then set cor(A) = ∞. For a non-unital Banach or C∗-algebra A, define
its corona rank to be cor(A+), where A+ is the unitization of A.
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Remark. Note that if Cn(A) is dense in An, so is Cn+1(A) in An+1. Note also that Cn(A)
is an open subset of An. Indeed, the function A 3 x 7→ |x| is continuous because |x| is a
uniform limit of polynomials with variables 1 and x (and x∗).

Proposition 2.3. Let X be a compact Hausdorff space and CR(X) the Banach algebra of
all continuous, real-valued functions on X. Then

cor(CR(X)) = dim X + 1,

where dim X means the covering dimension of X.

Proof. It is known in dimension theory for spaces that the covering dimension of X is equal
to the smallest non-negative integer n such that every continuous function f from X into
Rn+1 can be approximated closely by another continuous function g such that g(X) does
not contain zero in Rn+1, i.e. 0 6∈ g(X). Note that 0 6∈ g(X) if and only if

∑n+1
j=1 |gj(x)| > 0

for every x ∈ X, i.e.
∑n+1

j=1 |gj | is invertible in C(X).

Proposition 2.4. Let X be a compact Hausdorff space and C(X) the C∗-algebra of all
continuous, complex-valued functions on X. Then

cor(C(X)) =
[
dimX

2

]
+ 1.

Proof. Let (aj) ∈ C(X)n. The element corresponds to a continuous map from X into R2n.
If cor(C(X)) ≤ n, then dimX ≤ 2n − 1. Thus,[

dim X

2

]
+ 1 ≤ cor(C(X)),

where [x] means the maximum integer ≤ x. Conversely, if dimX ≤ k even, then cor(C(X)) ≤
k
2 + 1, and if dimX ≤ k odd, then cor(C(X)) ≤ k+1

2 . Thus,

cor(C(X)) ≤
[
dimX

2

]
+ 1.

Denote by sr(A) the topological (or Bass) stable rank of a C∗-algebra A (see [6] and [4]).

Proposition 2.5. Let A be a C∗-algebra. Then A has stable rank one if and only if it has
corona rank one.

Proof. By the definition of sr(A), A has stable rank one if A−1
l is dense in A. The proof

completes by the remark above.

Corollary 2.6. Let A be a C∗-algebra. Then cor(A) ≥ 2 if and only if sr(A) ≥ 2.

As a variation of corona rank,

Definition 2.7. For p > 0, define the corona p-rank of a unital Banach or C∗-algebra A
by replacing

∑
|aj | with

∑
|aj |p. Denote it by corp(A).

Denote by Cp
n(A) the set of all (aj) ∈ An such that

∑n
j=1 |aj |p is invertible in A. Then

corp(A) ≤ n if and only if Cp
n(A) is dense in An.
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Remark. The propositions above also hold for corp(·).
It is shown by Brown and Pedersen [1, Proposition 1.2] that

RR(A) ≤ 2 cor2(A) − 1,

for the real rank RR(A) of a C∗-algebra A. Moreover, it seems to be known that cor2(A) =
sr(A) for a C∗-algebra A, by definition. However, showing this exactly seems to involve a
non-trivial step. Clear is C2

n(A) ⊂ Ln(A) of all elements (aj) ∈ An such that
∑

j bjaj ∈ A−1

for some (bj) ∈ An. In particular, L1(A) = A−1
l = Cp

1 (A), but its reverse inclusion seems
to be non-trivial.

Corollary 2.8. Let A be a C∗-algebra and K the C∗-algebra of all compact operators on a
separable Hilbert space. Then corp(A ⊗ K) = 1 if and only if corp(A) = 1.

Proof. Use [6, Theorem 3.6] and the remark above.

3 Corona rank of ideals and quotients

Theorem 3.1. Let A be a C∗-algebra and I be a closed ideal of A. Then

corp(A/I) ≤ corp(A).

