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Abstract. Counter terrorism operations become one of the great concerns in the
recent military affairs. We will propose an optimal planning method for dispatching of
security personnel to protect the lives of citizen from suicide bombing. Some security
staffs, such as police or military personnel, are dispatched to patrol a certain area
during a designated period. The whole operation time is divided into small mission
periods and the limited number of securities take turns on the patrol for each period.
In each mission period, there come some citizens there. Each of the dispatched guards
firstly patrols there to search for a doubtful person. When they detect the man, they
communicate with each other and try to neutralize him. Under such a situation, we
develop a dispatch planning tool so as to maximize the expected number of surviving
guards and the citizens from detonation within each divided period.

1 Introduction Suicide bombing is one of the major attack methods in the recent ter-
rorism incidents. According to the terrorism database [12] in the latest 40 years, more than
60 % of terrorism incidents happened after aircraft attacking to U.S. on September 11 and
the bombing is one of the most popular attack methods. The bombing incidents include
not only suicide bombing, but also concealed bombs in roadways or bombing in a stadium
etc. Geographically, this kind of bombings have happened mainly in Middle East or South
Asia, but now is expanding to South-East Asia, Africa and to all over the world. We must
regard that the (suicide) bombing becomes common and may happen everywhere around
us. Therefore we must develop some effective counter measures as soon as possible.

Government or public sectors of many countries have begun to study the legal counter
measures. They reinforce the regulation of the anti-terrorism law or restrict international
remittance or procurement of chemical materials that support the terrorism actions [9].
Coincident with those legal amendments, scientists also have begun to put their energy
into developing standoff explosives-detection technologies [10]. In general, the situation
awareness of bombings except suicide ones is very poor because the clues of bombing incident
are too ambiguous to perceive. Or even if the suspicious is detected by the guards such as
police or military personnel, they are hardly able to neutralize him because of their poor
equipments.

National Research Council (NRC) has started developing counter techniques, such as
detection systems for an explosive, to assist the project of the Defense Advanced Research
Projects Agency (DARPA). NRC is also studying about elements of detection, concepts and
scenarios of bombing from the scientific viewpoint. One of their primal scenarios is suicide
bombing. To tackle it, the NRC panel investigates scientific parameter values; e.g. walking
speed of a suicide bomber or sensor-detection range.

On the other hand, Operations Research has just started treating counter-terrorism
problem. Kress [7] first treated the terrorism problem. He made a model that estimates
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the casualties caused by suicide bombing and applied it to real incidents in Israel. The real
number of the casualties is not so different from the calculation. Before Kress, the number
of casualties is counted not in the context of terrorism but in the context of accidents
in military operations [4, 8]. After Kress, many studies about counter-terrorism have been
published. Kaplan and Kress [6] extended the Kress’s model and applied it to more realistic
situations. They proposed the grid model and the plaza model to estimate the number of
casualties and considered the optimal allocation of search sensors. Nie et al. [11] also
optimized the allocation of detecting sensors in a square area. Berman [2] discusses the
optimal pre-positioning of the governmental facilities against terrorism attack. In addition,
the special issue about ongoing military operations and the counter-terrorism was published
recently [1].

Most of those studies deal with the facility allocation problem for the counter-terrorism.
In this paper, we propose a model applicable to more dynamic situation. Security sectors,
such as police office or military troop, have responsibility to guard a certain facility during
some periods. For the counter operation to suicide bombing, they make a plan to dispatch
their staffs to the facility. We will call the facility Arena, as Kress named. Many people
come, stay or leave there. As concrete examples, we can think of city hall, station or
shopping center. Security staffs must patrol the Arena by turns for several periods, to each
of which some guards are assigned. A suicide bomber may or may not appear in the period.
In this setting, the number of the dispatched guards must be optimized.

The optimal decision may depend on many factors, such as the arriving probability of a
suicide bomber within the period, the number of available guards, the detection capability
of the guards, the area of the Arena or the number of people staying in the Arena. In this
paper, we will optimize the number of guards to be dispatched for each designated period,
considering those factors. The numbers are decided so as to maximize the expected total
number of saved lives of guards and citizens until the end of the pre-planned periods.

In Section 2, we describe assumptions of our model. In Section 3, we formulate the
planning model in a recursive form. In Section 4, we will show some numerical examples and
analyze the properties of optimal dispatching strategy. In Section 5, we extend the model
to a multi-Arena situation. In the last section, we summarize our results and describe the
further extensions.

2 Assumptions and Notation For modeling the dispatching of guards, we describe
some assumptions.

1. Security guards, such as police or military, consist of k persons, must patrol an Arena.
The time horizon of their operations is divided into T mission periods and x out of
survived staffs are dispatched to patrol the Arena in each period by turns.

2. Each mission period is numbered by T, T − 1, · · · , 1, 0, which represents the residual
until the end of the operation. The 0-th period is the end of whole mission.

3. The number of citizen in the Arena during the t-th period is c(t).

4. At most one suicide bomber comes to the Arena with probability λ.

5. The missions of the guards are to patrol and to save the lives of citizen in the Arena.
If they can detect an arriving suicide bomber, they approach him/her to counter its
aim. Each guard is assumed to have the detection capability p. that each guard can
detect the suspicious with probability p.
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6. When no guard can detect him, the suicide bomber detonates his bomb at the most
effective point in the Arena. In that case, both the guards and the citizen there suffer
severe damage.

7. If the patrolling guards can detect him, they fight him to prevent the detonation. The
fight may end up in success or failure. The success means the capture or the death
of the target without any detonation. In that case, some guards may be killed or
wounded but no citizen suffers any damage.

8. The failure of the neutralization means the detonation. In the worst case, all guards
are killed but the bomber is still acitve, he executes suicide bombing without hesitation
at the most effective point in the Arena. In those failure cases, both guards and citizens
suffer severe damage.

9. The assault battle ends in a short time. The numbers of citizen and guards are
assumed to be the same value during the battle period.

We decide the optimal number of dispatching guards x in each mission period so as to
maximize the total number of the survival until the end of the operation periods.

