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THE NON-RUIN PROBABILITY FOR THE RISK RESERVE PROCESS
WITH ERLANG TYPE CLAIMS
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ABSTRACT. In this paper, we consider the risk reserve process with Erlang type claims.
We make the model that the claim inter-arrival time has an exponential distribution
and the claim size has an Erlang distribution. For this model we obtain a general
formula that derives the non-ruin probability in finite time. In order to have an easy
calculation for the non-ruin probability we reduce the multi-summation to the single-
summation.

1 Introduction For the risk reserve process in the steady state, the expected ruin time
and the ruin probability have been studied by Doi [1] and [2], respectively. Furthermore
the non-ruin probability with exponential type claims in finite time has been studied by
A. Kishikawa and M. Doi [3] for the model with single claim. In this paper we discuss
the non-ruin probability, in finite time, for the risk reserve process with main and optional
claims as the expansion of [3].

Let us denote U(t) the reserve level at time ¢ , where {U(¢)}+>0 is called the risk reserve
process. If the reserve level is less than zero, the process ruins. We denote by T, nth
claim’s arrival time. We assume that the claim inter-arrival time between (n — 1)th and
nth claim’s arrival times W,, (= T,, — T,—1) and the nth claim size X,, are independent
and identically distributed random variables. W,, and X,, are also mutually independent.
We also assume that W,, has an exponential distribution with parameter A and X,, has
an Erlang distribution with parameter p and phase k. Since the claim consists of the sum
of main and optional ones, which are mutually independent and exponentially distributed
random variables, we consider that the claim size has the Erlang distribution : Erlang type
claims.

The risk reserve process is controlled by the claim inter-arrival time, the claim size and
the premium rate.

The total claim amount process {S(t)};>¢ is defined by

N(#)
St => Xn (t>0),
n=1
where {N(t)};>0 is the claim number process defined by
N(t)=max{n>1:T, <t} (t>0).
We also define the premium income by

I(t) =ct
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where the premium rate c is a constant.
Thus the risk reserve process is expressed by

Ut) =u+I(t) - S@), (t>0),

where u is the initial reserve level.
In Proposition 2, we derive the non-ruin probability with muliti-summation. Next we
reduce it to the single summation in proposition 3.

2 Mathematical model and analyses In the risk reserve process the ruin can occur
at the time ¢t = T, (somen > 1). By use of skelton process (Mikosch [4]) the event of ruin
is defined by

{ruin} = { inf [u+ I(T,) — S(T})] < o}

n>1
n
(1) = {Tllgfl [u - Z;(Xl - ch)‘| < 0} .
Also, we define the following.

Zn =X, — W, (n>1),
(2) Sp=Z14+Zy, (n>1, Sy=0).

Now we propose R|Ex|Er model where R means the risk reserve process, Ex means that
the claim inter-arrival time W,, has the exponential distribution with rate A and Er means
that the claim size X,, has the Erlang distribution with parameter u and phase k.

In the next subsection, we omit the subscript n.

2.1 Probability density function of Z for R|Ex|Er model We derive the probability
distribution of random variable Z for this model. Since X and c¢W are independent random
variables, we obtain the joint probability density function with respect to Z and V = cW

k
3) fzv(z,v) = (,(f“ )1)! (2 + p)t=Te—hnlz+v) | %e—%v

where the domain of v is

0<v<oo (z>0)
—2<v <00 (2 <0).

We describe the following two lemmas.

Lemma 1 For any natural number k, the following relation holds.

k

> —rT k! —i— —1i
(4) / (y +2)fe da = Z Wr W=t r >0, y>0.
0 i=0 v

Lemma 2 For any natural number k, the following relation holds.

(5) / (y + x)ke_mda: =klr e, >0, y<O.
—y
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For z > 0, from Lemma 1, we obtain the probability density function of Z as follows:

©)  gx(2) =/ L (z + )k~ le—huG+v)  2o=2vg,
0 c

(k—1)!
CANEE e (B AN
REUEEN ;(/@4*1)! kot '
—k k-1 k—i—1
_é k,—kpz é * ; é k—i—1
—C(k;,u)e (ku+c> ;(k—i—l)! ku+c N
k—1

A N e A\,
—C(k;,u) (ku+c> e Zoi! ku+c 2"

For z < 0, from Lemma 2,

0 k
(7) 9k (2) :[ (]ikf)l)! (z +v)F~te hulztv). %e*%vdv
A(kp)*

A k Py
AN VA kuz o | n . (kquc)z
= ok 1)!6 (k—1)! (kqu c) e

—k
:i(/w)k <’W + >‘> e2%.
c c

Now, let us set

oa=ku+ A
C
(8) 8=Fku
A=a7lp,
then
A k—1 Ozi
7Ak —Bz i >
(9) w2 = LT 20
ZAke%z (z < 0).

