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ABSTRACT. In this paper, by considering the notion of a A-closed set in BC K-algebras, we
construct the fractions of BC' K-algebras and prove some related results. Moreover, we study the
notion of a BC K-module and prove that any BC K-algebra is a BC K-module on itself. Finally,
we construct the fractions of BC'K-modules.

1. Introduction

A BCK-algebra is an important class of logical algebras introduced by Y. Imai and K. Iséki in
1966 [4, 5]. This notion is originated in two different ways: One is based on set theory; another
comes from the classical and non-classical propositional calculi. As is well known there is a close
relation between the notion of the set difference in set theory and the implication functor in logical
systems. Then the following problems arise from this relationship. What is the most essential
and fundamental common properties? Can we establish a good theory of general algebras? To
give an answer to these problems, Y. Imai and K. Iséki introduced the notion of a new class of
general algebras called BC K- algebras. This name is taken from BC K-system of C. A. Meredith.
The BCK-action was introduced by H. Abujabal, M. Aslam and A. B. Thaheem in 1994 [1] as
an action of a BC'K-algebra over a commutative group. This concept is extended by Z. Perveen,
M. Aslam and A. B. Thaheem in 2006 [10], as a BCK-module. Now, in this paper we follow [10]
and construct the fractions of BC K-algebras. Moreover, we prove that any BCK-algebras is a
BCK-module on itself and we construct the fractions of BC K-modules. It should be noted that
in this paper the main idea is to observe does the BC K-algebra has the ability to obtain and prove
some well-known concepts and theorems in commutative algebra, especially fraction algebra, by
use of the structure and characteristics of BC K-algebras.

2. Preliminaries

Definition 2.1. [7] A BCK-algebra is a set X with a binary operation “«” and a constant “0”
satisfying the following axioms:
(BCK1) ((z+y) * (x +2)) * (2 +1)) = 0,
(BCK2) (x*(zx*xy))*xy=0,
(BCK3) xxx =0,
(BCK4) 0xx=0,
(BCK5) zxy=y*xz=11imply z =y.
A BCK-algebra X is called implicative if x * (y*x) = x, commutative if z x (xxy) = y* (y *x),
bounded if there exists a unique element 1 € X such that x x1 =0, for all z,y,z € X.

Definition 2.2. [6] Let (X, *,0) be a BCK- algebra, I be a nonempty subset of X and 0 € I.
Then [ is called an ideal of X if zxy € I and y € I imply = € I, for any x,y € X. An ideal I is
called proper, if I # X.
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Theorem 2.3. [9] If X is a BOCK-algebra and ) # A C X, then the ideal generated by A (the
intersection of all ideals of X containing A) will be denoted by (A] and

(A] = {z € X|3a1,a9, - ,an € A such that (--- ((x*a1)*az)*---)*xa, =0}
Theorem 2.4. [9] Any implicative BCK -algebra is a commutative BCK -algebra.

Theorem 2.5. [9] Let (X, *,0) be a bounded implicative BCK -algebra. Then (X,A,V,0,1) is a
complimented distributive lattice and so Boolean algebra, where

xANy=yx(y*xzx) , xVy=N(NzANy)
and Nz = 1%z, for any x,y € X.

Theorem 2.6. [9] Let X be a bounded implicative BCK -algebra. Then we have the following
properties for all x,y € X:

(i) NNz =z,

(it) NtV Ny=N(xAy), Ne ANy = N(xzVy),

(i1i) Nz« Ny = y x x,

(iv) c AN Nx =0,

(v) xV Nx =1,

(vi) zx (x* Ny) =z *y, i.e. NyAx =2x*y,

() zx (x+xy) =x* Ny, i.e. yANz =z x Ny

(i) NO=1,N1 = 0.

From now on, in this paper we let X to be a bounded implicative BC'K-algebra. Note that
these algebra is infact a Boolean algebra.
3. BCK-algebras of Fractions

In this section, by using techniques of BC K-algebras, we introduce and study the notion of
fraction for bounded implicative BC' K (Boolean)-algebras.