Proof. Since (A/I)+ ∼= A+/I, it suffices to consider the case where A is unital. Let π : A →
A/I be the quotient map. Note that for (aj) ∈ An,

π(
∑

j

|aj |p) =
∑

j

π((a∗
jaj)p/2) =

∑
j

|π(aj)|p.

Therefore, Cp
n(A) is mapped into Cp

n(A/I). Thus if Cp
n(A) is dense in An, then Cp

n(A/I) is
also dense in (A/I)n.

Theorem 3.2. Let A be a C∗-algebra and I a closed ideal of A. Then

corp(I) ≤ corp(A).

Proof. We may assume that A is unital, otherwise we consider the unitization of A. Let
corp(A) ≤ n. Let (bj + µj1) ∈ (I+)n, where 1 is the unit of A and µj ∈ C. Let {iα} be an
approximate identity of I with ‖iα‖ ≤ 1. Since (bj + µj1) ∈ An, it can be approximated
closely by (aj + µj1) ∈ An such that ‖bj − aj‖ < ε/3 and

∑
j |aj + µj1|p is invertible in A.

If for ε > 0 (small enough) we take α to have ‖bj − bjiα‖ < ε/3 for every j, then

‖aj − ajiα‖ = ‖aj − bj + bj − bjiα + bjiα − ajiα‖

≤ ε

3
+

ε

3
+

ε

3
= ε,

so that
∑

j |ajiα +µj1|p can be invertible in A by continuity of the sum, and (ajiα +µj1) ∈
Cp

n(I+) as desired.

Theorem 3.3. Let X be a compact Hausdorff space. Let Γ(X, {At}t∈X) be the continuous
field C∗-algebra over X with fibers C∗-algebras At. Then

corp(Γ(X, {At}t∈X)) = sup
t∈X

corp(At).
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Proof. Let A = Γ(X, {At}t∈X) and let (fj) ∈ An. Note that
∑

j |fj |p is invertible in A
if and only if for each t ∈ X,

∑
j |fj(t)|p is invertible in At. Thus (fj) ∈ Cp

n(A) if and
only if for every t ∈ X, (fj(t)) ∈ Cp

n(At). It follows that corp(A) ≤ n if and only if
supt∈X corp(At) ≤ n, by using Theorem 3.1 above. See [3] for the definition of a continuous
field C∗-algebra.

Remark. This can be a benefit by using our notion, but not many.

Definition 3.4. Let A be a unital C∗-algebra. Define the connected corona rank of A
to be the least positive integer n such that for any m ≥ n, the identity matrix connected
component GLm(A)0 of GLm(A) of all m × m invertible matrices over A acts transitively
on Cm(A) by multiplication from the left. Denote n = ccor(A).

For a non-unital C∗-algebra A, its connected corona rank is defined by that of the
unitization A+.

Also, the connected corona p-rank of A is defined by replacing Cn(A) with Cp
n(A) and

is denoted by ccorp(A).

Remark. Probably it is quite hard to know such a number in general.

Anyway,

Theorem 3.5. Let A be a C∗-algebra and I a closed ideal of A. Then

corp(A) ≤ max{corp(I), corp(A/I), ccorp(A/I)}.

Proof. This can be proved by using the argument of [6, Theorem 4.11], exactly the same
way.

4 Inductive limits

Lemma 4.1. Let A ⊕ B be the direct sum of unital C∗-algebras A and B. Then

corp(A ⊕ B) = max{corp(A), corp(B)}.

This also holds when A or B are non-unital if we replace each with its unitization.

Proof. Let x = (a, b) ∈ A ⊕ B. Since x∗x = (a∗a, b∗b), we have |x|p = (|a|p, |b|p). Thus,
(xj) = (aj , bj) ∈ Cp

n(A ⊕ B) if and only if (aj) ∈ Cp
n(A) and (bj) ∈ Cp

n(B).

Theorem 4.2. Let A be an inductive limit C∗-algebra of C∗-algebras Ak. Then

corp(A) ≤ lim inf corp(Ak).