3 Dispatch Planning Model In this Section, we formulate a dispatch planning model
by dynamic programming formulation. A solution is given as the optimal number of dis-
patching guards for each mission period. In Section 3.1, we first focus on all possible events,
which may happen during each mission period. In Section 3.2, we classify the results of
the battle between the guards and a bomber and calculate the success/failure probabilities.
And in 3.3, we show how to estimate the casualties when the bomb explodes in the Arena.
Using those probabilities and the estimation, we formulate the recursive model in 3.4.

3.1 All possible events in a mission period In any mission period, several guards,
including zero, are dispatched to Arena. All possible events in the t-th period are depicted
in Figure 1.
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All the possible events are classified into five cases. In the first case, a suicide bomber
does not appear with probability 1−λ. ¿From the second to the fifth case, a suicide bomber
does come there. These cases are divided based on whether the guards can detect him or
not, and the result of the battle. In the second case, no guard can detect the suicide bomber
and he explodes his bomb at the most effective point. The guards do not find the bomber
with probability δ(x). Assuming that each guard searches for the bomber independently,
δ(x) is (1 − p)x. The expected number of casualties is estimated by Au

0 (x, c(t)). How to
calculate the estimation is described in Section 3.3. The upper index u = c stands for
the citizen side or u = s for the security guard side and the lower index indicates that the
explosion happens at the most effective point (0), or elsewhere (1) in the Arena.

From the third to the fifth case, the guards recognize the bomber and a battle takes
place between them. In the following cases, y denotes the numbers of active guards. In
the third case, the bomber is neutralized by the guards and the detonation is avoided. We
assume that the battle is limited between the guards and the bomber and no citizen suffers
any damage from the battle. We denote the probability that the fight starts with x guards
and ends successfully with no active suicide bomber and y remaining guards by px(0, y),
which is derived in Section 3.2. The first argument (0) means the number of active suicide
bomber. In the fourth and the fifth cases, the battle also takes place but the guards cannot
avoid the detonation in the end. The probability that the fight ends in failure with one
active suicide bomber and y residual guards is px(1, y). And the bomb explodes during the
battle, the estimated number of casualties is denoted by Au

1 (y, c(t)) for the citizen (u = c)
and the security team (u = s). On the estimation, we take the average of casualties weighted
by the explosive point. In the fifth case, all the guards are defeated thoroughly (y = 0) and
the bomber can explode his bomb at the best point. As we assumed that the sequential
events end in a short time, all c(t) citizens stay in the arena during the battle and cannot
escape from the situation.

3.2 The results of the battle estimated by Lanchester model The terrorist may
be neutralized or not in the end of the battle. He may push a button of the bomb at every
moment during the battle. The result is stochastic. As the battle takes place between the
small number of guards and a terrorist, we adopt the stochastic Lanchester model of square
law [3] to proceed the attrition process. When the process obeys the square law, the kill
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capability of fighters is linearly proportional to the remaining force size. Under these as-
sumptions, the transition process during the battle is depicted in Figure 2. The numbers
in each circle represent the number of bomber and active guards.

The battle starts from the state of one terrorist and x guards. From the left to the
right, the number of the guards decreases one by one. Every downward arrow indicates
the neutralization of the terrorist. Upward arrows mean the failure of the mission, or the
explosion of the bomb. The parameters r, b are the kill rates of the suicide bomber and
a guard, respectively. We assume that the bomber explodes his bomb with probability
β(y, x) when there are y active guards during the battle. We assume that the probability
approaches 1 as the battle goes by or y decreases.

In numerical examples explained later, we use the following function,

β(y, x) = S y/x.(1)

The parameter S, 0 < S < 1, represents the strength of bomber’s urge or will for the
explosion. It approaches convexly up to one at y = 0. We may need consulting with some
psychological knowledge about the shape of the function.

When the attrition process during the battle obeys the square law of stochastic Lanch-
ester model [3], the probability that x guards decrease by 1 is r/(r + bx). On the other
hand, the probability that a suicide bomber is neutralized is bx/(r + bx).

The success probability, px(0, y), is calculated by the simultaneous events that (1) the
initial x guards are continuously defeated by a suicide bomber from x to y + 1, (2) but the
suicide bomber is neutralized by y guards in the end, and (3) the bomber does not make
an explosion through the battle. As the result, the probability is expressed as follows.

px(0, y) =

[
x∏

n=y+1

(1 − β(n, x))
r · 1

r · 1 + b · n

]
(1 − β(y, x))

b · y
r · 1 + b · y

.(2)

On the other hand, the failure probability that the guards cannot stop the suicide
bombing by y guards becomes as follows.

px(1, y) =

[
x∏

n=y+1

(1 − β(n, x))
r · 1

r · 1 + b · n

]
β(y, x) .(3)

In Eqs.(2) and (3), y can take any value from x to 1 and the value of the brackets equals
one in the case of y = x.

3.3 Estimation of casualties by suicide bombing To calculate the casualties by a
suicide bombing, we adopt the model of Kress [7]. In his model, the shape of the Arena is
assumed to be circular. Then, the most effective point of the detonation is the center of
the Arena. When the bombing happens, the people there are assumed to be distributed
uniformly. Kress calculates the expected casualties by the following three steps.

At first, he divides the circular Arena into concentric rings. The width of each ring is
assumed to be the diameter of human body. Then the Arena is assumed to be divided into
M rings. He calculates the expected number of people standing in the m-th ring as µm.
The number is proportional to the size of each ring. Secondly, the probability that there is
no one between the bombing point and a person in the m-th ring, γ(m), is calculated. The
person certainly suffers damage if at least one fragment hits the person. Kress denotes the
probability that a person in the m-th ring is hit by PH(m). By multiplying these values,
he estimates the casualties in a circular Arena.
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We make use of this estimation. When y active guards and c citizens are distributed uni-
formly and the detonation happens at the center of the Arena, the casualties are estimated
by

A0(y, c) =
M∑

m=1

µm · γ(m) · PH(m) .(4)

By dividing A0(y, c) to two sides of the security and the citizen proportionally to their
population y and c, we estimate the casualties on both sides as follows.