Definition 3.1. [9] Let S be a non empty subset of X. Then S is called A-closed if 1 € S and
ANy €S, forall z,y € S.

From now on, in this paper we let S to be a A-closed subset of X.

Lemma 3.2. If the relation “~7 on X x S is defined by:
(xl,tl) ~ (xg,tg) <~ ds € S,S/\Cl'l Nitog =8N\ x2 N1y,

then “~7 is an equivalence relation.
Proof. By Theorem 2.5, (X,A) is a A-semi lattice. Hence, we prove the equivalence relation
properties. Reflexive and symmetric properties are clear.

Transitive property:
Let (z1,t1) ~ (x2,t2) and (xa,ts) ~ (x3,t3). Then there exist s1,s2 € S such that s; Az At =
s1 ANxo Aty and so A x9 Atg = so A x3 Aty. Hence,

St NSy Nta Ntg ANx1 =81 ANso At1 ANtg N\ xo
and

St NSy Nty Ntg ANxo =581 ANso Aty ANta N\ a3
and so

81/\82/\t2/\t3/\1’1:Sl/\SQ/\tl/\tg/\xg

Now, let s’ = 51 A sy Ate € S. Hence s’ Axy Aty = s’ A xzz At1, and this implies that (zq,t1) ~
(.’E37 tg). D
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Notation. From now on, for each element (z,s) € X x S, the class [(z, s)] will be denoted by
x/s and the set X x S/ ~ by S7!X. Hence we have S™'X = {z/s: 2 € X,s € S}.

Corollary 3.3. (i) z/t = y/s, for any x/t,y/s € ST1X, if and only if there exists s' € S such
that s Nx As=s" ANy At,

(i) 0/s = 0/t, for any t,s € S.(So, for any s € S, 0/s will be denoted by 0g-1x ),

(iii) x/t = 0g-1x if and only if there exists | € S such that x N1 =0,

(iv) 0 € S if and only if ST X = {0g-1x}.

Proof. The proofs of (i), (ii) and (iv) are clear.

(iii) Let 2/t = 0g-1x, for z € X and ¢t € S. By (ii), we can let 0g-1x = 0/t. Then z/t = 0/t
and so there exists s € S such that z At As=0. Let [ =t A s. Hence, there is [ € S, such that
xANl=0. g

Lemma 3.4. For any z,y,z € X, we have;
(i) e A (yx*z) = (z Ay)* (A 2),
(i) x « (x Ny) =z *y.
Proof. (i) Let z,y,z € X. Then by Theorem 2.6,
(zAy)*x(xzNz) = (xAy)AN(zAz),
= (xAy)AN(NzV Nz)
= [(xAy) ANz]V[(x Ay)ANz] , (by Theorem 2.5)
= [yA(xANx)]VI[(xAy) ANz
[y ANO)V [(z Ay) ANz
= 0V[(xAy)ANz|
(x ANy) ANz,
zA(yANz),
= T A(yx*2).

(ii) Since X is implicative,

xx(xAy)=xx(xx(xxy)) =x*xy

Theorem 3.5. If the binary relation “*” on S™'X is defined by

xftxy/s=[(xNAs)x(yAt)]/({tAs)
then (S™1X,%,0g-1x) is a bounded implicative BCK -algebra.
Proof. First we show that “x” is well defined. Let a/s = a’/s’ and b/t = b/ /t’. Then there exist

