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Abstract. As an effective use of the CAS (computer algebra system) in the mathe-
matics education, we can perform mathematics experiment and can do heuristic learn-
ing. One of the roles expected to use of CAS in mathematics learning is to be able to
carry out experimental mathematics to make heuristically by myself. We introduce a
trial (mathematical search) to practice such an activity in university mathematics.

We can obtain degeneracy conditions of singularities by using Gröbner basis. In
classification of singularities, the defining equations of certain types are polynomials
with parametric coefficients. In general, the Gröbner basis generated by such polyno-
mials depends on the values of the parameters, and those calculations are not easy.
A structure of zero set defined by polynomials with parameters changes by the values
of the parameters. This is the learning problem that is important in the university
mathematics. As one of such teaching materials, the defining equation of singularity
with parameters is suitable. We show various examples of the calculations to students
and teach these calculations. When students learn those calculations as algorithm,
an interesting subject is preferable, mathematically. The singularity on the algebraic
curve can arouse the interest of the students. We can make the learning of the algebraic
curve with parameters more interesting in university mathematics.

This trial is significant to show utility of the mathematics by using computer and
to clarify the pleasure of the calculations to students. Then, the calculation based on
Gröbner basis theory is necessary. If they calculate thoughtlessly, they will not obtain
significant results. The mathematical result to show in this paper is still an experiment
stage on the way. We show these search activities as the material of the experiment in
university mathematics in this paper.

1 Introduction We will recall the following definitions and theorems. Let f(x, y, z) be
a polynomial with variables x, y, z in C3. Then the analytic set defined by f(x, y, z) = 0
has a singularity at O in C3 if

f(0, 0, 0) =
∂f(0, 0, 0)

∂x
=

∂f(0, 0, 0)
∂y

=
∂f(0, 0, 0)

∂z
= 0.

Definition 1.1
A quasihomogeneous function f is said to be non-degenerate if O is an isolated singularity.

Definition 1.2
Let N ⊂ R+ ⊂ R be the sets of all non-negative integers, all non-negative real numbers,
all real numbers respectively. Let H ⊂ NK be a subset. Newton polyhedron of a set H is
defined by the convex hull in RK

+ of the set∪
n∈H

( n + RH
+ ).
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Newton boundary of a set H is defined by the union of all compact faces of Newton poly-
hedron of H. Newton polyhedron is defined by Γ+(H) and Newton boundary by Γ(H).

Definition 1.3
Let f =

∑
n∈H

anxn, an ∈ C. Let us write suppf = { n ∈ NK | an 6= 0}.

Newton polyhedron (or Newton boundary) of a series f is defined by Newton polyhedron of
the suppf . Newton polyhedron of the series f is denoted by Γ+(f) (and Γ(f) respectively).

Definition 1.4
The principal part of a series f is defined by the polynomial

f0 =
∑

n∈Γ(f)

anxn.

For any closed face 4 ⊂ Γ(f) we shall denote by f4 the polynomial∑
n∈4

anxn.

We say that f is non-degenerate on 4 if the equation

∂f4
∂x1

=
∂f4
∂x2

= ... =
∂f4
∂xn

= 0

has no solution in (C∗)n. When f has a non-degenerate on every face 4 of Γ(f), we say
that f has a non-degenerate principal part.

The following theorem holds about the Newton boundary and the topological type of
singularity.

Theorem 1.5 ([5])
Suppose that f(x) has an isolated singularity at O and f(x) has a non-degenerate principal
part. Then the Milnor fibration at O is determined by the Newton boundary Γ(f(x)).

Corollary 1.6 ([4])
The topological type of singularity and the multiplicity µ are independent of the particular
choice of f(x) for a fixed Γ(f(x)).

2 Defining Equations of Simple K3 Singularities In the theory of two-dimensional
singularities, the defining equation of certain type singularity is a polynomial that has
parametric coefficients. Arnol’d showed the non-degenerate conditions(restrictions). The
normal forms(defining equations of singularities) are given in [1].