As
0(y, c) = A0(y, c) · y

y + c
,(5)

Ac
0(y, c) = A0(y, c) · c

y + c
.(6)

When the suicide bombing occurs at points other than the center, we modify the Kress’s
estimation geometrically and obtain the expected number of casualties, which are denoted
by As

1(y, c) and Ac
1(y, c) for the security and the citizen. Please refer to Appendix A for

detail.

3.4 Optimal Dispatching Plan To maximize the total number of survived guards and
citizen until the end of the entire mission periods, we can calculate the optimal number of
dispatching guards to the Arena by a dynamic programming formulation. Let FE[t, k] be
the maximal expectation of survived number of guards and citizens from the beginning of
the t-th period to the end of whole mission periods. At that time, k guards are assumed to
be available.

FE[t, k] = (1 − λ)(FE[t − 1, k] + c(t))

+ λ max
0≤x≤k

[
δ(x)(FE[t − 1, k − As

0(x, c(t))] + c(t) − Ac
0(x, c(t)))

+ (1 − δ(x))
{ x∑

y=1

px(0, y)(FE[t − 1, k − x + y] + c(t))(7)

+
x∑

y=1

px(1, y)(FE[t − 1, k − x + y − As
1(y, c(t))] + c(t) − Ac

1(y, c(t)))

+ px(1, 0)(FE[t − 1, k − x] + c(t) − Ac
0(0, c(t)))

}]
,

FE[0, k] = k .(8)

Each line of Eq.(7) corresponds to the five events, explained in Section 3.1. The maxi-
mization included in the second line gives us the optimal number of dispatching guards in
the t-th period. The computation starts from the last period or Eq.(8). At t = 0, the whole
operation is over without any happening and all available guards are alive. So we can set
the initial condition as Eq.(8) for all up to k.

To calculate FE[t, k], we only need FE[t − 1, k] at the stage t − 1. Because the second
argument of FE[t, ·] in the second and the fourth line of Eq.(7), such as k − x + y −
As

1(y, c(t)) is not integer in general, we approximate FE[t, z] to (z−bzc)FE[t, dze]+ (dze−
z)FE[t, bzc] for real number z by interpolation. In the next section, we investigate those
optimal dispatching plans by some numerical examples.

4 Numerical Examples We first consider a basic case and then compare some cases by
changing some parameters.
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4.1 Basic case We will calculate the case where there are 10 mission periods and 10
available guards. An Arena has the diameter of 30m. Each guard has the capability of
detection probability p = 0.5 for a suicide bomber by using various standoff detection
sensors or bomb dogs [13]. If every guard patrols in the arena independently, the non-
detection probability by x guards is estimated as δ(x) = (1 − p)x . Suicide bomber comes
to an arena with rate λ = 1/30 . His initial will for bombing is S = 0.5. As in Kress [7],
an ordinary bombing makes 100 harmful fragments and scatters them all around from the
bombing point. When the battle takes place, the kill rates of the bomber and each guard
are set to be the same value, r = b. During each mission period, c(t) = 30 citizens stay in
the arena.

Under these conditions, the optimal dispatching plan of guards is illustrated in Table 1

Table 1. The optimal number of dispatching guards (basic case)

k \ t 10 9 8 7 6 5 4 3 2 1
10 6 6 6 7 7 7 7 7 7 7
9 6 6 6 6 6 6 7 7 7 7
8 5 5 5 5 6 6 6 6 7 7
7 5 5 5 5 5 5 5 6 7 7
6 4 4 4 5 5 5 6 6 6 6
5 4 5 5 5 5 5 5 5 5 5
4 4 4 4 4 4 4 4 4 4 4
3 3 3 3 3 3 3 3 3 3 3
2 2 2 2 2 2 2 2 2 2 2
1 1 1 1 1 1 1 1 1 1 1

Table 2. The expectation of the survived guards(G) and the cumulative citizens(C) (basic case)

k \ t 10 9 8 7 6 5 4 3 2 1
10 G 8.9 9.0 9.1 9.2 9.3 9.4 9.6 9.7 9.8 9.9

C 298.8 269.0 239.1 209.2 179.3 149.4 119.6 89.7 59.8 29.9
9 G 7.9 8.0 8.1 8.2 8.3 8.4 8.6 8.7 8.8 8.9

C 298.8 268.9 239.1 209.2 179.3 149.4 119.5 89.7 59.8 29.9
8 G 7.0 7.1 7.2 7.3 7.4 7.5 7.6 7.7 7.8 7.9

C 298.7 268.8 239.0 209.1 179.3 149.4 119.5 89.7 59.8 29.9
7 G 6.1 6.2 6.2 6.3 6.4 6.5 6.6 6.7 6.8 6.9

C 298.6 268.8 238.9 209.1 179.2 149.4 119.5 89.7 59.8 29.9
6 G 5.1 5.2 5.3 5.3 5.4 5.5 5.6 5.7 5.8 5.9

C 298.5 268.7 238.9 209.0 179.2 149.4 119.5 89.6 59.8 29.9
5 G 4.2 4.2 4.3 4.4 4.5 4.6 4.6 4.7 4.8 4.9

C 298.4 268.6 238.8 208.9 179.1 149.3 119.4 89.6 59.7 29.9
4 G 3.3 3.4 3.4 3.5 3.6 3.6 3.7 3.8 3.9 3.9

C 298.2 268.4 238.6 208.8 179.0 149.1 119.3 89.5 59.7 29.8
3 G 2.5 2.5 2.6 2.6 2.7 2.7 2.8 2.8 2.9 2.9

C 297.8 268.0 238.3 208.5 178.7 149.0 119.2 89.4 59.6 29.8
2 G 1.6 1.7 1.7 1.7 1.8 1.8 1.8 1.9 1.9 2.0

C 297.2 267.5 237.8 208.1 178.4 148.7 118.9 89.2 59.5 29.7
1 G 0.8 0.8 0.9 0.9 0.9 0.9 0.9 0.9 1.0 1.0

C 296.3 266.7 237.1 207.4 177.8 148.2 118.5 88.9 59.3 29.6
0 G 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0

C 295.5 265.9 236.4 206.8 177.3 147.7 118.2 88.6 59.1 29.5
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and the expected numbers of survived guards and cumulative citizens are in Table 2.
If the number of available guards is less than four, we have to dispatch all guards

regardless of the mission period. If the numbers are more than five, some guards have to
be reserved during the initial phase of the entire periods for later stages. In the case that
more than eight guards are available, the dispatching policy becomes clearer. All guards
are not used up even in the final stage to avoid the victim by the detonation.

