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Abstract. We show that the span of an arbitrary simple closed curve X does not exceed
the span of any starlike curve contained in the closure of the unbounded component of
the complement of X.

1. Definitions and auxiliary lemmas

We shall begin by reviewing the definitions introduced by A. Lelek in [6] and [7]. Let
X be a connected nonempty metric space. The span σ(X) of X is the least upper bound
of the set of nonnegative numbers r that satisfy the following condition: there exists a
connected space Y and a pair of continuous functions f, g : Y → X such that f(Y ) = g(Y )
and dist[f(y), g(y)] ≥ r for every y ∈ Y . To obtain the definition of the semispan σ0(X) of
X , the equality f(Y ) = g(Y ) is relaxed to the inclusion of f(Y ) ⊃ g(Y ). Requiring that
f be onto gives the definitions of surjective span σ∗(X) and surjective semispan σ∗

0(X) of
X . The last two concepts coincide with the span and semispan, respectively, when X is a
simple closed curve.

In general, as was pointed out in [7], 0 ≤ σ(X) ≤ σ0(X) ≤ diam(X). Furthermore, it
follows from the more general result of A. Lelek [7, Th 2.1, p39] that when X is a continuum
then σ0(X) ≤ ε(X), where ε(X) denotes the infimum of the set of meshes of the chains that
cover X . A different, direct proof of this inequality can be found in [1]. The span of an
arbitrary simple closed curve X that is a boundary of a convex region has been determined
in [5]. It has been proven to be equal to its semispan, the infimum of the set of its directional
diameters, called the breadth of X in [8], and ε(X).

A simple closed curve X is starlike if there is a point Q in the bounded component D of
C \ X such that for each point P,P ∈ X , the line segment PQ is contained in the closure
of D. For prior work on starlike curves related to span see [2] and [3].

The following versions of the Mountain–Climbing Theorem shall be needed (see the work
of J. V. Whittaker in [9]).

Lemma 1.1. Let 0 ≤ a < b, c > 0. Suppose f : [a, b] → [0, c] is continuous, increasing,
and f(a) = 0, f(b) = c. Suppose also that g : [a, b] → [0, c] is continuous, piecewise weakly
monotone, and g(a) = 0, g(b) = c. Then, there exists a continuous mapping φ : [a, b] → [a, b]
such that φ(a) = a, φ(b) = b and f(φ(t)) = g(t) for each t ∈ [a, b].

Lemma 1.2. Let 0 ≤ a < b, c > 0. Suppose f : [a, b] → [0, c] is continuous, decreasing,
and f(a) = c, f(b) = 0. Suppose also that g : [a, b] → [0, c] is continuous, piecewise weakly
monotone, and g(a) = c, g(b) = 0. Then there exists a continuous mapping φ : [a, b] → [a, b]
such that φ(a) = a, φ(b) = b and f(φ(t)) = g(t) for each t ∈ [a, b].
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2. The main result

The famous problem of Howard Cook: Do there exist, in the plane, two simple closed
curves X and Y , such that X is in the bounded component of the complement of Y and
the span of X is greater than the span of Y ? [Problem 173 of “A list of problems known as
the Houston Problem Book,” Lecture Notes in Pure and Applied Mathematics, 170, Marcel
Dekker, Inc., New York, Basel and Hong Kong, 365–398] has been answered, in the negative,
in special cases only. For a survey of related conditions, imposed on either X or Y , or both,
that guarantee the negative answer, see [4].

Let h be an arbitrary function with values in C \ {0}. In the following theorem, Arg h(t)
denotes the counterclockwise angle between the positive x–axis and the ray containing the
line segment 0h(t) connecting the points 0 and h(t). Notice that Arg h(t) ∈ [0, 2π).

Theorem. Let X be a simple closed curve in the plane C. If Y is a starlike curve contained
in the closure of the unbounded component of C \ X then σ(X) ≤ σ(Y ).

Proof. Without loss of generality, we shall assume that 0 lies in the bounded component
of C \ X . Let ε, ε > 0, be an arbitrarily small number. It follows from the definition of
span that there exist two continuous functions G1, G2 : [0, 1] → X such that G1([0, 1]) =
G2([0, 1]) = X and

σ(X) ≥ inf
t∈[0,1]

dist [G1(t), G2(t)] > σ(X) − ε/2.(2.1)

The Weierstrass Approximation Theorem implies the existence of two polynomials ∼G1,
∼G2 such that

∀
t∈[0,1]

|Gi(t) − ∼Gi(t)| < ε/4, i = 1, 2.(2.2)

Note that Arg ∼G1, and Arg ∼G2 are not continuous. Let t1, . . . , tm be the points of
discontinuity of Arg ∼G1 on [0, 1]. Assume, without loss of generality, that 0 < t1 < · · · <
tm ≤ 1, and that Arg ∼G1(0) = 0. Furthermore, if tm < 1 put tm+1 = 1.

