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Abstract. Petri nets have been among the most succinct models that can describe
the structure and dynamics of discrete event-driven systems. In this paper, a necessary
condition for a 1-safe Petri net generating all the binary n-vectors and the existence of
1-safe Petri nets which generate every binary n-vector as one of their marking vectors
exactly once in the smallest possible number of steps have been established.

1 INTRODUCTION

Petri nets, originally proposed by C.A.Petri[4], have been widely recognized as one of the
most promising mathematical tools for describing and analyzing the structure and dynam-
ics of discrete event-driven dynamic systems. They have the advantage of being used as
a visual communication tool as well, similar to flow-chart, block diagram, or a network.
Theoretically, Petri nets have been used as a powerful and convenient tool for representing
and studying the structure of decision making processes which can often be tricky or com-
plex. The development of high-end computers has greatly enhanced the use of Petri nets
in diverse fields.

Kansal et al.[3] proposed a 1-safe star Petri net Sn, having n places and (n+1) transitions,
that generates all the binary n-vectors, as its marking vectors, in which the initial marking
has been taken as (1, 1, 1,· · · , 1). After constructing Sn, many fundamental questions arose,
e.g., (i) 88 Do there exist Petri nets that generate every binary n-vector exactly once? ′′ (ii)
88Is it not possible to take any marking other than (1, 1, 1,· · · , 1) ′′ as an initial marking
for such a Petri net? In this paper, we shall answer both these questions.

2 PRELIMINARIES

For standard terminology and notation on Petri nets, we refer the reader to Peterson[5].
Jenson[2] has given the following more operative definition of a Petri net, which we shall
adopt in this paper.

A Petri net is a 5-tuple C = (P, T, I−, I+, µ0), where

(a) P is a nonempty set of ‘places’,

(b) T is a nonempty set of ‘transitions’,

(c) P ∩ T = ∅,

(d) I−, I+:P × T −→ N, where N is the set of nonnegative integers, are called the negative
and the positive ‘incidence functions’ (or, ‘flow functions’) respectively,

2000 Mathematics Subject Classification. 37, 93, 94 .
Key words and phrases. 1-safe Petri net, reachability tree, binary n-vector .



128

(e) ∀ p ∈ P, ∃t ∈ T : I−(p, t) 6= 0 or I+(p, t) 6= 0 and
∀t ∈ T, ∃p ∈ P : I−(p, t) 6= 0 or I+(p, t) 6= 0,

(f) µ0 : P → N is the initial marking.

In fact, I−(p, t) and I+(p, t) represent the number of arcs from p to t and t to p respectively.
I−, I+ and µ0 can be viewed as matrices of size |P |×|T |, |P |×|T | and |P |×1, respectively.

As in many standard books (e.g., see Reiseg[6]), Petri nets have a well known graphical
representation in which transitions are represented as boxes and places as circles with di-
rected arcs interconnecting places and transitions to represent the flow relation. The initial
marking is represented by placing a token in the circle representing a place pi as a black dot
whenever µ0(pi) = 1, 1 ≤ i ≤ n = |P |. In general, a marking µ is a mapping µ : P −→ N.
A marking µ can hence be represented as a vector µ ∈ Nn, n = |P |, such that the ith

component of µ is the value µ(pi).

Let C = (P, T, I−, I+, µ) be a Petri net. A transition t ∈ T is said to ‘fire’ at the marking
µ (or it is ‘enabled at µ’) iff I−(p, t) ≤ µ(p), ∀p ∈ P . After firing at µ, the new marking µ′

is given by the rule

µ′(p) = µ(p) − I−(p, t) + I+(p, t), for all p ∈ P .

We say t fires at µ to yield µ′ (or t fires µ to µ′), and we write µ
t−→ µ′, whence µ′ is said

to be directly reachable from µ. Hence, it is clear, what is meant by a sequence like

µ0 t1−→ µ1 t2−→ µ2 t3−→ µ3 · · · tk−→ µk,

which simply represents the fact that the transitions t1, t2, t3, . . . , tk have been successively
fired to transform the marking µ0 into the marking µk. The whole of this sequence of
transformations is also written in short as µ0 σ−→ µk, where σ = t1, t2, t3, . . . , tk.