u,v € S such that

uANsNa=uAsAha , oAU Ab=vAtAY
and so

VAEAT AuNS Na=vAtAY ANuAshd
and

SAS ANuANVAE ANb=sNs ANuNvAtAY
So, we conclude that

[(uAV)AN S AEYAN(EANQ)] =[(uAV)A(sAE)A(a' AL

and
[(uAV)A (S AEYA(sAD)=[(uAv)A(sAt)A (s AY)]
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Hence,
[(uAV)A(S' A YA [EAQ)] %[ (uAV)A (S AL YA (sAD)] = [(uAv)A(sAE)A (@A) [(uAv) A(sAE)A(S'AD)]
Then, by Lemma 3.4, we have,
[(uAV)A (S A A[EANa)* (sAD)] =[(uAv)A(sAD)]A[(d A)* (s AY))
Now, let s" =uAv € S. Hence, s” € S and
S"ANEAYAN[ENa)* (sAD)] =8"AN(sAt)AN[(@ At')x(s" AD)]
and this implies that
[(EAa)*(sAD)]/(sAnt)=[(a" At')x (s AV)]/(s'AT)
Hence,
a/sxbjt =a' /s b/t
Therefore, “x” is well-defined. Now, we show that (S71X, %, 0g-1x) is a BCK-algebra. Let
a/s,b/t,d/f € STX. Then:
(BCK1):
(a/s % b/t) % (afs xd/ )] % (d/f % b]2)
((ant)sx(bAs))/(s N x[((an f)x (s Ad)/(s A DI *[((dAE) = (bAF)/(f AL
[((sAf)A((ant)«BAs))]x[(sAt)A((anf)x(snd)]l/(sAtAF]F[(([dAt)*(bAf))/(fAL)]
(FANIsAL) AN(ant)«@As)]*[(sAt)A((anf)*(snd)]]
(s AEAFYN(AAE) s+ (bA /(s AEAF)]
[((F AN A YA (@A)« (s AFYADBAs)][((sAt)A(anf))x((sAt)A(sAd))]]
(s AEADAAD) % (s AEAF)ABA DI/ (5ALAF)
[(FA) A s A YA ant)] = [(fAE)A((sAf)ADBASs))]]
HFA)A(sA)Aan )] [(f AL A (s AE)A (s Ad))]]
(s AEAFYAN(AAE)) (s AEAF) AN DA/ (s AEA ])
M(fAtAsAa)« (fAEASAD)]x[(fAtASAa)*(fAtAsAA)]
*[(fAEAsSAD) * (FAELASAD]]/(sAEAS)
[[[Aa)« AAD)]*[(IAa)« IAD]]*[UIAND)*x(IAD)]/(sAEAS) , (fl=FfAtAS)
= 0/(sAntAf) , (by (BCK1))
= 0Og-1x
(BCK2):
[a/sx(a/s*xb/t)] xb/t =

[
I
[
[
[
[
[
[

a/sx((ant)*(sAb))/(sAt)]*(b/t
/
/

[ )
= [(ansAt)x(sA((ant)=(sAD)))/(sAt)]*(b/t)
= [((ansAt)x((shaNnt)x(sAD))/(sAt)]*(/t) , (by Lemma 3.4)
= [tA[(ansAt)x((shant)x(sAD)])x(bAsAL)]/(sAt)
= [[(ansAt)x((shant)*x(sAbAL))]x(bAsAL)/(sAt) , (by Lemma 3.4)
= 0/(sAt)
= 0Og-1x
(BCK3):
a/sxa/s=((ans)*(aNs))/s=0/s=0g-1x
(BCK4):

Os-1x*xa/s=0/sxa/s=[(0As)*(aNs)]/s=0/s=0g-1x
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(BCK5): If a/sx b/t = 0g-1x and b/t xa/s = 0g-1x, then

(@At 5 (sAB)/(s A1) =05-rx » ((BAS)*(@AD)/(5AL) = 05mrx
Hence, there exist [,l’ € S, such that
IN[(ant)«(sAb)] =0, UAN[(bAS)*(ant)]=0
and so
IANYAN(aAt)x(sAD)=0 (IAUYA((BAS)*(ant)=0
Let h =1 Al'. Then, by Lemma 3.4,
(hA(ant)«(hA(sAD) =0, (hABAS)*x(hA(aAt))=0
Hence by (BCK5), hA(aAt)=hA(sAb) and so (hAt) Aa = (hAs)Aband this implies that
a/t?TheZ;g(.)re, (S71X,%,05-1x) is a BCK-algebra. Now, we prove that it is implicative. Let
x/t,y/s € STLX. Then,

zftx((y/s)x (x/t)) = wx/tx[((yAt)*(zAs))/(sAL)],
= [(@AsAt)«(EA[(ynt)*(zAs)])]/(sAt)
= [(eAsAt)x[(tAy)x(xAsAt)]]/(sAt) (by Lemma 3.4)
= (zAsAt)/(sAt) , (since X is implicative)
= z/t.