According to Table 2, the guards lose about 10 % of their own resources during the
whole periods. On the other hand, the numbers of cumulative citizens decrease as many as
1 % in the same periods. As the guards must fight against the coming suicide bomber in
our model, they suffer ten times as much damage as the cumulative citizens.

4.2 The effect of the number of arriving citizens Now we investigate the cases
where the number of citizen c(t) is shifted. In the cases of the number of citizen is 10, 50,
100 and 500 in every mission period, the optimal dispatching plans of guards are shown in
Table 3. Other parameters are the same as the basic case in Section 4.1.

In the cases of small number of the citizen, 10 and 50, we can see the reservation of
some guards in every mission period. Dispatching more guards can cause more casualties
of themselves. We should not dispatch so many guards to Arena for the small number of
citizen.

Table 3. Optimal dispatching plans
(top left: c(t) = 10, top right: c(t) = 50, bottom left: c(t) = 100, bottom right: c(t) = 500)

k \ t 10 9 8 7 6 5 4 3 2 1
10 4 5 5 5 5 5 5 5 5 5
9 5 5 5 5 5 5 5 5 5 5
8 4 4 4 4 4 4 5 5 5 5
7 4 4 4 4 4 4 4 4 5 5
6 4 4 4 4 4 4 4 4 4 5
5 4 4 4 4 4 4 4 4 4 5
4 4 4 4 4 4 4 4 4 4 4
3 3 3 3 3 3 3 3 3 3 3
2 2 2 2 2 2 2 2 2 2 2
1 1 1 1 1 1 1 1 1 1 1

k \ t 10 9 8 7 6 5 4 3 2 1
10 8 8 8 8 8 8 8 8 8 8
9 7 7 7 7 7 8 8 8 8 8
8 5 5 6 7 7 7 7 8 8 8
7 5 5 5 5 5 7 7 7 7 7
6 4 4 5 5 5 6 6 6 6 6
5 4 5 5 5 5 5 5 5 5 5
4 4 4 4 4 4 4 4 4 4 4
3 3 3 3 3 3 3 3 3 3 3
2 2 2 2 2 2 2 2 2 2 2
1 1 1 1 1 1 1 1 1 1 1

k \ t 10 9 8 7 6 5 4 3 2 1
10 10 10 10 10 10 10 10 10 10 10
9 9 9 9 9 9 9 9 9 9 9
8 8 8 8 8 8 8 8 8 8 8
7 5 5 5 5 7 7 7 7 7 7
6 4 5 5 5 5 6 6 6 6 6
5 5 5 5 5 5 5 5 5 5 5
4 4 4 4 4 4 4 4 4 4 4
3 3 3 3 3 3 3 3 3 3 3
2 2 2 2 2 2 2 2 2 2 2
1 1 1 1 1 1 1 1 1 1 1

k \ t 10 9 8 7 6 5 4 3 2 1
10 10 10 10 10 10 10 10 10 10 10
9 9 9 9 9 9 9 9 9 9 9
8 8 8 8 8 8 8 8 8 8 8
7 5 7 7 7 7 7 7 7 7 7
6 5 5 5 5 6 6 6 6 6 6
5 5 5 5 5 5 5 5 5 5 5
4 4 4 4 4 4 4 4 4 4 4
3 3 3 3 3 3 3 3 3 3 3
2 2 2 2 2 2 2 2 2 2 2
1 1 1 1 1 1 1 1 1 1 1

In the cases of 100 or more citizen, the best policy is dispatching all guards in hand.
If the arena is crowded with many people, the explosive power of the bomb is blocked or
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weakened by the people near the bombing point. They serve as human shields to people
far from the bombing point. All-guards-dispatching policy is the adaptive plan in such a
situation. Only in the mid level of available guards k = 7, 6 and in earlier mission periods,
the reserving policy is observed.

In the case of large number of the citizen, the blocking effect described above becomes
more obvious. Also the vulnerability of each person in the Arena decreases as the size of
the citizen increases. By those reasons, the best policy tends to be dispatching all guards.

4.3 The effect of the detection probability We investigate the relation between
the optimal dispatching plan and the detection capability of each guard. By chaging the
detection probability p from 0 to 1, we observe three types of dispatching rules. Two types
of them are shown in Table 4.

For p = 0 − 0.04, the detection probability of each guard is too low for effective search.
Dispatched guards may be killed for nothing by the bomber without detecting him. No-
dispatching is reasonable choice to save the security resources and to lessen the casualties. If
the guards have a little capability of detection of p = 0.05− 0.2, all of them are dispatched
to engage in the operation. They must gather all their capabilities to perform the best
patrol. When the detection probability becomes bigger than 0.3, the optimal plan has a
typical pattern as seen in Table 1; If the number of available guards are small, all of them
must be dispatched to Arena. But if there are surplus guards, some of them are reserved
for the later phase of mission periods. We can easily apply our model to the situation where
the detection capability is different for each guard.

