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Abstract. In the present paper, a sequential decision problem on a partially observ-
able Markov process is set up which takes into account a partial maintenance. We
develop an optimal maintenance policy for the products. During their life cycle, a
condition of this item changes, which causes some troubles. For a small trouble, it
is possible to handle individually, but it might be necessary to replace a faulty com-
ponent. The decision-maker does not observe a condition directly, but information is
obtained through a magnitude of a trouble. A state of an item changes according to a
Markovian transition rule based on TP2. The decision-maker decides a level of repair
with cost which varies with the level. This problem is how much to expend to maintain
this item to minimize the total expected cost. A dynamic programming formulation
implies a recursive equation about expected cost obtainable under the optimal policy,
and the purpose of this paper is to observe monotonic properties for this value.

1 Introduction A sequential decision problem on a Markov process in which states are
closely related to outcome is treated in Nakai [11]. In [11], a state can be changed by
expending an additional amount within a range of the budget, and it also changes according
to a Markovian transition rule based on the total positivity of order two (TP2). In the
present paper, a sequential decision problem on a partially observable Markov process is set
up which takes into account a partial maintenance to minimize the total expected cost.

We develop an optimal maintenance policy for the products such as electrical devices,
cars and so on. During their life cycle, a condition of this item changes, which causes
some troubles. For a small trouble, it is possible to handle individually, but it might
be necessary to replace a faulty component. The decision-maker does not observe this
condition, but information is obtained through a magnitude of a trouble. This condition is
considered as an element of a state space (0,∞) of a Markov process. These states change
according to a Markovian transition rule based on TP2, which plays an important role in
the Bayesian learning procedure for a partially observable Markov process. For a state
s ∈ (0,∞), as s approaches to 0, this item complied with user, and it is not sufficiently
complied with their demands as s becomes larger. Associated to each state s, there exists
a random variable Xs which represents a magnitude of a trouble, and information about
unobservable state is obtained through a realized value of this random variable. These X ’s
are assumed to be i.i.d. random variables with finite mean. After observing this value, the
decision-maker improves information about unobservable state of the process by employing
a Bayesian learning procedure. All information is summarized by a probability distribution
on the state space such as a log-normal distribution for example. On the other hand, the
decision-maker decides a level of repair or maintenance with cost which varies with this
level. This problem is how much to expend to maintain this item to minimize the total
expected cost, which is formulated as a sequential decision problem with partial maintenance
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on a partially observable Markov process. A dynamic programming formulation implies a
recursive equation about expected cost obtainable under the optimal policy, and the purpose
of this paper is to observe monotonic properties for this value. A problem treated in Nakai
[11] is one of a problem called partially observable Markov decision processes, and a problem
treated in section 3 is also one of them. For these problem, there are many researches as
Monahan[7, 8, 9], Grosfeld-Nir[4], Albright[1], White[13], Itoh and Nakamura[5], Cao and
Guo[2], Ohnishi, Kawai and Mine[12], Fernandez-Gaucherand, Arapostathis and Marcus[3],
for example.

2 Sequential Decision Problem on a Partially Observable Markov Process A
sequential decision problem with partial maintenance is set up to develop an optimal main-
tenance policy for some products. During a life cycle of a product, a condition of this item
changes, which causes some troubles. This condition is considered as an element of a state
space (0,∞) of a Markov process. For a state s ∈ (0,∞), as s approaches to 0, this item
complied with user, and it is not sufficiently complied with their demands as s becomes
larger. Associated to each state s, there exists a non-negative random variable Xs repre-
senting a magnitude of a trouble for this item in state s. These X ’s are assumed to be i.i.d.
random variables with finite mean, and Xs is stochastically increasing random variable with
respect to s, i.e. a magnitude of a trouble increases stochastically as s becomes larger. It is
assumed that the random variable Xs is absolutely continuous with density function fs(x).
A state of this item is not directly observable to the decision-maker, and information about
this state will be obtained through a realized value of these random variables.

A state of the process changes according to a Markov process with transition rule P =
(ps(t))s,t∈(0,∞), which is independent to the random variables Xs. This transition rule
satisfies a property called TP2 (Assumption 1).

Assumption 1 If s < t, then
∣∣∣∣ ps(u) ps(v)
pt(u) pt(v)

∣∣∣∣ ≥ 0 for any u, v where u < v.

Assumption 1 implies that a probability of moving from a current state to ‘worse’ states
increases with deterioration in a current state and decreases with improvement in a current
state. From this fact, as s becomes larger, a probability to make a transition into a class of
larger values increases.