So, S71X is implicative. Finally, we show that it is bounded. In fact, we claim that 1/1 is an
upper bound of S~!X. For this, let x/s € S™1X. Then, by the definition of “A” and (BCK3), we
have;
x/sxs/s = ((xAs)x(sAs))/(sAs) = ((xAs)*s)/s = ((sAx)*s)/s = ((xx(xx8))xs)/s = 0/y = 0g-1x
Now, it is easy to see that, for any s € S, s/s = 1/1. Hence, for any x/s € S71X, x/sx1/1 = 0g-1 x.

Therefore, (S71X,%,04-1x) is a bounded implicative BC K-algebra. O
Corollary 3.6. If the relation “ <7 on S™'X is defined by:

z/t Jy/s<—= zx/t*y/s =0g-1x
then (S71X, <) is a poset.
Proof. By Theorem 3.5, (S71X, %) is a BCK-algebra and so (S™1X, <) is a poset(See [5]). O
Lemma 3.7. For any x,y € X and s,t € S, we have;
(i) (@A 8)/s = 35,
(i) (x At)/(s At) =x/s,
(i) x/t ANy/s = (x ANy)/(tAs) .
Proof. (i) Since for any t € S, xt AsAsAt=xAsAt,s0 (xAS)/s=ux/s.

(ii) The proof is similar to (i).

(iii) Let z/t,y/s € ST1X. Since (S71X, %) is a BCK-algebra, x/t Ay/s = y/s* (y/s x x/t).
Hence,

z/tNy/s = y/sx(y/sxz/t)
= y/sx[((yAt)=(zNs))/(sAt)]
((ynsnt)=(((yAt)=(xzAs))Ns))/(sNt)
((xAS)N(YyAsAL)/(sAT)
((At)A(sAy))/(snt)
(zAy)/(snt)
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Lemma 3.8. If I is an ideal of X, then for anyx € I andy € X, x ANy € I.

Theorem 3.9. If I be an ideal of X, then S~'I = {x/s € S7'X : x € I} is an ideal of S7'X.
Moreover, S~'I is proper if and only if INS = 0.

Proof. Let z/t,y/s € ST'X such that x/txy/s € S7'I and y/s € S~'I. Then, there exist a,b € I
and u,v € S such that z/t xy/s = a/u and y/s = b/v and so there exist h,h’ € S such that
hAun((zAs)*(yAt)) =hAtAsAaand B AyAv=h AsAb. But, by Lemma 3.4 and some
modifications,

(hAuAR AvAzAs)*(hAuAR ANvAyAt)=hAtAsAN AvAa, (1)

and
WAyAvAhRAuANt=RASADAR ANuNnt

Let k=hAR AvAu. Since hARM ANvAtAsAa<a€elsohANW AvAtAsAa €T andso by (1),
(kAnsAhz)x(kAyAt) el

Now, since k AyAt =hAsAbAWN AuAt<bel, thenkAyAtel andsokAsAzel. Hence,
z/t=(kAsAx)/(kAsAt)€ STI. Therefore, S~1I is an ideal of S~1X.

Now, let S~'I be proper, but t € I NS # (), one the contrary. Let x/s € S~'X. Then by
Lemmas 3.7 and 3.8, /s = (z At)/(s At) € ST1X. Hence S™'X = S~'I, which is impossible.
Moreover, let INS = (), but S~ X = S~'I, one the contrary. Since 1/1 € S71X, then 1/1 € 711
and so there exists ¢ € I and s € S such that 1/1 = a/s and so there exists ¢ € S such that
INsAt=1ANaAt. Hence, s N\t =a At Since sANt e S and by Lemma 3.8, sAt=aAtel.
Hence s At € SN I = (), which is impossible. Therefore, S~ is proper. 0

Definition 3.10. [9] A proper ideal P of X is called prime if a Ab € P implies a € P or b € P,
for any a,b € P.