Table 4. Optimal dispatching plans (left: p = 0 − 0.04, right: p = 0.05 − 0.2 )

k \ t 10 9 8 7 6 5 4 3 2 1
10 0 0 0 0 0 0 0 0 0 0
9 0 0 0 0 0 0 0 0 0 0
8 0 0 0 0 0 0 0 0 0 0
7 0 0 0 0 0 0 0 0 0 0
6 0 0 0 0 0 0 0 0 0 0
5 0 0 0 0 0 0 0 0 0 0
4 0 0 0 0 0 0 0 0 0 0
3 0 0 0 0 0 0 0 0 0 0
2 0 0 0 0 0 0 0 0 0 0
1 0 0 0 0 0 0 0 0 0 0

k \ t 10 9 8 7 6 5 4 3 2 1
10 10 10 10 10 10 10 10 10 10 10
9 9 9 9 9 9 9 9 9 9 9
8 8 8 8 8 8 8 8 8 8 8
7 7 7 7 7 7 7 7 7 7 7
6 6 6 6 6 6 6 6 6 6 6
5 5 5 5 4 5 5 5 5 5 5
4 4 4 4 4 4 4 4 4 4 4
3 3 3 3 3 3 3 3 3 3 3
2 2 2 2 2 2 2 2 2 2 2
1 1 1 1 1 1 1 1 1 1 1

5 Extension to multi-arena problem In the former sections, we have discussed about
the single-arena problem. Now we extend our model to multi-arena situation. Sometimes
the decision maker has the responsibility to dispatch guards to some Arenas simultaneously.
For example, a manager in the patrol post wants to decide the number of dispatching guards
to some different Arenas, from Arena 1 to Arena I. These Arenas have different properties
in terms of the number of the arriving citizens or the size of them. The differences make the
priority for attack/protection to suicide bombers/security guards. And as the result, the
different attack scheme or guard policies are permissible for each arena. We will consider
the two arena case at first.

5.1 Dispatch planning model to two arenas case As we have explained in Figure
1, any one of the five events can happen in every mission period both in Arena 1 and in
Arena 2. Combining all possible events, there are 25 possible combinations of event for
these Arenas. We assume that there are k available guards and x guards are dispatched to
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two Arenas from them. The x guards are divided into two groups, x1 for Arena 1 and x2

for Arena 2. In each Arena, a suicide bomber may arrive with probability λ1, λ2. In the
t-th mission period, there are c1(t) and c2(t) citizens in Arena 1 and 2.

The optimal dispatching plan for Arena 1 and 2 is decided by the following recursive
formula FE2[t, k]. It calculates the maximized expectation of survived guards and citizens
in Arena 1 and 2 from the beginning of the t−th period to the end of whole mission periods.

FE2[t, k](9)

= max
0≤x≤k

x1+x2=x

5∑
j1=1

5∑
j2=1

q1
j1q

2
j2

[
Φ1

j1Φ
2
j2

{
FE2[t−1, k−Ds

1,j1−Ds
2,j2 ] +

2∑
i=1

(ci(t)−Dc
i,ji

)
}]

.

The parameters j1 and j2 denote the possible event in Arena 1 and 2 respectively. The
events are numbered from one to five as seen in Figure 1. Though it is not indicated
explicitly, qi

ji
, Φi

ji
, Ds

ji
and Dc

ji
depend on xi.

For the event j in Arena i, qi
ji

is the product of (not) arriving probability of a suicide
bomber and (not) detection probability of guards. For instance, when a bomber comes to
Arena i but the guards cannot detect him, it corresponds to the event 2 in Figure 1, then
the parameter qi

2i
is λiδ(xi). Φi

ji
is probabilities of the following events; the dispatched xi

guards decrease to yi during the assault against the terrorist. So in cases that the battle
does not happen, which correspond to the event 1 and 2 in Figure 1, the guards are not
fatigued and the parameter is kept constant. On the other hand, when the battle takes
place between the bomber and the guards, the residual yi can take any one value between
xi and one. In these cases, Φi

ji
is the summation of probabilities. If all guards are defeated

by a suicide bomber, it takes pxi(1, 0). Then multiply Φi
ji

s by expectation of saved lives;
the sum of guards and cumulative citizens up to the (t − 1)-th period and citizens just in
the t-th period. Ds

i,ji
and Dc

i,ji
are expected casualties on the guard and the citizen sides

respectively. The initial condition is of course FE2(0, k) = k for any given k. The described
parameters are summarized as follows.
ji = 1 : Not arrive

qi
1 = (1 − λi), Φi

1 = 1, Ds
i,1 = 0, Dc

i,1 = 0 .
ji = 2 : Not detect

qi
2 = λi · δ(xi), Φi

2 = 1, Ds
i,2 = As

i,0(xi, ci(t)), Dc
i,2 = Ac

i,0(xi, ci(t)) .
ji = 3 : Detect ＆ Neutralize the bomber successfully

qi
3 = λi · (1 − δ(xi)), Φi

3 =
∑xi

yi=1 pxi(0, yi), Ds
i,3 = xi − yi, Dc

i,3 = 0 .
ji = 4 : Detect ＆ Fail in Neutralization ＆ yi ≥ 1

qi
4 = λi · (1 − δ(xi)), Φi

4 =
∑xi

yi=1 pxi(1, yi), Ds
i,4 = xi − yi + As

i,1(yi, ci(t)),
Dc

i,4 = Ac
i,1(yi, ci(t)) .

ji = 5 : Detect ＆ Fail in Neutralization ＆ yi = 0
qi
5 = λi · (1 − δ(xi)), Φi

5 = pxi(1, 0), Ds
i,5 = xi, Dc

i,5 = Ac
i,0(0, ci(t)) .

5.2 Numerical examples and computational complexity We take two cases. We
have T = 10 mission periods and k = 20 guards available. The numbers of citizens are
assumed to be c1(t) = 50 and c2(t) = 30 persons, for every period t. More visitors come
to Arena 1 than to Arena 2. Other parameters are set the same as in the single arena case
in Section 4.1. The optimal number of guards for Arena 1, x∗

1, and for Arena 2, x∗
2, are

summarized in Table 5.
Because Arena 1 is more valuable than Arena 2, more guards are dispatched to Arena 1

in almost all mission periods. However, the difference is slight. The dispatching policies are
almost the same as in the single arena case. Even though the available guards are enough,
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at most 8 or 7 guards are dispatched to avoid damage to the guards themselves. In the cases
of k = 15, 13 and 12, there are slight changes in optimal numbers of dispatching guards.
When the available guards are deficient and k varies from 11 to 3, all guards are divided
into almost same numbers for each Arena. In the case of k = 2, the optimal dispatching
plan is (2, 0) in every mission period.