Proof. We may assume that A is unital and each An has the unit of A if necessary by
considering the unitization, so that ∗-homomorphisms in the inductive system are also
unital. Let n = lim inf corp(Ak). Any element (aj) of An can be approximated closely
by an element (aj,k)j of An

k , where k is large enough and corp(Ak) = n. Then there is
(bj,k)j ∈ Cp

n(Ak) that approximates closely (aj,k)j . Its image in An is in Cp
n(A) because

Cp
n(·) are preserved under unital ∗-homomorphisms.

Theorem 4.3. Let A be the direct sum of C∗-algebras Ak, i.e. A = ⊕∞
k=1Ak an inductive

limit of finite direct sums. Then

corp(A) = sup
k

corp(Ak).
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Corollary 4.4. If A is an AF C∗-algebra, i.e. an inductive limit of finite dimensional
C∗-algebras, then corp(A) = 1 for any p > 0.

Proof. Note that a finite dimensional C∗-algebra Ak is a finite direct sum of matrix algebras
over C, so that corp(Ak) = 1 = sr(Ak). Thus the equalities also hold for A. Or use [6,
Proposition 3.5].

Corollary 4.5. If A is an AT C∗-algebra, i.e. an inductive limit of finite direct sums of
matrix algebras over C(T) the C∗-algebra of all continuous functions on the 1-torus, then
corp(A) = 1 for any p > 0.

Proof. Note that a finite direct sum of matrix algebras over C(T) has both corona and
stable ranks one by using [6, Theorem 6.1]. Note also that the stable rank of A is one, so
is the corona p-rank.

5 The corona theorem for C∗-algebras In function algebra theory it is well known
that the corona theorem for the unit open disc D holds, i.e., that D is dense in the maximal
ideal space of H∞(D) the Banach algebra of all bounded holomorphic functions on D with
the supremum norm, where each point of D is identified with the point evaluation at the
point and its kernel as well, and that the corona theorem is equivalent to say that if any
(fj) ∈ H∞(D)n satisfies that

∑
j |fj | ≥ ε > 0 on D, then there is (gj) ∈ H∞(D)n such that∑

j gjfj = 1 (see [2]).

Definition 5.1. We say that the corona theorem holds for a unital (Banach or) C∗-algebra
A if Cn(A) is contained in Ln(A) for any n ≥ 1, where (aj) ∈ Ln(A) ⊂ An if there is
(bj) ∈ An such that

∑
bjaj = 1.

We say that the corona theorem for p holds for a unital C∗-algebra A if Cp
n(A) is

contained in Ln(A) for any n ≥ 1.
For a non-unital C∗-algebra A, we say that the corona theorem for p holds for A if it

holds for the unitization A+.

Proposition 5.2. Suppose that the corona theorem holds for a C∗-algebra A. Then

sr(A) ≤ cor(A).

If the corona theorem for p holds for a C∗-algebra A. Then

sr(A) ≤ corp(A).

Proof. It follows from assumption that if Cn(A) is dense in An, then Ln(A) is dense in An,
i.e. sr(A) ≤ n by definition.

Proposition 5.3. If the corona theorem for p holds for a C∗-algebra A, then

ccorp(A) ≤ csr(A),

where csr(A) is the connected stable rank of A.

Proof. By definition, if csr(A) ≤ n, then GLm(A)0 acts transitively on Lm(A) for any
m ≥ n. By assumption, Cp

m(A) is contained in Lm(A), so that GLm(A)0 acts transitively
on Cp

m(A) as well.

Corollary 5.4. If the corona theorem for p holds for a C∗-algebra A, then

ccorp(A) ≤ corp(A) + 1.
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Proof. In addition, use the estimate csr(A) ≤ sr(A) + 1 by [6, Corollary 4.10].

Theorem 5.5. The corona theorem for p holds for a commutative C∗ algebra A.