Theorem 3.11. If J is an ideal of S™'X, then there exists an ideal I of X such that J = S7'I.
Moreover, if J is a prime ideal then I is a prime ideal, too, and I NS = ().

Proof. Let J be an ideal of S™'X and I = {x € X : 2/1 € J}. First, we show that I is an ideal
of X. Let zxy €T and y € I. Then z/1xy/1 = (xxy)/1 € J and y/1 € J. Since J is an ideal,
then z/1 € J and so x € I. Hence, I is an ideal of X. Now, let 2/t € J. Since t/1 € S71X then
by Lemma 3.8, z/t At/1 € J. Since, by Lemma 3.7, x/t Ay/t = (x At)/t = /1, then z/1 € J
and so z € I. Hence z/t € S7'I. Therefore, J C S7'I. Now, let =/t € S™'I. Hence there
exist @ € I and s € S such that z/t = a/s. Since a/1 € J and 1/s € S™'X, then by Lemma
3.8, a/s =a/l N1/s € J and so z/t € J. Hence, S™'I C J. Therefore, J = S~1J. Now, let
J be prime. Then J = S~'T is proper and so by Theorem 3.9, INS = 0. Now, let x Ay € I,
for x,y € X. Then /1 Ay/1 = (x Ay)/1 € S7LI. Since S™'I is prime, then /1 € S7I or
y/1 € ST and so by definition of I, x € I or y € I. Hence, I is a prime ideal. 0

Theorem 3.12. If P is a prime ideal of X such that PN S =0, then S~ P is a prime ideal of
STIX.

Proof. Since P is an ideal of S~' X, then by Theorem 3.9, S™!P is an ideal of S~'X. Now, first we
show that S~!P is proper. Let S™'P = S~1X, on the contrary. Since 1/1 € S™'X = S~ P, then
there exist s € S and p € P such that 1/1 = p/s and so there exists ¢ € S such that t A s =pAt.
Since pAt < p € P and P is an ideal, t A\ s = p At € P. Moreover, since t A s € S, then
tAs € PNS =, which is a contradiction. Hence, S™1P # S~1X. Now, let z/t Ay/s € S7LP,
for z/t,y/s € S71X. By Lemma 3.7, z/t Ny/s = (x Ay)/(t As). Hence, (x Ay)/(tAs) € STIP
and so there exist ¢ € P and r € S such that (x Ay)/(t As) = ¢/r and this means that there exists
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h € S such that hAATAzAy=hAtAsAq. Sinceqe P,hAANtAsAq<qand P is an ideal, then
hArANxAy=hAtANsAq€ P. Now, since P is prime and hAr € P, then z Ay € P and so « € P
or y € P. Hence, z/t € ST'P or y/s € S~'P. Therefore, S~!P is a prime ideal of S~1X. O

Lemma 3.13. Let f: (X,*) — (S71X, %) be defined by f(x) = x/1. Then;

(i) f is a BCK-homomorphism( that is; f(0) = 0g-1(x) and f(x*y) = f(x)xf(y) for any x,y € X,
(ii) If I is an ideal of X, then I°[(f(I)] = S™1I;

(iii) If J is an ideal of ST*X, then there exists an ideal I of X such that J[f~1(J)] = I and
J=S"11.

Proof. (i) The proof is clear.

(i) Since f(I) = {z/1 : 2 € I} C S~'I and by Theorem 3.9, S7'I is an ideal of S~1X, then
I¢e = [f(I)] € S7'I. Now, let x/s € S~'I. Hence, there exists a € I and t € S such that z/s = a/t.
Since t A a < t, then by Lemma 3.4(i),

(axt)ANt=tA(axt)=(tANa)x(EAt)=({tNa)ANt=0
and so by Corollary 3.3(iii), (a*t)/t = 0g-1x. Now, by Lemma 3.4(ii) and since a/1 € f(I), then
x/ska/l=aftxa/l=((aNl)*(ant))/tA]1)=(ax(aNnt))/t=(axt)/t =0g-1x

Hence, z/s € (f(I)] = I¢ and so S™'I C I¢. Therefore, S~ = I°.
(iii) Let J be an ideal of S™1X. Let I = {x € X : #/1 € J}. Then by Theorem 3.11, [ is an
idealof X, J=S"'"Tand I ={z € X : f(z) e J} = f~1(J) = J-. O

Theorem 3.14. Let Spec(X) be the set of all prime ideals of X, A = {P € Spec(X)|PN S = (i}
and B = {J|J € Spec(S™1X)}. Then A= B.