2.1 Partially Observable Markov Process and Information Information about un-
observable state is assumed to be a probability distribution µ on the state space (0,∞) with
density function µ(s). Let S be a set of all information about unobservable state, then

S =
{
µ = (µ(s))

∣∣∫ ∞
0
µ(s)ds = 1, µ(s) ≥ 0 (s ∈ (0,∞))

}
.

Among informations in S, a partial order is defined by using a TP2 property, i.e. for
two probability distributions µ and ν on (0,∞), if µ(s′)ν(s) ≥ µ(s)ν(s′) for any s, s′ (s ≤
s′, s, s′ ∈ (0,∞)) and µ(s′) ν(s) > µ(s) ν(s′) at least one pair of s and s′, then µ is said to
be larger than ν, or simply µ � ν. By this definition, if µ � ν, then information under ν
is better than one under µ since a state becomes worse as s increases. This stochastic order
is also said to be TP2. Concerning this order relation, Lemma 1 is obtained from Kijima
and Ohnishi[6].

Lemma 1 If µ � ν in S, then
∫ ∞
0 h(x)dFµ(x) ≥ ∫ ∞

0 h(x)dFν (x) for a non-decreasing
non-negative function h(x) of x, where Fs(x) is a probability distribution function of Xs

and Fµ(x) =
∫ ∞
0 µ(s)Fs(x) is a weighted distribution function.
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2.2 Learning Procedure Associated to each state s, there exists a random variable Xs

representing a magnitude of a trouble when a state of an item is s. It is assumed that these
random variables Xs satisfy Assumption 2.

Assumption 2 If s ≤ s′, then Xs′ � Xs, i.e. fs(x′)fs′(x) ≤ fs(x)fs′ (x′) for any x and x′

where x ≤ x′.

By Assumption 2, if s ≤ s′, a random variable Xs is larger than Xs′ by means of the
likelihood ratio, and a random variable Xs takes on smaller values as s becomes smaller.

Let prior information about unobservable state of the process be µ, then we improve
this information in sequence as follows.

1. Observe a realized value of random variables {Xs}s∈(0,∞).

2. If a realized value is x, improve information by employing the Bayes’ theorem as
µx = (µx(s)) ∈ S, i.e.

µx(s) =
µ(s)fs(x)∫ ∞

0 µ(s)fs(x)ds
.(1)

3. This process will make a transition to a new state according to the transition rule
P = (ps(t))s,t∈(0,∞).

4. After making a transition into a new state, information at the next instant becomes
µx = (µx(s)) as

µx(s) =
∫ ∞
0 µx(t)pt(s)dt.(2)

Regarding a relationship between prior information µ and posterior information µx,
Lemma 2 is obtained under Assumptions 1 and 2 as Nakai[10].

Lemma 2 If µ � ν, then µx � νx and µx � νx for any realized value x. For any µ, µx

and µx increases as x increases, i.e. µx′ � µx and µx′ � µx where x < x′.

Lemma 2 implies that an order relation among prior information µ is preserved in
posterior information µx and µx. Furthermore, for the same prior information µ, posterior
information µx becomes worse by means of the likelihood ratio as x increases.

3 Sequential Decision Problem with Partial Maintenance A sequential decision
problem on a partially observable Markov process is formulated as a partial maintenance
is allowed for an item. When a magnitude of a trouble is x, it costs c(x) immediately and
the decision-maker decides a level of repair, i.e. she/he chooses a proportion α to maintain
this item (0 < α ≤ 1). If she/he chooses α, a state s changes to a new state αs with cost
C(α). This α corresponds to a level of repair for this item, and a cost C(α) varies with the
level. When α = 1, the decision-maker decides to do nothing at this time and C(α) = 0.
It is assumed that C(α) is non-increasing and non-negative bounded function of α. Let
u(s) be a terminal reward when a state is s, and u(s) is a non-decreasing and non-negative
convex function of s. c(x) is a non-negative and non-decreasing function of x. This is one
of a problem called partially observable Markov decision problem, and similar problem is
treated in Nakai [11] for an additive case.