We shall also assume, without loss of generality, that Y is a starlike polygonal line with
strictly increasing argument. Let F : [0, 1] → Y be the mapping that defines Y . F is
one-to-one on [0, 1), and F (0) = F (1). We can also assume, without loss of generality, that
Arg F (0) = 0. Let

f(t) =

{
Arg F (t), for t ∈ [0, 1)
2π, for t = 1.

Thus, f is increasing and continuous on [0, 1]. Let t0 = 0. Note that for each n ∈
N ∪ {0}, 0 ≤ n ≤ m, Arg ∼G1(tn) = 0. We shall modify Arg ∼G1 at some of its points of
discontinuity, by changing its value from 0 to 2π, so that on every interval [tn, tn+1] thus
modified portion of Arg ∼G1 can be continuous, with values in [0, 2π], and piecewise weakly
monotone.

There are four cases regarding the behavior of Arg ∼G1 on an arbitrary [tn, tn+1].

Case 1. The restriction of Arg ∼G1 to [tn, tn+1] is continuous on [tn, tn+1) only. See Fig-
ure 1.

Case 2. The restriction of Arg ∼G1 to [tn, tn+1] is continuous on (tn, tn+1] only. See Fig-
ure 2.

Notice that, in both case 1 and case 2,

sup
t∈[tn,tn+1]

Arg ∼G1 = 2π and inf
t∈[tn,tn+1]

Arg ∼G1 = 0.
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Case 3. The restriction of Arg ∼G1 to [tn, tn+1] is continuous. See Figure 3.

Note that in case 3 sup
t∈[tn,tn+1]

Arg ∼G1 < 2π

Case 4. The restriction of Arg ∼G1 to [tn, tn+1] is continuous on (tn, tn+1) only. See Fig-
ure 4.

2π

tn tn+1

Figure 4

In case 1, we define g1 as follows.

g1(t) =

{
Arg ∼G1(t) for t ∈ [tn, tn+1)
2π for t = tn+1.

Next, let hn be an affine mapping from [tn, tn+1] onto [0, 1] such that hn(tn) = 0 and
hn(tn+1) = 1, and put fn(t) = f(hn(t)) for all t ∈ [tn, tn+1]. Since fn is continuous
and increasing on [tn, tn+1], g1 is continuous and piecewise weakly monotone on [tn, tn+1],
fn(tn) = g1(tn) = 0 and fn(tn+1) = g1(tn+1) = 2π, by virtue of Lemma 1.1 there exists a
continuous mapping φn : [tn, tn+1] → [tn, tn+1] such that φn(tn) = tn, φn(tn+1) = tn+1 and
fn(φn(t)) = g1(t) for all t ∈ [tn, tn+1].

In case 2, we define g1 as follows.

g1(t) =

{
2π for t = tn

Arg ∼G1(t) for t ∈ (tn, tn+1].

With hn defined as in case 1, put fn(t) = f(hn(tn+1 − (t − tn))). Notice that fn(tn) =
f(hn(tn+1)) = 2π = g1(tn), and fn(tn+1) = f(hn(tn)) = 0 = g1(tn+1). Since fn is de-
creasing and g1 is piecewise weakly monotone, by virtue of Lemma 1.2, there exists a
continuous mapping φn : [tn, tn+1] → [tn, tn+1] such that φn(tn) = tn, φn(tn+1) = tn+1 and
fn(φn(t)) = g1(t) for all t ∈ [tn, tn+1].

In case 3, put g1(t) = Arg ∼G1(t) for all t ∈ [tn, tn+1] and let c = sup
t∈[tn,tn+1]

g1(t).

Furthermore, let tc be such that g1(tc) = c and g1(t) < c for all t ∈ [tn, tc). Next, with
hn defined as in case 1, put f∼

n (t) = f(hn(t)) for all t ∈ [tn, tn+1]. Since c < 2π there
exists a number ts, ts ∈ (tn, tn+1) such that f∼

n (ts) = c. If ts = tc, put f∗
n(t) = f∼

n (t) for all
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t ∈ [tn, tc]. If not, let kn be an affine mapping from [tn, tc] onto [tn, ts] such that kn(tn) = tn
and kn(tc) = ts and put f∗

n(t) = f∼
n (kn(t)) for all t ∈ [tn, tc]. We define fn as follows

fn(t) =

{
f∗

n(t), when t ∈ [tn, tc]
f∗

n(tn + (tc − tn)(tn+1 − t)/(tn+1 − tc)), t ∈ [tc, tn+1].

Notice that fn(tc) = c, fn(tn) = fn(tn+1) = 0, fn is increasing on [tn, tc] and decreasing
on [tc, tn+1]. By applying Lemma 1.1 on [tn, tc] and Lemma 1.2 on [tc, tn+1] we obtain a
continuous mapping φn : [tn, tn+1] → [tn, tn+1] such that φn(tn) = tn, φn(tn+1) = tn+1 and
fn(φn(t)) = g1(t) for all t ∈ [tn, tn+1].