Table 5. The optimal dispatching plan (x∗
1, x

∗
2)

k\t 10 9 8 7 6 5 4 3 2 1
20 (8, 7) (8, 7) (8, 7) (8, 7) (8, 7) (8, 7) (8, 7) (8, 7) (8, 7) (8, 7)
19 (8, 7) (8, 7) (8, 7) (8, 7) (8, 7) (8, 7) (8, 7) (8, 7) (8, 7) (8, 7)
18 (8, 7) (8, 7) (8, 7) (8, 7) (8, 7) (8, 7) (8, 7) (8, 7) (8, 7) (8, 7)
17 (8, 7) (8, 7) (8, 7) (8, 7) (8, 7) (8, 7) (8, 7) (8, 7) (8, 7) (8, 7)
16 (8, 7) (8, 7) (8, 7) (8, 7) (8, 7) (8, 7) (8, 7) (8, 7) (8, 7) (8, 7)
15 (8, 6) (8, 6) (8, 7) (8, 7) (8, 7) (8, 7) (8, 7) (8, 7) (8, 7) (8, 7)
14 (8, 6) (8, 6) (8, 6) (8, 6) (8, 6) (8, 6) (8, 6) (8, 6) (8, 6) (8, 6)
13 (8, 5) (7, 6) (7, 6) (7, 6) (7, 6) (7, 6) (7, 6) (7, 6) (7, 6) (7, 6)
12 (7, 5) (7, 5) (7, 5) (7, 5) (7, 5) (7, 5) (7, 5) (7, 5) (7, 5) (6, 6)
11 (6, 5) (6, 5) (6, 5) (6, 5) (6, 5) (6, 5) (6, 5) (6, 5) (6, 5) (6, 5)
10 (5, 5) (5, 5) (5, 5) (5, 5) (5, 5) (5, 5) (5, 5) (5, 5) (5, 5) (5, 5)
9 (5, 4) (5, 4) (5, 4) (5, 4) (5, 4) (5, 4) (5, 4) (5, 4) (5, 4) (5, 4)
8 (4, 4) (4, 4) (4, 4) (4, 4) (4, 4) (4, 4) (4, 4) (4, 4) (4, 4) (4, 4)
7 (4, 3) (4, 3) (4, 3) (4, 3) (4, 3) (4, 3) (4, 3) (4, 3) (4, 3) (4, 3)
6 (3, 3) (3, 3) (3, 3) (3, 3) (3, 3) (3, 3) (3, 3) (3, 3) (3, 3) (3, 3)
5 (3, 2) (3, 2) (3, 2) (3, 2) (3, 2) (3, 2) (3, 2) (3, 2) (3, 2) (3, 2)
4 (2, 2) (2, 2) (2, 2) (2, 2) (2, 2) (2, 2) (2, 2) (2, 2) (2, 2) (2, 2)
3 (2, 1) (2, 1) (2, 1) (2, 1) (2, 1) (2, 1) (2, 1) (2, 1) (2, 1) (2, 1)
2 (2, 0) (2, 0) (2, 0) (2, 0) (2, 0) (2, 0) (2, 0) (2, 0) (2, 0) (2, 0)
1 (1, 0) (1, 0) (1, 0) (1, 0) (1, 0) (1, 0) (1, 0) (1, 0) (1, 0) (1, 0)

Table 6. The optimal dispatching plan (x∗
1, x

∗
2) ( λ1 = 1/30, λ2 = 1/300)

k\t 10 9 8 7 6 5 4 3 2 1
20 (7, 7) (7, 7) (7, 7) (7, 7) (7, 7) (7, 7) (7, 7) (7, 7) (7, 7) (7, 7)
19 (7, 7) (7, 7) (7, 7) (7, 7) (7, 7) (7, 7) (7, 7) (7, 7) (7, 7) (7, 7)
18 (7, 7) (7, 7) (7, 7) (7, 7) (7, 7) (7, 7) (7, 7) (7, 7) (7, 7) (7, 7)
17 (7, 7) (7, 7) (7, 7) (7, 7) (7, 7) (7, 7) (7, 7) (7, 7) (7, 7) (7, 7)
16 (7, 7) (7, 7) (7, 7) (7, 7) (7, 7) (7, 7) (7, 7) (7, 7) (7, 7) (7, 7)
15 (7, 7) (7, 7) (7, 7) (7, 7) (7, 7) (7, 7) (7, 7) (7, 7) (7, 7) (7, 7)
14 (7, 7) (7, 7) (7, 7) (7, 7) (7, 7) (7, 7) (7, 7) (7, 7) (7, 7) (7, 7)
13 (7, 6) (7, 6) (7, 6) (7, 6) (7, 6) (7, 6) (7, 6) (7, 6) (7, 6) (7, 6)
12 (6, 6) (6, 6) (6, 6) (7, 5) (7, 5) (7, 5) (7, 5) (7, 5) (7, 5) (7, 5)
11 (6, 5) (6, 5) (6, 5) (6, 5) (6, 5) (6, 5) (6, 5) (6, 5) (6, 5) (6, 5)
10 (6, 4) (6, 4) (6, 4) (6, 4) (6, 4) (6, 4) (6, 4) (6, 4) (6, 4) (6, 4)
9 (5, 4) (5, 4) (5, 4) (5, 4) (5, 4) (6, 3) (6, 3) (6, 3) (6, 3) (6, 3)
8 (5, 3) (5, 3) (5, 3) (5, 3) (5, 3) (5, 3) (5, 3) (5, 3) (5, 3) (5, 3)
7 (4, 3) (4, 3) (5, 2) (5, 2) (5, 2) (5, 2) (5, 2) (5, 2) (5, 2) (5, 2)
6 (4, 2) (4, 2) (4, 2) (4, 2) (4, 2) (4, 2) (4, 2) (4, 2) (4, 2) (5, 1)
5 (4, 1) (4, 1) (4, 1) (4, 1) (4, 1) (4, 1) (4, 1) (5, 0) (5, 0) (5, 0)
4 (4, 0) (4, 0) (4, 0) (4, 0) (4, 0) (4, 0) (4, 0) (4, 0) (4, 0) (4, 0)
3 (3, 0) (3, 0) (3, 0) (3, 0) (3, 0) (3, 0) (3, 0) (3, 0) (3, 0) (3, 0)
2 (2, 0) (2, 0) (2, 0) (2, 0) (2, 0) (2, 0) (2, 0) (2, 0) (2, 0) (2, 0)
1 (1, 0) (1, 0) (1, 0) (1, 0) (1, 0) (1, 0) (1, 0) (1, 0) (1, 0) (1, 0)