In order to analyze this sequential decision problem, three models are formulated in
sequence. Initailly, a sequential decision problem with partial maintenance is formulated
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which does not take into account a stochastic transition among states and the decision-
maker directly observes a current state. When there are n stages to go and a current state
is s, let v∗n(s) be a total expected cost obtainable under the optimal policy, and let v∗n(s|x)
be a total expected cost obtainable under the optimal policy conditional on x. The principle
of the optimality implies following recursive equations.

v∗n(s) = EXs [v
∗
n(s|Xs)]

v∗n(s|x) = c(x) + min
0<α≤1

{C(α) + v∗n−1(αs)},(3)

where v∗1(s|x) = c(x) + min0<α≤1{C(α) + u(αs)}. When a state of the process is s and
the decision-maker chooses a proportion α to maintain this item (0 < α ≤ 1), a state is
improved as αs with immediate cost C(α) (0 < α ≤ 1).

Since u(s) is an increasing function of s, v∗1(s|x) is also an increasing function of s. By
using an induction principle on n, v∗n(s|x) is also an increasing function of s since v∗n−1(αs)
is an increasing function of s. This property implies that v∗n(s) is also an increasing function
of s. Since C(α)+u(αs) is a convex function of α, an optimal decision for n = 1 is obtained
as a minimizing point of an equation C(α) + u(αs) = 0 (0 < α ≤ 1).

Secondly, a state changes according to a Markov process and the decision-maker directly
observes a current state, i.e. it is a sequential decision problem with partial maintenance
on a Markov process. When there are n stages to go and a current state is s, let v̂n(s) be a
total expected cost obtainable under the optimal policy, and let v̂n(s|x) be a total expected
cost obtainable under the optimal policy conditional on a realized value x. The principle of
the optimality implies the recursive equations as

v̂n(s) = EXs [v̂n(s|Xs)]

v̂n(s|x) = c(x) + min
0<α≤1

{C(α) +
∫ ∞

0

pαs(t)v̂n−1(t)dt},(4)

where v̂1(s|x) = c(x) + min0<α≤1{C(α) + v̂(αs)}. From these equations, it is easy to show
Lemma 3 by using an induction principle on n and Lemma 1.

Lemma 3 v̂n(s) is a non-decreasing function of s, and v̂n(s|x) is a non-decreasing function
of s and x.

Finally, a sequential decision problem with partial maintenance is formulated as a par-
tially observable Markov decision problem, i.e. it is possible to change a current state by
making a decision α and the decision-maker cannot observe a current state directly. Let µ
be prior information about unobservable state of the process. The decision-maker improve
information about unobservable state by using a realized value of a random variable Xs.
When prior information is µ, let µx be posterior information improved by a Bayesian learn-
ing procedure defined by Equation (1). For this improved information, the decision-maker
chooses a decision α and a state becomes αs when a current state is s. Therefore, infor-
mation about state of the process becomes µx

α by this decision. After that, time moving
forward by one unit, and this process will make a transition to a new state according to the
transition rule (ps(t))s,t∈(0,∞), and information becomes µx

α at the next instant. It is also
possible to formulate and analyze this model by other order similarly.

When information about unobservable state of the process is µ, let vn(µ) be a total
expected cost obtainable under the optimal policy when there are n stages to go. Conditional
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on x, vn(µ|x) is a total expected cost obtainable under the optimal policy when there are n
stages to go and information is µ. The principle of optimality implies a recursive equation
as

vn(µ) =
∫ ∞

0

vn(µ|x)dFµ(x)

vn(µ|x) = c(x) + min
0<α≤1

{C(α) + vn−1(µx
α)}(5)

where v0(µ) =
∫ 1

0
u(t)dµ(t). In order to treat monotonic properties of vn(µ) and vn(µ|x),

some preliminary properties will be considered in subsequent section.

3.1 Preliminary Results Concerning Prior and Posterior Information In Nakai
[11], a sequential expenditure problem on a partially observable Markov process with state
space (−∞,∞) is formulated, in which some conditions are treated to obtain monotonic
properties about the total expected reward obtainable under the optimal policy. In a
problem treated in [11], when a current state is s, a state of this process moves to a new
state s(y) = s + d(y) by taking a decision y (> 0), where d(y) is non-decreasing function
of y with d(0) = 0. In order to observe some properties concerning an optimal value
for a problem treated here, we summarize several properties concerning prior and posterior
information obtained in Nakai [11]. We introduce following notations for prior and posterior
informations as [11].