Proof. Indeed, A ∼= C(X) for a compact Hausdorff space X, where we may assume that A
is unital. For any element (fj) ∈ C(X)n such that

∑
|fj |p ≥ δ1 > 0 for some δ > 0 on X,

but suppose that (fj) 6∈ Ln(C(X)), which implies that the (two-sided) closed ideal of C(X)
generated by fj ∈ C(X) (1 ≤ j ≤ n) in C(X) is contained in a maximal closed ideal of
C(X) that is the kernel of the evaluation map at a point x ∈ X by Gel’fand theory, which
contradicts to that inequality since the sum

∑
|fj |p belongs to the closed ideal generated

by fj (1 ≤ j ≤ n).

Corollary 5.6. For a compact Hausdorff space X, we have

sr(C(X)) ≤ corp(C(X)) and ccorp(C(X)) ≤ csr(C(X)).

More generally, we do have

Theorem 5.7. The corona theorem for p holds for a C∗ algebra A.

Proof. We may assume that A is unital. For any (aj) ∈ An such that
∑

j |aj |p ≥ δ1 > 0
for some δ > 0, but suppose that (aj) 6∈ Ln(A), which implies that the closed left ideal
L generated by aj (1 ≤ j ≤ n) does not contain 1. Then B = L ∩ L∗ is a hereditary
C∗-subalgebra of A by C∗-algebra theory (see [5]) and 1 6∈ B. Since |aj |2 = a∗

jaj ∈ B, so
that

∑
j |aj |p ∈ B. Since

∑
j |aj |p is positive and invertible, we have its inverse belonging

to B by spectral theory, so that 1 ∈ B. This is a contradiction.

Corollary 5.8. Let A be a C∗-algebra. Then

sr(A) ≤ corp(A) and ccorp(A) ≤ csr(A).

Also, we obtain
ccorp(A) ≤ corp(A) + 1.

Corollary 5.9. For a C∗-algebra A,

corp(A ⊗ K) ≥ min{2, cor2(A)}, ccorp(A ⊗ K) ≤ 2.

Proof. Use [6, Theorem 6.4] and [8, Theorem 3.10] respectively.

Corollary 5.10. For a C∗-algebra A,

corp(A ⊗ Mn(C)) ≥ d sr(A) − 1
n

e + 1, ccorp(A ⊗ Mn(C)) ≤ dcsr(A) − 1
n

e + 1

where dxe means the maximum integer ≥ x.

Proof. Use [6, Theorem 6.1] and [7, Theorem 4.7] respectively.

Example 5.11. Let T be the Toeplitz algebra, which is the C∗-algebra generated by the
unilateral shift S (or a proper isometry). It is well known that T is decomposed into the
following exact sequence:

0 → K → T → C(T) → 0,
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where T is the 1-torus (see [5]). Using the results obtained above we have

corp(T) ≤ max{corp(K), corp(C(T)), ccorp(C(T))}
≤ max{1, 1, csr(C(T))} = 2.

On the other hand, we have sr(T) ≥ 2 because the Fredholm index theory implies that T−1

is not dense in T, equivalently, L1(A) = A−1
l is not dense in A, since the Fredholm index of

S is nonzero. Thus we get corp(T) = 2.

Example 5.12. Let B(H) be the C∗-algebra of all bounded operators on a Hilbert space
H. It is shown by [6, Proposition 6.5] that sr(B(H)) = ∞ since B(H) has two orthogonal
isometries. Thus corp(B(H)) = ∞.

The same reason implies that the Cuntz algebras On (2 ≤ n < ∞) (and O∞) generated
by n orthogonal isometries with the sum of their range projections equal to 1 (and equal to
a subprojection of 1 respectively) have corp(·) infinite.

Corollary 5.13. Let A oα Z be the crossed product of a C∗-algebra A by an action α of Z
by automorphisms. Then

ccorp(A oα Z) ≤ sr(A) + 1.

Proof. Use [6, Corollary 8.6].

Corollary 5.14. Let A be a unital C∗-algebra. For all n ≥ corp(A), the map from
GLn(A)/GLn(A)0 to GLn+1(A)/GLn+1(A)0 is an isomorphism, so that the K1-group K1(A)
of A is isomorphic to GLn(A)/GLn(A)0.

Proof. Use [7, Theorem 2.10].
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