Proof. Let ¢ : A — B be defined by ¢(P) = P¢ and v : B — A be defined by (J) = J°.
By Theorems 3.11 and 3.12 and Lemma 3.13, ¢ and v are well-defined. Now, let P € A. By
Lemma 3.13(ii), P = S7!P and (S~!P)¢ = P. Hence, P*® = P. Moreover, if J € B, then by
Theorem 3.9 and Lemma 3.13, J = S~ P such that J° = P. Hence, J° = p® = S~'P = J. Thus,
po(J)=¢(J) = J® =Jand ¢ o p(P) =¢(P°) = P = P. Therefore, A > B. O

4. BCK-modules of fractions

Definition 4.1. [1] Let (X, ,0) be a BC' K-algebra, (M, +) be an Abelian group and - : X xM —
M with (z,m) — z - m be an operation such that:

() (zAy) m=z-(y m)

(ii) z-(m1+me) =2 -my+x-my,

(ili) 0-m = 0.

for all x,y € X and m,my,mg € M, where x Ay = y x (y x x). Then M is called a left X-module.
Similarly, we can define a right X-module.

Note. If X is a commutative BC' K-algebra, then the notions of a left X-module and a right
X-module quinsied and so, for simplicity, we use of X-module instead of the left X-module. It is
clear that in any left X-module M, s-(—m) = —(s-m), for any s € S and m € M.

Proposition 4.2. Let (X, *,0) be bounded implicative algebra, if the operation +: X x X — X
is defined as follows:

T+y=(z*xy)V(y*2)
then M = (X, +) is an Abelian group and M is an X-module. Infact, X is an X -module on itself.

Proof. First, we prove that (X, +) is an Abelian group.

(i)_Associative law:
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Let z,y,z € X. First we prove the following identity:
(1) e A(NyVz)A(yVNz)= (@ ANyANz)V(zAzAy)
For this, by Theorems 2.5 and 2.6, we have:

xA(NyVz)A(yVNz) = [(xANy)V(zAz)]A(yV Nz)

= (yVNz2)A[(x ANy)V(zAz2)]

= (VN A@ANGV (Y N2) A (@ A 2)]
(

[
[( ANy) A(yV N2V [(xAz) Ay V N2)
= [(aANyAy)V(@ANyANz)]V[(xAzAy)V(xAzANz)
= [(2AN0)V(xANyAN2)|VI[(xAzAy)V(xA0)

OV (zANyANz)|V[(zAzAy) VO

= (tANyANz)V(zAhzAy)

Hence we have (1). Moreover, we should prove the following identity:
(2) (x Ay)V (NxzANy)=(NzVy)A(NyVz)
For this, by Theorems 2.5 and 2.6, we have:

(xAy)V(NzANy) = [(zAy)VNz]A[(zAy)V Ny

= [NzVv(@Ay]AINyV(zAy)

[(Nz V) AN(NeVy)| ANy Va) A (NyVy)l
= [DMANzVYIA[(NyVz)Al]
(NzVy)A(NyVz)

Hence we have (2).
Now, by Theorem 2.6,(i),(ii) and (vi) we have:

4 [(yx2) vV (zxy)]

(@x[(y*2)V(zxy))V([(y*2) V(2% y)] x 2)

T AN[YANz)V(zANy)]|VI(yANz)V(zANy)] ANz
TA[N(YANz)ANEZANY)]VI[NxA[(yANz)V(zA Ny
cA[(NyVz)A(yV N2 V[N Ay ANz)]V (N A (Ny A z))]