µ: probability distribution µ = (µ(s)) on the state space (−∞,∞) as prior information

µ: probability distribution µ = (µ(s)) after making a transition to a new state where
µ(s) =

∫ ∞
0
µ(t)pt(s)dt

µx: probability distribution µx = (µx(s)) improved by using a realized value x according
to the Bayes’ theorem as Eq. (1)

µy: probability distribution µy = (µy(s)) after taking a decision with y as µy(s) = µ(s−
d(y))

For a probability distribution on the state space (−∞,∞) like information µ = (µ(s)),
consider a condition called (G′) as follows.

(Condition G′)

A probability density function µ(s) on (−∞,∞) satisfies µ(s)
µ(s′) ≥ µ(t)

µ(t′) for any

s < t and s′ < t′ where s− s′ = t− t′ < 0.

This condition is called as a gradually condition in Nakai [11]. Let µ be a normal distribu-
tion, then this µ satisfies Condition G′ by simple calculations. It is easy to show that if µ
satisfies Condition G′ then µy satisfies Condition G′ for any y. In order to show Lemma 4,
Assumption 3 is induced for the transition probability. Whenever ps(t) is a density function
of normal distribution N(s, σ2), this ps(t) satisfies this assumption.

Assumption 3 If u < v, then pu(s)pv(t′)− pu(t)pv(s′) ≥ pv(s)pu(t′)− pv(t)pu(s′) for any
s < s′ and t < t′.

Lemma 4 Under Assumption 3, if µ satisfies Condition G′ then µ also satisfies Condition
G′.
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As for posterior information µx improved by a Bayesian learning procedure for any x,
Assumption 4 is induced for density functions of Xs to show Lemma 5.

Assumption 4 A probability density function fs(x) of a random variable Xs satisfies
fs(x)
fs′(x) ≥ ft(x)

ft′(x)
for any s < t and s′ < t′ where s− s′ = t− t′ < 0.

If fs(x) is a density function of a normal distribution N(s, σ2), then these fs(x) satisfy
Assumption 4.

Lemma 5 Under Assumption 4, if µ satisfies Condition G′, then µx satisfies Condition
G′ for any x.

In the discussions in [11], order of learning about unobservable state, making a decision
and a transition among state according to the transition rule is considered as follows.

1. Observe a realized value x of the random variable.

2. Improve information about it as µx by using the Bayes’ theorem.

3. Expend an additional amount y within a range of a budget, i.e. take a decision y.

4. Time moving forward by one unit.

5. Process will make a transition to a new state according to P , and information about
new state becomes µx

y = (µx
y(s)).

It is also possible to formulate and analyze this problem by other order. According
to Nakai [11], some monotonic properties concerning the relationships between prior and
posterior information are obtained in Lemma 6 by Lemmas 2, 4 and 5.

Lemma 6 Let µ and ν be prior information in S which satisfy Condition G′. If y > y′,
then µx

y � µx
y′ and µx

y � µx
y′ for any x, and if µ � ν, then µy � νy, µx

y � νx
y and µx

y � νx
y

for any y. If x > x′, then µx
y � µx′

y and µx
y � µx′

y for any y.

3.2 Log-normal Distribution and Information Since the state space is (0,∞) in this
sequential decision problem, a log-normal distribution is a typical distribution for informa-
tion µ, random variables Xs and the transition rule P . By this reason, essential properties
concerning log-normal distribution are summarized in this subsection.

Let X be a log-normal distribution with distribution function Ψ(x|µ, σ2) and density
function ψ(x|µ, σ2) where

Ψ(x|µ, σ2) =
∫ log x

−∞

1√
2πσ

e−
(x−µ)2

2σ2 dx, ψ(x|µ, σ2) =
1√

2πσx
e−

(log x−µ)2

2σ2 ,

and, therefore, E[X ] = µ+ σ2

2 and ψ(x|µ, σ2) = φ(log x|µ, σ2)
x for a density function

φ(x|µ, σ2) of a normal distribution N(µ, σ2).
For density functions ψ(x|µ, σ2

1) and ψ(x|µ, σ2
2) of log-normal distribution with σ2

2 ≤ σ2
1 ,∣∣∣∣ ψ(s|u, σ2

1) ψ(s|v, σ2
2)

ψ(t|u, σ2
1) ψ(t|v, σ2

2)

∣∣∣∣ =
1
st

∣∣∣∣ φ(log s|u, σ2
1) φ(log s|v, σ2

2)
φ(log t|u, σ2

1) φ(log t|v, σ2
2)

∣∣∣∣ ≥ 0

for any s, t > 0, since
∣∣∣∣ φ(x|µ, σ2

1) φ(x|µ, σ2
2)

φ(x′|ν, σ2
1) φ(x′|ν, σ2

2)

∣∣∣∣ ≥ 0 for any x, x′, µ, ν, σ1 and σ2 where

x ≤ x′, µ ≤ ν and σ2
2 ≤ σ2

1 , i.e. normal distributions N(µ, σ2) has a TP2 property.
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Therefore, the log-normal distributions with density function ψ(x|µ, σ2) have a property
called TP2 when σ2 is a non-increasing function of µ.