2.2 Propositions for R|Ex|Er model We define the non-ruin probability by i) (u,c)

that the risk reserve process does not ruin till n-th claim arrival time given the initial reserve
level u and the premium rate ¢, that is,

(10) 7 (u, ¢)
:P(Zl <U,ZQ<’U,—51,"' ,Zn<u—5n_1|U(O)=u,T1 <T2<"'<Tn<00),

where the claim size X,,, (m = 1,2,---n) has the Erlang distribution with parameter pu

and phase k.
By use of gi(z) above, we formulate i) (u,c). First, for r%k)(u, ¢), we have the following

three lemmas.

Lemma 3 For any non-negative integer i, the following relation holds.

“ ig—Bz :ﬂ —i_ —uB : B i—j
(11) /Oze z 3 B e ;O(i*j)!u
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Lemma 4 For any natural number k and n, the following relation holds.

(12) i(ka><k+z+1>

i=0
We have the following lemma with respect to 8 and A of (8).

Lemma 5 For any natural number k, the following relation holds.
(13) A’“+—ZAZ—1
Proof of Lemma 5.
k P
Ak 2 k e i A k—1 .
+ Z () {(cﬂ) D NCULEERY
On the second term in parenthesis of right hand side, using Lemma 4,
(k _ 7’) (Cﬂ)i+j)\k—i—j
J

(k —(s— t)) (cB)*Ah—s

k

k
(BB + N =D
=1 =17

k
>

k—i

t

S (e S (’“ ot t)

s=1 t=0
b k
syk—s
_;:1(06) A (S B 1) .

Using these Lemmas, we derive the following proposition for 7«5‘“) (u,c).

Proposition 1 For R|Ex|Er model, the following relation holds.

k’Ll

(14) e =1- -WZA“Z

i1=1 i2=0

5

1o!
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Proof of Proposition 1. Using Lemma 3,

r (u, ¢) =P(Z; < u|U(0) =u, Ty < o)

A 0 k—1 ! u
== Ak e !
B (/_Ooe Zl+Z§) Zl| 0 21 Zl>
)\Ak ¢ Tl ahig) , P 2
— _ = —11 —Uu 11—12
x Z il B b ‘ Z (i1 —iz)'u
7,120 12 0
Since A = a~ 14,
k 7 7u 7 512
) =24 ( BZA L ﬂZA IZZ )
i1=0 i11=0 i2=0 2
io
— Ak 4 Ak—t _ 7uﬁ Ak /8
5“20 “ZO Z
k— 21 ﬂ”

—Ak“r‘*ZA“_*_uBZA“Z

111 i1=1 120

Finally using Lemma 5, we obtain (14).

For the general formula of r,(lk) (u, c), we derive the following proposition.

Proposition 2 For R|Ex|Er model, we formulate the probability rif )(u,c) as follows:

r(()k) (u,c) =1,

A n
(15) rflk) (u,c) :rgi)l(u,c) - () a AR -1 —up

c
k—iy k+iz k+is k+in (ua)""“
-ZA12A222~- > o nzl
i1=1  ip=0  i3=0i4=0  ip4q=0 "tI
where
A
a=ku+ —
c
(16) B =ku
A=a"18.

Preparatory to the proof of Proposition 2, we have the following two lemmas.

Lemma 6 For any non-negative integer i, the following relation holds.

0 _ : ‘ i
(17) / e (u— 2)'dz = a1l Z @, a > 0.
: J:
Jj=0

—0o0
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Lemma 7 For any non-negative integer i and j, the following relation holds.

18 ! tod( i!j! i+j+1
u—z)2dz = ——Fu .
(18) /0 ( ) (i4+j5+ 1)

Then we proceed to prove Proposition 2.
Proof of Proposition 2. In the case of n = 1 we prove, by Proposition 1, that (15) is true as
follows:

(k) A1, N (ua)'™
7‘0 (U7C) - EOZ7 A7 eiuﬁ Z All Z AZQT
i1=1 in=0 ’
k— 21 i
=1-— ¢ Ul Z Ah Z u®? —r( )(u,c).
i1=1 10=0 !