336 T. KOMIYA, M.POLPARNT, R.HOHZAKI AND E.FUKUDA

We also calculated another case that the arriving probabilities of a suicide bomber to each
arena, λ1 and λ2, are different. We assumed that Arena 1 is more dangerous (λ1 = 1/30)
than Arena 2 (λ2 = 1/300) for the calculation. To consider the relation between λi and
optimal number of dispatching guards, c1(t) and c2(t) are set to be the same 30 for any
mission period t. Other parameters are also set the same 30 as the former examples. The
optimal dispatching plan for the case is Table 6.

The properties of the plan are almost same as Table 5. If they have sufficient guards
to be dispatched, the optimal dispatching policy is (7, 7) to avoid the victim. When the
available guards are k = 12, 9, 7, 6 and 5, shifts of one guard from Arena 2 to more dangerous
Arena 1 are observed. And in more severe conditions that k ≤ 4, all the guards must be
dispatched to Arena 1 to save more lives of the citizens and the guards.

By those numerical results, we showed that we could easily extend the single arena
formulation to two arenas case. We conclude that our method is useful for deciding the
delicate dispatch planning even in two arena case.

We also investigate the relations between the input size of the problem and the computa-
tional time. At first, we can easily check that the computational time is proportional to T .
To calculate values for the t-th period, FE[t, k], we must use FE[t− 1, 0], · · · , FE[t− 1, k],
so the whole computational time increases by input size T linearly. The linearity is also
valid for FE2[t, k].

On the other hand, K dependency of the computation time is more complicated. The
dependencies are different in single and two arenas cases. In the single arena case, when we
calculate by Eq.(7), we have to shift x from 0 to k. Moreover, when the assault battle is taken
place, the parameter y must be changed from 1 to x to calculate the expectation. In each of
these two cases, we have to calculate x cases. As the result, we must consider

∑k
x=1(2x+3) =

k2 + 4k states when k 6= 0 and 2 states in k = 0. When no guard is dispatched, not five
but just two events, a terrorist does not appear or he can explode his bomb freely at the
center of Arena, would happen. By those considerations, the computational complexity is
proportional to 4k2 +4k +2 or O(k2) in the rough. So the complexity increases by O(TK2)
in the single arena case. As for the two arenas case, the complexity becomes O(TK4).

5.3 Dispatch planning model to multiple arenas case Now we investigate the prob-
lem with more than three arenas. From now on, we consider I-arena problem. By the
analogy of Eq.(9), the recursive formula of I-arena problem is written as follows.

FEI [t, k](10)

= max
0≤x≤k

x1+···+xI=x

5∑
j1=1

· · ·
5∑

jI=1

q1
j1 · · ·q

I
jI

[
Φ1

j1 · · ·Φ
I
jI

{
FEI [t−1, k−

I∑
i=1

Ds
i,ji

]+
I∑

i=1

(ci(t)−Dc
i,ji

)
}]

.

The complexity also increases linearly in proportion to T . K dependency, however, seems
to be very complicated and hard to analyze even three arenas case.

The analytical process is as follows. First, to distribute x guards for I arenas, we must
divide x into I blocks. We will denote each of them by x1, x2, · · · , xI . Any of them, but not
all at once, is allowed to be zero. All dividing patterns {(x1, x2, · · · , xI)} are the number
of the repeated combination and it becomes IHx =I+x−1 Cx.

In each of the distributed pattern element (x1, x2, · · · , xI), we must distinguish two
different possibilities; the component xi equals zero or not. If xi equals zero, it means that
no guard is dispatched to Arena i. Then, only two events, a terrorist does not show up
or come and bomb at the center, would happen. We assume that in z out of I arenas,
xi equals zero. On the other hand, if xi is not zero, we must consider five possible events
and the number of the total possible states becomes 2xi + 3 as we have considered in the
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previous section. As the result, the total number of the combined possible states becomes
2z ·

∏I−z
i=1 (2xi + 3) for each of the element. Note that in this estimation, xis are sorted

and renumbered; five possible events may happen in the first I − z arenas and no guard
is dispatched to the last z arenas. And in the former arenas, some xis may take the same
value. For those xis, we define the set U = {xi|xi = α}, V = {xi|xi = β} and so on. When
we calculate the number of the whole possible states, we must multiply I!/(|z|!|U |!|V |! · · · )
by the value for an element and then shift x from 0 to k. Through those procedures, we
can get the number of total states but it is a tough work even in small I arenas case.

6 Summary In this paper, we proposed a planning model of dispatching security guards
to a hazardous arena. The proposed method produces reasonable and acceptable plans
to save the lives of citizen by the limited number of security staffs. In accordance with
the detection probability of each guard, the optimal dispatching policy changes; if the
probability is very low, none of them must be dispatched to save the security resources.
If it increases a little, all guards must be dispatched. When the guards have relatively
high capability, not all, but just some of them must be dispatched. The model gives us a
quantitative analysis about the best timing or the optimal number of dispatching guards.