In a sequential decision problem treated in Nakai [11], a state becomes s(y) = s+ d(y)
by taking a decision y (> 0) when a state of the process is s, and, therefore, some monotonic
properties are obtained under Condition G′. For this problem, a state of the process becomes
αs by taking a proportion α when a state of the process is s, i.e. s(α) = αs. From this
reason, Condition G is induced for probability distributions on the state space (0,∞) like
µ in S to analyze monotonic properties for this problem.

(Condition G)

A probability density function µ(s) satisfies µ(s)
µ(s′) ≥ µ(t)

µ(t′) for any 0 < s < t and

0 < s′ < t′ where s
s′ = t

t′ < 1.

Since information is defined as a probability distribution µ on the state space (0,∞), if µ
is a log-normal distribution with density function ψ(x|µ, σ2), then this µ satisfies Condition

G since µ(s)
µ(s′) ≥ µ(t)

µ(t′) is equivalent to φ(logα+ log s′|µ, σ2)
φ(log s′|µ, σ2)

≥ φ(logα+ log t′|µ, σ2)
φ(log t′|µ, σ2)

for

s = αs′ and t = αt′ where 0 < α ≤ 1. This comes from a fact that a density function
φ(x|µ, σ2) of N(µ, σ2) satisfies the condition G′.

3.3 Relationship between Prior and Posterior Information All information about
unobservable state of the process is summarized by a probability distribution on the state
space (0,∞), and a state moves to a new state αs by taking a decision α. In the present
paper, we use the following notations instead of Nakai [11].

µ: probability distribution on (0,∞) as prior information

µ: probability distribution after making a transition to a new state according to the
transition rule P = (ps(t))s,t∈(0,∞)

µx: probability distribution improved by employing a Bayesian learning procedure after
observing a magnitude x of a trouble

µα: probability distribution on (0,∞) after taking a decision α where 0 < α ≤ 1

In this problem, whenever prior information in µ, first observe a magnitude x of a trouble
as information and improve information about unobservable state as µx by employing the
Bayes’ theorem. After that, the decision-maker chooses a decision α, and information about
unobservable state becomes µx

α. Finally, this process will make a transition to a new state
according to P = (ps(t))s,t∈(0,∞), and, at the next instant, information about unobservable
state becomes µx

α.
Under Assumptions 5 and 6 instead of Assumptions 3 and 4, if µ satisfies Condition G

then µ, µx and µα also satisfy Condition G by a method similar to one used in Lemmas 4
and 5, i.e. Lemmas 18 and 20 of Nakai [11]. A transition rule (ps(t))s,t∈(0,∞) which satisfies
Assumption 3 also satisfies Assumption 5. It is easy to show that µα satisfies Condition G
for any α whenever µ satisfies Condition G.

Assumption 5 If u < v, then pu(s)pv(t′)− pu(t)pv(s′) ≥ pv(s)pu(t′)− pv(t)pu(s′) for any
0 < s < t and 0 < s′ < t′ where s

s′ = t
t′ < 1.

Assumption 6 A probability density function fs(x) of Xs (s ∈ (0,∞)) satisfies a condition

that fs(x)
fs′(x) ≥ ft(x)

ft′(x)
for any 0 < s < t and 0 < s′ < t′ where s

s′ = t
t′ < 1.



290 TŌRU NAKAI

Lemma 7 Under Assumption 5, if µ satisfies Condition G then µ also satisfies Condition
G. Under Assumption 6, if µ satisfies Condition G, then µx satisfies Condition G for any
x.

When a probability distribution (ps(t)) for any 0 < s <∞ is a log-normal distribution
on the state space with density function ps(t) = ψ(t| log s, σ2), these random variables

satisfy Assumption 3 since ψ(αx|µ, σ2) = φ(logαx|µ, σ2)
αx and a density function of normal

distribution N(s, σ2) satisfies Assumption 3, and, therefore, these random variables satisfy
Assumption 5. On the other hand, let Ts be a random variable with density function ps(t) =
ψ(t| log s−σ2, 2σ2) for any 0 < s <∞, then these (ps(t))s,t∈(0,∞) also satisfy Assumption 5
and E[Ts] = s. When the random variables Xs are assumed to be a log-normal distribution
with density function ψ(αx|µ, σ2), then these random variables satisfy Assumption 4 since
a density function of normal distribution N(s, σ2) satisfies Assumption 4.