A marking µ is said to be reachable from µ0, if there exists a sequence of transitions which
can be successively fired to obtain µ from µ0. The set of all markings of a Petri net C
reachable from a given marking µ is denoted by R(C, µ) and, together with the arcs of the
form µi tr−→ µj , represents what in standard terminology called the reachability tree of the
Petri net C.

A place in a Petri net is safe if the number of tokens in that place never exceeds one. A
Petri net is safe if all its places are safe. The pre-set of a transition t is the set of all input
places to t, i.e., •t = {p ∈ P : I−(p, t) > 0}. The post-set of t is the set of all output places
from t, i.e., t• = {p ∈ P : I+(p, t) > 0}. Similarly, p’s pre-set is •p = {t ∈ T : I+(p, t) > 0}
and p’s post-set is p• = {t ∈ T : I−(p, t) > 0}.

3 MAIN RESULTS

In this section, we start by first answering the second question raised in the Introduction.

Proposition 1. If a 1-safe Petri net generates all the binary n-vectors then µ0(p) = 1,∀p ∈
P .

Proof. Suppose C = (P, T, I−, I+, µ0) is a 1-safe Petri net which generates all the binary
n-vectors and µ0(pi) 6= 1 for some pi ∈ P . By the definition of a Petri net, no place can



129

be isolated. Therefore pi has to be connected to some ti ∈ T . Now, three cases arise for
consideration:
Case-1: pi ∈ t•i ,
Case-2: pi∈•ti ∩ t•i , and
Case-3: pi∈•ti
In Case 1, since the given Petri net C is safe, •ti 6= ∅ [1]. Therefore, ∃ pj∈•ti for some
pj ∈ P . pj will have either one token or no token. If pj has one token then ti is enabled
and hence fires. After firing of ti, pj will have no token and pi will receive one token. So,
both the places cannot have one token simultaneously. Hence, we will not get the marking
vector whose components are all equal to 1. Again, if pj has no token then ti cannot fire,
whence pi will never receive a token, which contradicts the assumption of the case.

Proof of Case 2 follows from that of Case 1 since, in particular, pi ∈ t•i .

Also, in Case 3, as in the proof of Case 1 pi ∈ •ti implies that we cannot have the marking
vector whose components are all equal to 1.
Thus, if a Petri net generates all the binary n-vectors then µ0(pi) = 1 ∀ pi ∈ P .

Theorem 1. There exists a 1-safe Petri net with the initial marking µ0(p) = 1,∀p ∈ P
which generates each of the 2n binary n-vectors

(a1, a2, a3, · · · , an), ai ∈ {0, 1}, n = |P |,

as one of its marking vectors, exactly once.

Proof. We shall prove this result by using the Principle of Mathematical Induction (PMI)
on n = |P |.

For n = 1, we construct a Petri net C1 as shown in Figure 1.
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Figure 1

In this Petri net C1,

the total number of transitions = 21 − 1 = 1,
|p•1| = 21 − 1 = 1,
|•p1| = 21−1 − 1 = 0,
|•t1| = 1.
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Total number of transitions whose post-sets having no element = 1C0 = 1 and this transition
is t1. Clearly, R(C1, µ

0) of C1 generates both the binary 1-vectors (1) and (0) as shown in
Figure-1 in the first step and after this step, transition becomes dead.

Next, for n = 2, the Petri net C2 shown in Figure-2 has two places.
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Figure 2

In C2, we have

the total number of transitions = 22 − 1 = 4 − 1 = 3,
|p•| = 22 − 1 = 3, ∀ p,
|•p| = 22−1 − 1 = 1, ∀ p,
|•t| = 2, ∀ t.

The total number of transitions whose post-sets have one element = 2C1 = 2 and these
transitions are t1, t2.

