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THE FACTORIZATION OF x5 + axm + 1.
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Abstract. We consider trinomials of the form x5 + axm + 1 where a is a rational
number and determine those trinomials that factor over the rational numbers as the
product of an irreducible quadratic and an irreducible cubic. The solution requires the
calculation of the rational points on a pair of genus 2 curves.

1 Introduction Let f(x) be a polynomial with rational coefficients. The determination
of those polynomials f(x) with a specific form and a prescribed factorization often leads to
interesting Diophantine problems. A general source of information on this type of problem
is Schinzel [4]. In a paper by Rabinowitz [3] the factorization of x5±x+n, for n an integer,
into the product of an irreducible quadratic and an irreducible cubic over the rational
numbers Q was studied and a finite number of polynomials was determined. This type of
result was extended by Spearman and Williams [5] to polynomials of the form x5 ±xm +n,
for 1 ≤ m ≤ 4. The purpose of this paper is to study in a similar manner to [3] and [5] the
particular class of quintic polynomials f(x) given by

f(x) = x5 + axm + 1,

where a is a rational number and 1 ≤ m ≤ 4. We shall determine those rational values
of a for which f(x) is equal to the product of an irreducible quadratic and an irreducible
cubic over Q. In doing so, we take full advantage of a recent theoretical result of Stoll,
described in Section 2, on rational points on certain genus 2 curves. We also take advantage
of the computer algebra system Magma [1]. We note that such a factorization for f(x) =
x5 +axm +1 immediately yields a factorization for the polynomial x5 +ax5−m +1, by using
the reverse polynomial x5f (1/x) . We state all of the factorizations of f(x) for m satisfying
1 ≤ m ≤ 4, for completeness. Finally, a factorization of x5 + axm + 1 immediately yields
a factorization for x5 + axm − 1 if m is odd and x5 − axm − 1 if m is even by scaling with
x → −x. Therefore we only treat the case where the constant term of f(x) is equal to
positive 1. We prove the following theorem.

Theorem 1. Let f(x) = x5 + axm + 1 where a is a rational number and m is an integer
with 1 ≤ m ≤ 4. Then f(x) factors into the product of an irreducible quadratic and an
irreducible cubic if and only if a and m assume the values listed in the following table. In
each case the factorization is given.

(a,m) factorization of x5 + axm + 1

(1, 1) x5 + x + 1 = (x2 + x + 1)(x3 − x2 + 1)

(−11/4, 1) x5 − 11/4x + 1 = (x2 + x − 1/2)(x3 − x2 + 3/2x − 2)

(1, 4) x5 + x4 + 1 = (x2 + x + 1)(x3 − x + 1)

(−11/4, 4) x5 − 11/4x4 + 1 = (x2 − 2x − 2)(x3 − 3/4x2 + 1/2x − 1/2)
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In Section 2 we give some preliminary results concerning rational points on specific genus
2 curves. In Section 3 we give the proof of our theorem.

2 Some Lemmas on Rational Points. In this section we give two lemmas which
determine the set of rational points on two genus 2 curves. We refer the reader to Cassels
and Flynn [2] as a reference for these types of algebraic curves. We will use a theorem of
Stoll [6] which bounds the number of rational points on Ck : y2 = x5 + k where k is a
tenth-power-free integer. This theorem states that if the rank of the Jacobian of this curve
is at most one then the number of rational points is bounded above by 7 and this bound is
achieved only for k = 324. Assuming that Ck has no rational point of the form (x, 0) for
k 6= 324, the bound is 5. Magma will be used to determine the rank of the Jacobian for our
curves using the command RankBounds. Additionally we use the fact that if the Jacobian
of a genus 2 curve has a rank of zero, then one can enumerate all points in the Jacobian
and consequently find all rational points on Ck. The Magma command that does this is
Chabauty0. Now we analyze the rational points on two relevant genus 2 curves.

Lemma 1. The only finite rational points on the genus 2 curve y2 = x5+4 are (0,±2), (2,±6).