What are natural generalizations in three-dimensional case of those singularities? They
are purely elliptic singularities. And we regard simple K3 singularities as natural general-
izations of simple elliptic singularities in three-dimensional case. We define the simple K3
singularities. The notion of a simple K3 singularity was defined by Ishii and Watanabe [3]
as a three-dimensional Gorenstein purely elliptic singularity of (0, 2)-type, whereas a simple
elliptic singularity is two-dimensional purely elliptic singularity of (0, 1)-type.
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Definition 2.1 ([9])
Let (X, x) be a normal isolated singularity. For any positive integer m,

δm(X, x) =
dimcΓ(X − {x}, ϑ(mK))

L2/m(X − {x})
,

where K is the canonical line bundle on X − {x}, and L2/m(X − {x}) is the set of all
L2/m-integrable (at x) holomorphic m-tuple n-forms on X − {x}.

Then δm is finite and does not depend on the choice of a Stein neighborhood on X.

Definition 2.2 ([9])
A singularity (X, x) is said to be purely elliptic if δm = 1 for every positive integer m.

When X is a two-dimensional analytic space, purely elliptic singularities are quasi-
Gorenstein singularities, i.e., there exists a non-vanishing holomorphic 2-form on X − {x}.

Definition-Proposition 2.3 ([3])
A three-dimensional singularity (X, x) is a simple K3 singularity if the following two equiv-
alent conditions are satisfied:
(1) (X, x) is Gorenstein purely elliptic of (0, 2)-type.
(2) (X, x) is quasi-Gorenstein and the exceptional divisor E is a normal K3 surface for
any minimal resolution π : (X̃, E) → (X, x).

Simple elliptic singularities and cusp singularities are characterized as two-dimensional
purely elliptic singularities of (0, 1)-type and of (0, 0)-type, respectively. The notion of a
simple K3 singularity is defined as a three-dimensional isolated Gorenstein purely elliptic
singularity of (0,2)-type.

Let f ∈ C[z0, z1, z2, z3] be a polynomial which is nondegenerate with respect to its
Newton boundary Γ(f) in the sense of [8], and whose zero locus X = {f = 0} in C4 has
an isolated singularity at the origin 0 ∈ C4. Then the condition for (X, 0) to be a simple
K3 singularity is given by a property of the Newton boundary Γ(f) of f .

Next we consider the case where (X, x) is a hypersurface singularity defined by a
nondegenerate polynomial f =

∑
aνzν ∈ C[z0, z1, ... , zn], and x = 0 ∈ Cn+1. We

denote by R0 the set of all nonnegative real numbers. Recall that the Newton boundary
Γ(f) of f is the union of the compact faces of Γ+(f), where Γ+(f) is the convex hull of∪

aν 6=0(ν + Rn+1
0 ) in Rn+1.

For any face ∆ of Γ+(f), set f∆ : =
∑
ν∈∆

aνzν . We say f to be nondegenerate, if

∂f∆

∂z0
=

∂f∆

∂z1
= ... =

∂f∆

∂zn
= 0

has no solution in (C∗)n+1 for any face ∆.
When f is nondegenerate, the condition for (X, x) to be a purely elliptic singularity is

given as follows:

Theorem 2.4 ([10])
Let f be a nondegenerate polynomial and suppose X = {f = 0} has an isolated singularity
at x = 0 ∈ Cn+1.
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(1) (X, x) is purely elliptic if and only if (1, 1, ... , 1) ∈ Γ(f).
(2) Let n = 3 and let ∆0 be the face of Γ(f) containing (1, 1, 1, 1) in the relative interior
of ∆0.
Then (X, x) is a simple K3 singularity if and only if dimR∆0 = 3.

Thus if f is nondegenerate and defines a simple K3 singularity, then f∆0 is a quasi-
homogeneous polynomial with a uniquely determined weights α , which called the weights
of f and denoted α(f). We denote by Q+ the set of all positive rational numbers. Then

α = (α1, α2, α3, α4) ∈ Q4
+ and degα(ν) : =

4∑
i=1

αiνi = 1 for any ν ∈ ∆0. In

particular,
4∑

i=1

αi = 1, since (1, 1, 1, 1) is always contained in ∆0.

We denote by Z0 the set of all nonnegative integer numbers.
Let W ′ : = {α = (α1, α2, α3, α4) ∈ Q4

+ | α1 + α2 + α3 + α4 = 1} and for an
element α of W ′, set

T (α) : = {ν ∈ Z4
0 | α · ν = 1}

and
< T (α) > : = {

∑
ν∈T (α)

tν · ν ∈ R4 | tν ∈ R0}.