The total number of transitions whose post-sets have no element = 2C0 = 1 and this
transition is t3.

It is clear from Figure-2 that R(C2, µ
0) has exactly 4 = 22 binary 2-vectors (a1, a2), a1, a2 ∈

{0, 1} in the first step and after this step, all the transitions become dead.

We can construct R(C2, µ
0) from R(C1, µ

0) as follows: Take two copies of R(C1, µ
0). In the

first copy, augment each vector of R(C1, µ
0) by the adjunction of a ‘0’ entry at the second

coordinate of every marking vector and denote the resulting labeled tree as R0(C1, µ
0).

Similarly, in the second copy, augment each vector by the adjunction of a ‘1’ at the second
coordinate of every marking vector and let R1(C1, µ

0) be the resulting labeled tree (see
Figure-3).
Now, using the following steps we construct the reachability tree R(C2, µ

0) of C2 from
R0(C1, µ

0) and R1(C1, µ
0).

Step-1. Clearly, the binary 2-vectors in R0(C1, µ
0)∪R1(C1, µ

0) are all distinct and are
exactly 22 = 4 in number.

Step-2. In R0(C1, µ
0), none of the transitions tj is enabled at (1, 0).
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Step-3. In R0(C1, µ
0), the root node (1, 0) has the marking obtained after firing of

transition t2 in C2. Hence, we join the root node (1, 0) of R0(C1, µ
0) to the root node (1, 1)

of R1(C1, µ
0) by an arc labeled t2 so that (1, 0) would become the ‘child node’ obtained

by firing t2 in C2. Next, we join the child node (0, 0) of R0(C1, µ
0) to the root node (1, 1)

of R1(C1, µ
0) by an arc labeled t3 so that (0, 0) would become the child node obtained by

firing t3 in C2. Then, the resulting labeled tree T2 has exactly 22 binary 2-vectors as its set
of nodes. T2 is indeed the reachability tree of C2 because in C2 all the transitions t1, t2 and
t3 are enabled at the initial marking (1, 1) and fire. Further, after firing of each transition,
the new markings obtained by the rule

µ′(pi) = µ0(pi) − I−(pi, tj) + I+(pi, tj)

are (0, 1), (1, 0) and (0, 0) respectively and no further firing takes place as the enabling
condition fails to hold for these marking vectors; i.e., we get exactly 22 = 4 binary 2-vectors
in the first step only.

Next, suppose this result is true for n = k. That is, Ck is the 1-safe Petri net having k-
places and 2k−1 transitions t1, t2, t3, · · · , generating each of the 2k binary k-vectors exactly
once and having the structure as schematically shown in Figure-4 which has the following
parameters:
|p•| = 2k − 1, ∀ p,
|•p| = 2k−1 − 1, ∀ p,
|•t| = k, ∀ t.

The total number of transitions whose post-sets have k−1 elements = kCk−1 = kC1 = k
and these transitions are t1, t2, t3, · · · , tk.

The total number of transitions whose post-sets have k − 2 elements = kCk−2 = kC2 =
k(k−1)

2 and these transitions are tk+1, tk+2, tk+3, · · · , t k2+k
2

.

The total number of transitions whose post-sets have k − 3 elements = kCk−3 = kC3 =
k(k−1)(k−2)

6 and these transitions are t k2+k+2
2

, t k2+k+4
2

, t k2+k+6
2

, · · · , t k3+5k
6

.
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The total number of transitions whose post-sets have one element = kC1 = k and these
transitions are t2k−k−1, t2k−k, t2k−k+1, · · · , t2k−2 .

The total number of transitions whose post-sets have no element = kC0 = 1 and this
transition is t2k−1.