T ANYyANz|V[zAyAz]VINtAyANz]V [Nz ANyAz] , (by (1))
TANyANz]V[Nt AyANz|VgAyAz]V[NzANyAz]
xANy)V (N Ay)]ANz)V[[(x Ay) V (Nx A Ny)| A z]

v+ (y+z) =

[(
= [[(xy)V(yx2)| AN2]V[[(NzVy)A(NyVa)Azl ,(by (2)
= [[(z*xy)V(yx2) AN2]V[N[(x ANy)V (y A Nz)| A 2]
= [[(z*xy)V(y*2)] ANV [N[(z*y)V (y*z)] A 2]
= [[(zxy) V(yxa)]x2]V[zx[(z*xy)V(y=2)]
= (z4vy) +=z

Therefore, we have the associative law.
(ii) Identity element: Let € X. Then, by Theorem 2.6,

r+0=(x*x0)V(0*xz)=2V0=N(NxANO)=N(NzxAl)=NNzx=x
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(iii)_Inverse element: Let x € X. We claim that z is an inverse of x, since
r+zx=(zxxx)V(rxz)=0v0=0
(iv)_Abelian law: Let z,y € X. Then

rty=(zxy)V(yxz)=(yxz)V(rry) =y+z

Hence M = (X, +) is an Abelian group.
Now, we show that M is an X- module. For this we define the operation - : X x M — M by
z-m =z A m. Hence:

@): (xAhy)-m=(@Ay)Am=zA(yAm)=zA(y-m)=z-(y-m)

(i) :x-(my+ma) = xA(mi+ma)
= zA[(mgxmg)V (Mg xmq)]
= zA[(m1 ANmga)V (mg A Nmy)]
= [rA(mi ANma)]V [z A (ma A Nmy)]
(x Amq) A Nma] V [(x Amz) A Nmy]
V ((x Am1) ANmg)] V[0V ((x Amg) A Nmy)]
(x ANz Am1)V ((z Ami) ANmg)|V[(x A Nz Amsa)V ((x Ama) A Nmyq)]
[(x Amq) ANzl V [(x Amy) A Nma]] V [[(x Am2) ANz] V [(z Amsa) A Nmy]]
(x Ami) A (NxV Nm2)]V [(x Ama) A (NzV Nmyq)]
(x Amy) A N(xz Am2)]V[(x Ama) AN(xzAmi))
(x Amq) * (x Amg)] V [(z Ama) * (x Amy)]
x Amy) + (& Ams)

[
[0
[
[
= |
[
[
(

— x~m1+x-m2.
(i)
0-m=0Am=0Am=mx*x(m=*0)=mx*xm=0

for any m € M.
Therefore, M is an X-module. U

Lemma 4.3. Let M be an X-module and the relation “~" on M x S be defined by:
(m,s) ~(m',s') = FHeSst, t- (s m—s-m)=0
Then “ ~7 1is an equivalence relation.
Proof. The proof is straightforward. O

Notation. From now on, for each element (m,s) € M x S, the class [(m, s)] will be denoted
by m/s and the set M x S/ ~ will be denoted by S™'M. Hence we have S~'M = {m/s:m €
M,s e S}.

Theorem 4.4. Let M be a X-module and the operation “@®” on S™'M be defined by:
m/s@®m'/s' = (s -m+s-m')/(sNs).
Then (S™*M,®) is an Abelian group.

Proof. First we prove that the operation “® ” is well-defined. Let m;y/s1, ma/s2, my /sy, mh/sh €
S™1M such that my /sy = ma/so and m}/s} = m}/s,. Then, there exist t,#' € S such that

t-(sg-mg—s1-mg)=0 , t-(sh-m)—s -mh)=0
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and so

(tAsg)-my=(tAsi)-my , (t'Asy)-mj=(t'As})-mh
Hence, we get that;

(' ANshANst) - ((EAs2) -my) = NshyAsy) - ((EAs1)-ms2)

and
(tAsaAsy)- (' ANsh)-mi)=(tAsaAs1) ((tAs))-mb)
Hence;
[ ASHAS)ANEANS)] -my=[(t' AshAs))A(EAS)]-ma, (1)
and