On the other hand, let a probability distribution (ps(t)) for any 0 < s <∞ be a log-
normal distribution where ps(t) = ψ(t| log s − σ2, 2σ2) and let Xs be a log-normal distri-
bution with density function ψ(x| log s, σ̄2), then µ, µx and µα are also log-normal dis-
tributions by simple calculations for log-normal prior information µ with ψ(s|µ, σ̂2), and,
therefore, Lemma 7 is valid for this case.

Concerning the relationship between prior and posterior information, the following
monotonic properties are derived by a method similar to one used in Nakai [11].

Lemma 8 Let µ be information which satisfies Condition G. If 1 ≥ α > β > 0, then
µα � µβ, µx

α � µx
β and µx

α � µx
β for any observation x.

Lemma 9 Let µ and ν be information in S. If µ � ν, then µα � να, µx
α � νx

α and
µx

α � νx
α for any decision α and observation x.

Lemma 10 Let µ be information in S. If x > x′, then µx
α � µx′

α and µx
α � µx′

α for any
decision α (0 < α ≤ 1).

3.4 Monotonic Property of a Sequential Decision Probem with Partial Main-
tenance Finally, we will treat monotonic properties of a sequential decision problem with
partial maintenance where a state changes according to a partially observable Markov pro-
cess.

Associated to each state s, there exists a random variable Xs which represents a magni-
tude of a trouble when a state is s, and to observe a realized value of these random variables
corresponds to an observation process for this partially observable Markov process. Let µ
be prior information as a probability distribution on the state space (0,∞) which satisfies
Condition G.

This sequential decision problem with partial maintenance is formulated as follows.

1. First observe a magnitude x of a trouble as information, which is a realized value of
random variable Xs.

2. According to x, improve information by employing the Bayes’ theorem as a learning
procedure, and let information about unobservable state be µx.

3. For this information µx, the decision-maker chooses a decision α, and information
about unobservable state becomes µx

α.

4. Time moving forward by one unit, and this process will make a transition to a new
state according to (ps(t))s,t∈(0,∞), and information about new state becomes µx

α.
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Let vn(µ) be a total expected cost obtainable under the optimal policy when there are
n stages to go and information about unobservable state is µ. Conditional on x, vn(µ|x)
is a total expected cost obtainable under the optimal policy when there are n stages to go
and information is µ. By the principle of optimality, this vn(µ) satisfies Equation (5) as

vn(µ) =
∫ ∞

0

vn(µ|x)dFµ(x)

vn(µ|x) = c(x) + min
0<α≤1

{C(α) + vn−1(µx
α)}

with v0(µ) =
∫ 1

0 u(t)dµ(t). Whenever prior information is µ; first observe a magnitude
x of a trouble; according to x, improve information by employing the Bayesian learning
procedure and let information about unobservable state be µx; for this information, the
decision-maker chooses a decision α, and information about unobservable state becomes
µx

α; time moving forward by one unit, and this process will make a transition to a new state
according to (ps(t))s,t∈(0,∞), and information about new state becomes µx

α; after that, the
expected total cost obtainable under the optimal policy is vn−1(µx

α) by the principle of the
optimality. It is also possible to formulate and analyze this model by other order similarly.

By the monotonic property between prior and posterior information in Lemmas 8 to 10,
when µ and ν satisfy Condition G, if µ � ν, then µx

α � νx
α for any decision α and realized

value x. This fact and Lemma 1 imply Property 1 by the induction principle on n.

Property 1 Suppose that µ and ν satisfy Condition G. If µ � ν, then vn(µ) ≥ vn(ν) and
vn(µ|x) ≥ vn(ν|x), i.e. vn(µ) and vn(µ|x) is a non-decreasing function of µ.

In the present paper, a sequential decision problem with partial maintenance is formu-
lated as a partially observable Markov decision process. Especially, monotonic properties
between prior and posterior information are obtained based on the TP2 property and Con-
dition G. The problem is how much proportion to spend to maintain and to improve this
item. Under some assumptions about the transition rule and information process, there ex-
ist some monotonic properties concerning the expected value obtainable under the optimal
policy as Propostion 1.
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