We will now prove the result for the 1-safe Petri net Ck+1 having k +1 places and t2k+1 − 1
transitions and having the structure shown schematically in Figure-4. For this purpose,
take two copies of R(Ck, µ0). In the first copy, augment each vector of R(Ck, µ0) by the
adjunction of a ‘0’ entry at the (k +1)th coordinate of every marking vector and denote the
resulting labeled tree as R0(Ck, µ0). Similarly, in the second copy, augment each vector by
the adjunction of a ‘1’ at the (k+1)th coordinate of every marking vector and let R1(Ck, µ0)
be the resulting labeled tree. Now, using the following steps we construct the reachability
tree R(Ck+1, µ

0) of Ck+1 from R0(Ck, µ0) and R1(Ck, µ0).
Step-1. The induction hypothesis implies that the binary (k + 1)-vectors in R0(Ck, µ0) ∪
R1(Ck, µ0) are all distinct and they are exactly 2k + 2k = 2k+1 in number.

Step-2. In R0(Ck, µ0), none of the transitions is enabled at (1, 1, 1, · · · , 0).

Step-3. In R0(Ck, µ0), the root node (1, 1, 1, · · · , 0) is the marking obtained after firing
of transition tk+1 in Ck+1. Hence, we join the root node (1, 1, 1, · · · , 0) of R0(Ck, µ0) to the
root node (1, 1, 1, · · · , 1) of R1(Ck, µ0) by an arc labeled tk+1 so that (1, 1, 1, · · · , 0) would
become the child node obtained by firing tk+1 in Ck+1 and in R1(Ck, µ0) the child node
(0, 0, 0, · · · , 1) is the marking obtained after firing of the transition tk+2 at the root node
(1, 1, 1, · · · , 1) of R1(Ck, µ0); so, we replace the arc labeled as tk+1 by tk+2 in R1(Ck, µ0).
Next, we join the remaining (2k+1 − 1) − k + 2 child nodes (0, 1, 0, · · · , 0), (1, 0, 0, · · · , 0),
· · · , (0, 0, 0, · · · , 0) of R0(Ck, µ0) to the root node (1, 1, 1, · · · , 1) of R1(Ck, µ0) by an arc
each, labeled tk+3, tk+4, tk+5, · · · , t2k−1 respectively, so that (0, 1, 0, · · · , 0), (1, 0, 0, · · · , 0),
· · · , (0, 0, 0, · · · , 0) would become the marking obtained after firing of tk+3, tk+4, tk+5,
· · · , t2k−1 respectively in Ck+1. Then the resulting labeled tree Tk+1 has exactly 2k+1

binary (k + 1)-vectors. Tk+1 is indeed the reachability tree of Ck+1 because in Ck+1 all the
transitions are enabled at the initial marking (1, 1, 1, · · · , 1) and fire. After firing, the new
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markings obtained by the rule

µ′(pi) = µ0(pi) − I−(pi, tj) + I+(pi, tj)

are
(0, 1, 1, · · · , 1), (1, 0, 1, · · · , 1), (1, 1, 0, · · · , 1), · · · , (0, 0, 0, · · · , 0)

respectively and no further firing takes place as the enabling condition fails to hold for these
marking vectors; i.e., we get exactly 2k+1 binary (k+1)-vectors each generated exactly once
in the first step itself.

It is clear that the Petri net constructed above generates each of the 2n binary n-vectors
exactly once in the very first step and, hence, is the smallest number of steps because no
firing will take place after that step.

Hence, the result follows by PMI.

It may be observed from the above proof that the Petri net constructed therein yields all
the binary n-vectors as marking vectors in the least possible number of steps.

4 Conclusions and scope

We have shown in this paper that there exists a Petri net that generates every binary
n-vector exactly once. A computationally good characterization of such Petri nets in gen-
eral is highly desirable since the instances where we need such Petri nets for applications
are imaginably (as well as arguably) large in number as pointed out in Kansal et al.[3].
Optimization of the order (i.e., |P | + |T |) and size (the number of arcs) in such a Petri
net is the next desired goal. Lastly, one can think of the need to minimize the number
of firing of transitions in such a Petri net. Characterization of the subclass of such Petri
nets with least possible order, size and number of enabled transitions would be essential for
application purposes.
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