The single arena model is easily extendable to multi-arena cases. The solution for two-
arena case also has the same properties of the single-arena one. For the case of 3 or more
arenas, counting up of whole combination of possible states is hard and the number will not
be expressed in a simple formula. To solve more than three arenas problem efficiently, we
should seek for heuristic algorithms.

To improve our model, we have the following future works. Our model was built on
many simplified assumptions. The shape of the arena was circular, as assumed by Kress [7],
the detection probabilities of each guard are set the same and they are a constant regardless
of the situations or personal abilities. They search for suspicious guys independently. But
in the real operations, the shape of the arena is rectangle in most cases. They will patrol
by buddy. We have to modify our model to fit for the real world. Also we used many
probabilities in the model. Those probabilities, such as the urge of the suicide bomber S
or the detection probability p, must be evaluated from some psychological knowledge or
training data. As the scientific study about counter terrorism has just begun now, we have
to prepare many input data as well as the models. Also we have to consider some real
operational restrictions. For the optimal number of dispatching guards, we only take into
account the number. However we have to consider other conditions such as watch schedule
and/or the cost of guards. In multi-arena cases, we have to investigate the problem when
there is some difference in the patrol periods among arenas.

Acknowledgement The authors would like to express gratitude to the referee for several
helpful comments and suggestions.

Appendix A. The expectation of the casualties when the bomb explodes during
the battle We will explain the computational procedure of the expected casualties when
a suicide bomber detonates his bomb during the battle. We referred to the idea in [7]. The
suicide bomber can detonate his bomb at any point in the arena. If nobody detects him, he
can go to the center of the circular arena and maximize the damage. Or if he is detected
and the battle begins, he may push the button there. In that case, the detonation would
happen not at the center in general. But as the possible occupied areas of persons are
decided previously, we first compute the casualties when the bomb explodes at each area in
the arena and then average those expected casualties.
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Figure 3 When the bomb detonates in m=2nd, there are 6 possible seats in l=2nd

As seen in Figure 3, we set the center of the arena as the origin of the coordinates,
(0, 0) and the circular rings of the arena are indexed by m. Then we assume that the
bomb explodes at (0, r2) and the bombing ring is l = 0. By the symmetry of the arena, we
can choose the exploded point arbitrarily. As the width of each ring of the arena and the
bombing ring are the same, the rings of the arena, ms, and the bombing rings, ls, overlap
wholly with each other.

At first, we will estimate the expected number of people in the l th bombing ring area
when the bomb explode at the m th arena, µm,l. Before doing that, we calculate the
maximum possible number of people in part of the ring, am,l. As a person occupies 2 θl on
the lth ring,

am,l = [180◦ + 2arctan(
yl − rm

xl
)]/2θl

= [180◦ + 2arctan(
yl − rm

xl
)]/2 arcsin(

1
2l

) ,(11)

where rm = 0.5m [meter]. As the diameter of the human body is assumed 0.5 [meter] in
[7], the radius of the m th ring, rm, is expressed as above. (xl, yl) is the intersection of the
following two circle (xl > 0). M is the diameter, or the number of the rings, of the circular
arena.

Circular arena : x2 + y2 = (0.5 · M + 0.25)2.
Circular area from the explosion : x2 + (y − rm)2 = (0.5l)2.

In each of the lth ring, people can overlap a little, so we will round up hm,l = dam,le. When
there are C persons in the arena uniformly, the expected number of people in the lth region,
µm,l is

µm,l =
hm,l

H(M + m)
C ,(12)
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where H(M + m) is the maximum possible people in the arena.

H(M + m) =
M+m∑
l=1

hm,l.(13)

As an illustrative example, we assume that the diameter of the arena is 2 meter (M = 2).
When the explosion happens in m = 2nd ring, the maximum seats in l = 2nd ring, a2,2 is

a2,2 = [180◦ + 2arctan(
0.78 − 0.5 · 2

0.98
)]/2 arcsin(

1
2 · 2

) = 5.3,(14)

so h2,2 = 6 persons. Then the maximum possible persons in the arena are H(2 + 2) =∑2+2
l=1 h2,l = d3.6e + d5.3e + d5.8e + d4.3e = 21 persons. If there are C = 7 persons in the

arena, µ2,2 = 6/21 × 7 = 2.0 persons.
When there are y guards and c(t) citizens and the bomber detonates in the m th ring,

the total casualties are computed by the analogy of Eq.(4).

Acasm(M,y + c(t)) =
M+m∑
l=1

µm,l · γ(l) · PH(l).(15)

If there are 3 guards and 47 citizens in the arena, whose diameter is 5 meter and the
detonation occur at the m = 3rd ring, the expectation is computed as follows.

Acas3(5, 3 + 47) =
5+3∑
l=1

µ3,l · γ(l) · PH(l)

= 3.18 + 3.12 + 1.62 + 0.76 + 0.34 + 0.14 + 0.05 + 0.01 = 9.23 (persons).

As the detonation may happen at any seat in the arena, the expected casualties during the
battle, Acas(M,y+c(t)) , are calculated by taking an weighted average of Acasm(M,y+c(t))
by the m th seats in the arena.

Acas(M,y + c(t)) =

[
M∑

m=0

Acasm(M,y + c(t)) · h(m)

]
/

M∑
m=0

h(m).(16)

In this example, the value becomes

Acas(5, 3 + 47) =

[
5∑

m=0

Acasm(5, 50) · h(m)

]
/

5∑
m=0

h(m)

= [10.46 · 1 + 10.28 · 6 + 10.04 · 13 + 9.23 · 19 + 7.84 · 26 + 5.69 · 32] /97
= 7.88 (persons).

As the diameter of the arena M is assumed to be a constant throughout each of the
numerical examples, we omitted the parameter from the notation and denote the casualties
in simpler form like Ac

0(x, c(t)), As
1(y, c(t)) as defined in Eq.(4). In this example, As

1(3, 47)
and Ac

1(3, 47) are calculated by Eqs.(5) and (6): As
1(3, 47) = 7.88 × 3/50 = 0.47 (persons)

and Ac
1(3, 47) = 7.88 × 47/50 = 7.41 (persons).
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