Then the set < T (α) > is a closed cone in R4 spanned by T (α).
Let W4 : = {α ∈ W ′ | (1, 1, 1, 1) ∈ Int < T(α) >, α1 ≥ α2 ≥ α3 ≥ α4}. Then

W4 is the set of weights of simple K3 singularities. W4 is classified, there are ninety five
classes in terms of the weights of f([12]). The defining equations of simple K3 singularities
are polynomials that have parametric coefficients.

Yonemura listed the weights of hypersurface simple K3 singularities by nondegenerate
polynomials and obtained the examples such that the polynomial f is quasi-homogeneous
and that {f = 0} ⊂ C4 has a simple K3 singularity at the origin([12]). The minimum
number of parameters in the polynomial is less than or equal to 19 and is associated with
the moduli of the K3 surface with singularities.

3 Application of Gröbner Bases In the elimination theory, one of basic strategy is
Elimination Theorem. The calculation of Gröbner basis([2]) for such polynomials is not
easy. In calculation process, we need to classify conditions of parameters for the leading
term. By a study of Comprehensive Gröbner bases([11]), the calculation algorithm for a
certain type is obtained. The following theorem holds.

Theorem 3.1 ([2])
Let I ⊂ k[x1, ... , xn] be an ideal and let G be a Gröbner basis of I with respect to lex
order where x1 > x2 > ... > xn. Then, for every 0 ≤ l ≤ n, the set

Gl = G ∩ k[xl+1, ... , xn]

is a Gröbner basis of the lth elimination ideal Il.

Let f be a defining equation, I : = < f,
∂f

∂x1
,

∂f

∂x2
, ... ,

∂f

∂xn
>. And let G be a

Gröbner basis of I with respect to lex order where x1 > x2 > ... > xn. Then, for every
0 ≤ l ≤ n, the set

Gl = G ∩ k[xl+1, ... , xn]
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is a Gröbner basis of the lth elimination ideal Il. We can obtain the non-degeneracy
condition of singularity at the origin from the Gröbner basis of the lth elimination ideal Il.
(The degeneracy condition of singularity at the origin means the singularity is non-isolated
singularity at the origin.) In the process, we need to classify the conditions of parameters
for the leading term.

We consider the ideal

I = {fi(t1, ... , tm, x1, ... , xn) : 1 ≤ i ≤ s}

in k(t1, ... , tm)[x1, ... , xn] and fix a monomial order. We thought of t1, ... , tm as symbolic
parameters appearing in the coefficients of f1, ... , fs. By dividing each fi by its leading
coefficient which lies in k(t1, ... , tm), we assumed that the leading coefficients of the fi

are all equal to 1. Then let g1, ... , gs be a reduced Gröbner basis for I. Thus the leading
coefficients of the gi were also 1.

4 Degeneracy Conditions The defining equations of singularities are polynomials with
parameter coefficients. We can obtain degeneracy conditions of these singularities by using
Gröbner basis. In general, the forms of Gröbner bases generated by polynomials depend on
the values of parameters.

We obtain the degeneracy conditions of simple K3 singularities. Let W4 be the set of
defining equations which has a nondegenerate hypersurface simple K3 singularity at the
origin and let #m(f) be the minimum number of parameters of the defining equation for
any f ∈ W4. We already obtained the following results for uni-modula case, bi-modulars
case and tri-modulars case([6]). Here, the index number n of fn denotes the number of
the defining equation in the classification by Yonemura([12]). λ, µ, ν are parameteric
coefficients.

For #m(f) = 1,

No. The defining equations
f52 x3 + 4λxyzw + xz3 + y4 + zw4
f56 x2y + y3z + 3λyz2w2 + z5 + w6

No. The degeneracy conditions
f52 λ4 − 1 = 0
f56 λ3 + 1 = 0

For #m(f) = 2,

No. The defining equations
f46 x2 + y3 + 3λyz4w4 + z11 + 2µz6w6 + zw12

f61 x2z + y4 + 2
√

2λy2zw2 + z4w + 2µz2w4 + w7

No. The degeneracy conditions
f46 (λ3 + µ2 + 1)2 − 4µ2 = 0
f61 (µ2 − 1)((λ2 − µ)2 − 1) = 0
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For #m(f) = 3,

f64 : x2z + axy2 + by3w +
√

2λy2zw2 + 2
√

2µyz2w3 + z6 − 2νz3w4 + w8
where a 6= 0 or b 6= 0.