We assume that (15) is true for n = m. Then, for n = m + 1,

k
(19) =% (u,c)

gk(zl)rgf) (u— z1,¢)dz

)\ m
gr(z1) {Tg)l(u —z1,¢) — <> o~ ™ ARm—1)—-1
c

u

/.
/

— 00
k—iy k+iz k+i3 k4+im ofimtt
(u— z1)ﬁ§ :A“ § :Azz § ’ § / § ule)imﬂ dz
21 1 ’Lz =0 ’L3 014 0 2m+1 O
u A m k k—i,
& _ N ) )
:/ gk(zl)r,gl)_l(u—zl,c)dzl— (c) a M AR -1 —uf E AR E A"
> i1=1 i9=0
k+io k+i3 k4im qimt
E E E / gk(zl)eﬁzl (u—z1)"™+1dzy .
13=0 14=0 1= 0
By use of Lemmas 6, 7 and (9), we obtain
(k)
Tm+l(uvc)
/\ m+1
:rg,’f)(u,c)— - a~ M Ak LTl
c
k—iq k+io k413 k4im 1m+1
Z AnyoAn Yy
|
Zl 1 7,2 =0 7,3 0’L4 0 Zm+1—0 lerl
k-1 i u 0
otm+2 . N .
E - ' / z;’”” (u—z1)"™*rdzy +/ eletB)= (u—z1)'mtrdz
tm42- —0o0

im,+2 =0
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)\ m—+1
= rgf)(u,c) — <> a M AR LTl

C
k—iq k+is k+1i3 k+im 1m+1
Sy ey e
7,1— 12 0 13 Ol4 0 lm+1_0
k—1 z . .
m+2 | | . . .
Z Im+1-tm+2- uzm+1+zm+2+l +Oéi7l7”+1717:m+1!
7/m+2 Zm+1 + Tm42 + 1)'
Zm+2 =0
)\ m—+1
— Tsrlf)('lhc) _ (> a—mAmk—le—uﬁ
C
k—i1 k+is k+is k+im
DIV IFTH D) SIS I
11=1 12=0 13=0 14=0 im++1=0
) k-1 (uc) zm+1+zm+2+1 im+1 ua Zm+2
_a—zm+1—1 § + § :
(i +1 +1)! 1
im42=0 m+1 m+2 tm42=0 m+2
)\ m+1
:r,(,’,f) (u,c) — | = a Ml gmkolemub
C
ktim
k—i1 k+is k+is k—+im +im41 (ua)l'"“
YAy Ay Yy > +
7
11=1 10=0 13=0 14=0 im+4+1=0 tm42=tm4+1+1 m+2 7

Thus, in the case of n = m + 1, (15) is true as follows:

(k) (k) A m —(m+1) gmk—1_—up
Toyr (W, €) =1 (u,¢) — | = o A e

C
k—iq k4o k+ig k+im k}+7,m+1
Z ARy AR Y
11=1 12=0 i3=0i4=0 Tm41=0 tm2=0

Therefore, Proposition 2 is true for any non-negative integer n.

1

Z (ua)im+2
) 1 !
tm42=0 m+2
Zf ua lm+2
7
mg2=0 m+2
ua ’m+2
Zm-|—2
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2.3 Reduction of multi-summation Although we have formulated the general for-
mula of T,(lk) (u,c), this general formula is not suitable for numerical calculations because
of too many summations. In order to reduce the number of summation, let us denote the

summation part of (15) by
k . k—i1 k+is k413 k+i, ’U,Oé ln+1
@ aw-y Yy 3 Y

i
i1=1  is=0  i3=0i4=0  ini1=0 nt1!

We derive the following proposition.

n > 1.
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Proposition 3 If we define the following, for any natural number k,

K(k) Ak—l (n > 1)
Z Ak=3 (2<m<k)

21

K’r(zkzn = Kflk)l m + K,,(f,)n,p (n >2,2<m< k(n — 1))

K,(Lk,)n =0, (others),
then (20) is reduced to

kn—1 )i

(22) =4 Z Kn kn—i L > 1.

7!

Preliminarily, we derive the following lemma.