[(EAsaAs) A Asy)]-my=[tAsaAst) A As))]-mby, (2)
Now, by (1) and (2), we have

(LAY NS ASYAS2)-my+ (EAE Asy AsyAsa)-my = (EAE Asy AS|AsY) -ma+ (EAE Nsa Asy As))-mih
and so
(tAE AshAsg)- (s -my+s1-m))
and this implies that
(EAE) - (55 A5a) - (5% ma + 1)

(tAE ANsyAsy) - (sh-ma+ sy-mb)

(EAE) [(s1As1) - (shma+ sz my)]
Hence, the definition of “~”  we have
(s1-mu+s1-mi)/(s1 A st) = (s ma+ s2-mj)/(s2 A s5)

and this means that “®” is well-defined. Now, the proof of group properties are easy by some
modifications. O

Theorem 4.5. Let M be a X-module and the operation o : S™'X x S™'M — S~™'M be defined
by x/som/t=(x-m)/(sAt). Then SM is an S™1X-module.

Proof. First we show that “o” is well defined. Let z1/s1,72/s2 € S™1X and my /t1, ma/ts € STIM
such that x1/s1 = x2/s2 and my /t; = ma/ta. Then, there exist s,t € S, such that

SANSaoNT1 =8NS Nxy t~(t2-m1—t1~m2)20 s (1)
By definition of a BCK-module and (1), t- (t2-m1) = t- (t1-mg2) and so (t Atz)-my = (EAt1) - ma.
Hence, by (1) we have

(s AsaAxy) - ((EAt2) -m1) = (sAsyAxe) - ((tAt1) - ma)
and so
(8/\82/\.’171 /\t/\tg)-ml = (8/\81 /\IQ/\t/\tl)'mQ

Hence, by the definition of BC'K-module,

((S A t) AN (82 N t2>) . (.’171 -ml) = ((S AN t) A\ <S1 A tl)) . (.TQ . mz)
and so

(8 A\ t) . ((82 A tg) . ((El . ml)) = (S /\t) . ((81 A tl) . (SL’Q . mg))
and this implies that

(371 -ml)/(sl /\tl) = (.’L‘g 'mg)/(SQ /\tQ)

Therefore, the operation “o” is well-defined.
Now, we should prove the axioms of a BC' K-module.

(i) (a/thy/s) o m/l = a/to (y/s om)l):
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For this, first we prove the following identity.
(x/tAy/s) = wy/s*(y/s*z/t), (since ST1X is commutative )
y/s*[((yAt)*(zNs))/(sAt)]

[(sAtAy)*(sA((ynt)x(zAs)))]/(sAt)
[(sAtAY)* ((sAyAt)*(zAs))]/(sAt), (by Lemma 3.4)
= [(xAs)A(sAtAY)]/(sAt) (by definition of A in X)
[
(

(sAt) A (zAy)l/(sAt)
zAy)/(sAt) (by Lemma 3.7(i))

Now, by the above identity, we have:
(a/thy/s) o m/l

(& Ay)/(s A D] omyl
) :m)/(s AN
)/ (s ANEAT)
()¢ A D)
= z/so(y/tom/l)

(11) JL’/SO (ml/tl @mg/tg) = (w/soml/tl) D (x/somg/tg):

([
sEa
w - 8
°

x/so(my/t1 ®ma/ts) = x/so[(ta -mi1+t1-ma)/(t1 Ata)]

[ (tQ m1—|—t1 )/(S/\tl /\tg)”

[ tg ml)—i—x (tl'mg)]/(s/\tl/\tg)

= ((®At2) -m1)/(sANt1 Ata) ® ((m At1)-ma)/(s At1 Aita)
(
(

X - ml)/(s/\tl)GB(x~m2)/(s/\t2))
x/somy/t1) ® (x/s0ms/ts)
(111) Os—lx om/t = OS—IM:

Og-ixom/t=0/tom/t=(0-m)/(tAt) =0/t =0g-1p
Therefore, S~'M is a ™! X-module. O
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