For this defining equation, we set as follows:
f64(1) : x2z + xy2 + 2λy2zw2 + 2

√
2µyz2w3 + z6 + 2νz3w4 + w8 ( for the above a 6= 0)

f64(2) : x2z + y3w + 3λyz2w3 + z6 + 2µz3w4 + w8 ( for the above a = 0)

No. The defining equations
f64(1) x2z + xy2 +

√
2λy2zw2 + 2

√
2µyz2w3 + z6 − 2νz3w4 + w8

f64(2) x2z + y3w + 3λyz2w3 + z6 + 2µz3w4 + w8

No. The degeneracy conditions
f64(1) (−16λ2 + 4

√
2λ3µ2 − 27µ4 + 24ν + 8λ4ν − 36

√
2λµ2ν − 16λ2ν2 + 8ν3)2

−16(2 + 2λ4 − 9
√

2λµ2 − 8λ2ν + 6ν2)2 = 0
f64(2) (λ3 + µ2 + 1)2 − 4µ2 = 0

We show an example of the calculation in the following. We can calculate the other
results by a similar method. (We use Mathematica)

Example
In [1] = f64 = x2z + xy2 + py2zw2 + qyz2w3 + z6 + rz3w4 + w8; ;
Factor[GroebnerBasis [ {f64, ∂x (f64) , ∂y (f64) , ∂z (f64) , ∂w (f64) } ,
{ x, y, z, w }, {x, y, z } ] ]

Out[1] = { (−512 + 512p2 − 128p4 + 288pq2 − 16p3q2 + 27q4 + 768r − 512p2r + 64p4r −
144pq2r− 384r2 + 128p2r2 + 64r3)(512 + 512p2 + 128p4− 288pq2− 16p3q2 + 27q4 + 768r +
512p2r + 64p4r − 144pq2r + 384r2 + 128p2r2 + 64r3) w17 }

In [2] = m1 = 512p2 − 16p3q2 + 27q4 + 768r + 64p4r − 144pq2r + 128p2r2 + 64r3;
m2 = 512 + 128p4 − 288pq2 + 512p2r + 384r2; p =

√
2λ; q = 2

√
2µ; r = −2ν;

In [3] = Factor[m1]
Out[3] = −64(−16λ2 + 4

√
2λ3µ2 − 27µ4 + 24ν + 8λ4ν − 36

√
2λµ2ν − 16λ2ν2 + 8ν3)

In [4] = Factor[m2]
Out[4] = 256(2 + 2λ4 − 9

√
2λµ2 − 8λ2ν + 6ν2)

We denote the degeneracy condition of fi by M(fi). Then, for µ = 0, M(f46) transform
to M(f56) . Similarly, for µ = 0, M(f61) transform to M(f52). We denote them by
M(f46) → M(f56), M(f61) → M(f52), respectively.

For µ = 0, M(f64(1)) = (ν2− 1)((λ2− ν)2− 1), then M(f64(1)) is isomorphic to M(f61)
as the structure of parameter space. Similarly, M(f64(2)) is isomorphic to M(f46). We also
denote them by M(f46) ← M(f64) → M(f61). By these results, we can show following
relation.

M(f56) ← M(f46) ← M(f64) → M(f61) → M(f52)

We find the systematic moduli for simple K3 singularities.
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5 Observation This trial is an application of the Gröbner basis and is the good teaching
materials which can join calculations and theories together when we teach the theory of the
polynomial ideal in the algebra. Till now, we had shown various examples of the calculations
to students and taught these calculations.

When students learn those calculations as algorithm, an interesting subject is preferable,
mathematically. As one of such teaching materials, the definition equation of singularity
with parameters is suitable. The singularity on the algebra curve can arouse the interest
of the students. This trial is significant to show utility of mathematics by using computer
and to clarify the pleasure of the calculations to students. Then, the calculation based
on Gröbner basis theory is necessary. If they calculate thoughtlessly, they will not obtain
significant results.

The mathematical result to show in this paper is still an experiment stage on the way.
We showed this trial as one way of the experiment material in the university mathematics.
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