Lemma 8 If k is given, for any natural number m and n (m < kn), the following relation

holds.
(23) Sk =K%,

Proof of Lemma 8. In the case of m = 1, by use of (21), we find the left-hand side is equal
to the right-hand side as follows:

k k - k
ZKT(H) = K| % =AMt :Kv(L-zl,r

In the case of m = [, we assume that (23) is true. Next, using (21), we prove that (23) is
true if m =14 1.

I+1
k k k
DKL= ZKM K =K K = K
i=1
Therefore, (23) is true for any natural numbers m and n (m < kn). 0

Now we prove Proposition 3.
Proof of Proposition 3. For n = 1, using (21), we find (22) is true as follows:

k k‘fll ; k—1 k— 7,2 k—1

ip k—in
(b (1) — Ail A72 A11+22 ua — (ua) Ak—i1+1
* 2'12=:1 izz—:o zzz:o uz:l izz=:0 22! z’lzz:l

k—1 *) (ua)iz
=4 Z Kl,k*iz io!

i2=0
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We assume that (22) is true for n = m. Then, for n = m + 1, from (19)

u u )\ m
:/ gk(Z1)T7(:),1(u N Zl,C)d,Zl _/ gk(zl) <> afmAk(mfl)*lef(uim)B
C

k k=i k+i2 k+is ktim { U— 2 Oz}“”"’l
DoAY AR Y D s
i1=1  ip=0  i3=0i4=0  im41=0 m1:
:r,(,’f)(mc)
“ A\ —m gk(m—1)—1,—(u—21)8 4 = 1}((k) {(u - Zl)a}id
— _Oogk(zl) Z o € Zz_; m,km— z* <1

On the second term of right hand side, using Lemmas 6, 7, 8 and (9), we have the following.

km—1

A -m m=1) —u ! z i
(c) AFlm=1)g—uf Z mkm i gr(21)€P%1 (u — z1)'dz

A m km—1 (k) O[i
_ (2 a ™ k(m— 1) —uf =
- (C) A Z Km km—i 4!

)\ 0 ] k—1 a] u ) )
D AR / e (u—z1)'dz + Z — / (u—21)"2]dz
c —o00 j=0 j' 0

A m—+1 . km—1 o
_ 2 a~ ™ m 7uﬁ (k) =
- (C) A § : Km km—1i i

il i(ua)a +Z( )it
P A A (R A
M e s S (ua) | e (ua)!
_ (A —m— —ufB (k)
—(3) ammame Yk, 40 Y
i=0 =0 j=i+1
A m-4+1 km— 1k+z
—(2) e S SR,
=0 7=0
+1
— A)m a—m 1Akm —uf
c
E(m+1)—1 km—1 ; k—1km—1 ;
(wa)? (k) (ua)? ()
{ Z Z ]l Km,km*i—i_ Z ,]' m,km—i
j=k i=j—k j=0 i=0
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(k)
Km+1 k(m+1)— j

Z W (uq)j

m+1,k(m+1)— ]|

Therefore,

24) % (u,0)

A\ 7 k(m+1)—1 * (ua)j

k —m—1 gkm—1_—u,

:rgn)(u,c) — (C> « A e UP . A Z I{erl Km4)—3 ™ 51
=0

On the other hand, from Proposition 2, we obtain

/\ m—+1
(25) Ty(r]f-)+1(u c) —7“5m)+1) (u,¢) — (c) o (D) gR{(m+1) =1} =1, —uf
k—iq k+io k+is k+lm+1

Z AT A4y Y (wa)'ennt

i1=1 i2=0 13=0 14=0 tm+2=0

)\ m—+1
:Tgf)(% c)— () a Ml gkmlemul or(m+1).

C

By comparing (24) and (25), (22) is true for n = m + 1. Hence (22) is true for any natural
number n. a

2.4 Non-ruin probability in finite time for R|Ex|Er model From Proposition 2
and 3, we derive the following theorem.

Theorem 1 For R|Ex|Er model, we formulate the non-ruin probability in finite time rif )(u, c)
as follows:

rék)(u,c) =1,
kn—1 P
A z
—nAk(n 1) —uﬂ § >1
C) n, k:n i . ’ n=1

(26) rwW@=#2m@—(
where
A
a=kp+—
C

p=kp
A=a"lp,
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and
K = Akt (n>1)
iy =3 A%, 2<m<k

28 J=1

) Ky =K, (n>21<j<k)
K =K, + K, (022, 2<m < k(n - 1))
K =0, (others).
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