Proof. We observe the four given points (0,±2), (2,±6) on the curve. Magma confirms,
using RankBounds that the rank of the Jacobian of this curve is equal to 1. Consequently
the theorem of Stoll applies. The bound in this case, including the point at infinity, is 5 so
that all of them are determined.

Lemma 2. The only finite rational points on the genus 2 curve y2 = x5 +256 are (0,±16).

Proof. The RankBounds command in Magma confirms that the rank of the Jacobian of the
given curve is equal to 0. Chabauty0 shows that the the finite points on this curve are
indeed those listed in the statement of this lemma.

3 Proofs of Theorems

Proof. As mentioned in the introduction we need only treat the cases m = 1, 2. Suppose
that x5+ax+1 is divisible by a quadratic polynomial x2+ux+v where a, u, v ∈ Q. Division
of these two polynomials leads to

x5 + ax + 1 = (x2 + ux + v)(x3 − x2u + (−v + u2)x + 2uv − u3)(1)

+ (v2 − 3vu2 + a + u4)x + 1 + vu3 − 2uv2

In equation (1) we equate the coefficients of x and 1 in the remainder to zero yieldng the
pair of equations

v2 − 3vu2 + a + u4 = 0,(2)

1 + vu3 − 2uv2 = 0.

The second equation in (2) shows that u 6= 0 and v 6= 0. Eliminating v from (2), using a
resultant, produces the equation

(3) −11u5 + 1 + 4ua − u10 + 3u6a + 4u2a2 = 0.

The discriminant of (3), viewed as quadratic equation in a is equal to

(4) 25u7(8 + u5).
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If (3) has a rational root a then (4) must be equal to a square in Q, so that

(5) 25u7(8 + u5) = w2,

for some rational number w. Since u 6= 0, it follows from (5) that
(

2
u

,
2w

5u6

)
is a point on

(6) y2 = x5 + 4.

From Lemma 1, we know that x = 2, so that u = 1. Substituting u = 1 into (3) and
factoring gives

(4a + 11)(a − 1) = 0.

The two choices of a = 1, a = −11/4 produce the factorizations given in the table in the
theorem.

In this case, suppose similarily to the first case, that f(x) = x5 + ax2 + 1 is divisible by
a quadratic polynomial x2 + ux + v where a, u, v ∈ Q. Division of these two polynomials
leads to

x5 + ax2 + 1 = (x2 + ux + v)(x3 − ux2 + (−v + u2)x + a + 2uv − u3)(7)

+ (v2 − ua − 3vu2 + u4)x + 1 + vu3 − 2uv2 − va.

In equation (7) we equate the coefficients of x and 1 in the remainder to zero yielding the
pair of equations

v2 − 3vu2 − ua + u4 = 0,(8)

1 + vu3 − 2uv2 − va = 0.

If there exists a solution to this pair of equations with u = 0, then the first equation
simplifies to

v2 = 0

so that v = 0. It would then follow that the irreducible quadratic factor of f(x) is x2 +ux+
v = x2 which violates irreducibility of the quadratic factor. Then since u 6= 0, we may solve
the first equation in (8) to give

(9) a =
u4 + v2 − 3u2v

u
.

Substituting the value of a given in (9) into the second equation in (8) yields

u − v3 + u2v2

u
= 0

so that

(10) u − v3 + u2v2 = 0.

The existence of a rational solution u to (10) requires the discriminant of this quadratic in
u to be equal to a square in Q. That is

(11) 1 + 4v5 = z2
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for some rational number z. From (11) we see that (x, y) = (4v, 16z) is a rational point on
the genus 2 curve

(12) y2 = x5 + 256.

Lemma 2 tells us that the only rational solution to (12) has x = 0 and since x = 4v we
must have v = 0. However this contradicts the assumption that x2 + ux + v is irreducible
over Q. Thus f(x) = x5 + ax2 + 1 cannot factor over Q as the product of an irreducible
quadratic and an irreducible cubic.
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