In case 4, we define g1 as follows.

g1(t) =

⎧⎪⎨
⎪⎩

2π for t = tn

Arg ∼G1(t) for t ∈ (tn, tn+1)
2π for t = tn+1.

Let c = inf
t∈[tn,tn+1]

g1(t). Notice that c ≥ 0. Let tc be such that g1(tc) = c and g1(t) > c for

all t ∈ [tn, tc). We shall define fn differently depending on whether c is positive or not.
If c = 0 then let hnc be an affine mapping from [tn, tc] onto [0, 1] such that hnc(tn) = 0

and hnc(tc) = 1, and put f∼
n (t) = f(hnc(tc − (t − tn))) for all t ∈ [tn, tc]. Notice that

f∼
n (tn) = f(hnc(tc)) = f(1) = 2π, f∼

n (tc) = f(hnc(tn)) = f(0) = 0, and f∼
n is decreasing.

Next, let hc be an affine mapping from [tc, tn+1] onto [0, 1] such that hc(tc) = 0 and
hc(tn+1) = 1, and define fn as follows

fn(t) =

{
f∼

n (t), when t ∈ [tn, tc]
f(hc(t)), when t ∈ [tc, tn+1].

(2.3)

If c > 0 then, with hn defined as in case 1, put f∼
n (t) = f(hn(t)) for all t ∈ [tc, tn+1].

There exists a number ts, ts ∈ (tn, tn+1), such that f∼
n (ts) = c. If ts = tc, put f∗

n(t) = f∼
n (t)

for all t ∈ [tn, tc]. If not, let kn be an affine mapping from [tc, tn+1] onto [ts, tn+1] such that
kn(tc) = ts and kn(tn) = tn+1 and put f∗

n(t) = f∼
n (kn(t)) for all t ∈ [tc, tn+1]. We define fn

as follows

fn(t) =

{
f∗

n(tn+1 − (t − tn)(tn+1 − tc)/(tc − tn)), t ∈ [tn, tc]
f∗

n(t), when t ∈ [tc, tn+1].
(2.4)

Both (2.3) and (2.4) give us fn that is decreasing on [tn, tc] and increasing on [tc, tn+1].
Furthermore, fn(tc) = c and fn(tn) = fn(tn+1) = 2π. We apply Lemma 1.2 on [tn, tc] and
Lemma 1.1 on [tc, tn+1] to obtain a continuous mapping φn : [tn, tn+1] → [tn, tn+1] such
that φn(tn) = tn, φn(tn+1) = tn+1 and fn(φn(t)) = g1(t) for all t ∈ [tn, tn+1].

In all four cases, fn(φn(t)) = g1(t) for all t ∈ [tn, tn+1]. Furthermore, the principal value
of the argument Arg g1(t) = Arg ∼G1(t) for all t ∈ [0, 1]. We shall now define a mapping
F1 : [0, 1] → Y in the following manner. For each n, 0 ≤ n ≤ m, put F1(tn) = F (0) and
if tm = 1 then also put F1(1) = F (0). Suppose t ∈ (0, 1), t �= tn, n = 1, . . . , m. Then,
t ∈ (tn, tn+1) for some n, 0 ≤ n ≤ m, and fn(φn(t)) ∈ [0, 2π). If fn(φn(t)) = 0 then put
F1(t) = F (0). If fn(φn(t)) ∈ (0, 2π) then, since F is 1:1 on (0, 1), there is exactly one value
s ∈ (0, 1) such that Arg F (s) = fn(φn(t)). Put F1(t) = F (s). Note that F1([0, 1]) = Y and

Arg F1(t) = Arg ∼G1(t) for all t ∈ [0, 1].(2.5)

Taking analogous steps with respect to ∼G2, we define an onto mapping F2 : [0, 1] → Y
such that

Arg F2(t) = Arg ∼G2(t) for all t ∈ [0, 1].(2.6)
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Since Y is starlike, the equalities (2.5) and (2.6) imply that for all t ∈ [0, 1]

|F1(t) − F2(t)| ≥ |∼G1(t) −∼ G2(t)| .(2.7)

Consequently, taking (2.1) and (2.2) into account, it follows that

σ(Y ) ≥ inf
t∈[0,1]

|F1(t) − F2(t)| ≥ inf
t∈[0,1]

|∼G1(t) −∼ G2(t)|

≥ inf
t∈[0,1]

|G1(t) − G2(t)| − ε/2 > σ(X) − ε/2 − ε/2 = σ(X) − ε.

Finally, since ε was an arbitrary positive number, we conclude that σ(Y ) ≥ σ(X).
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