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ABSTRACT. We prove the boundedness of singular integral operators on weighted
CMO spaces. We also show that our result is optimal.

1 Introduction Since Beurling [1] introduced the Beurling algebras and Herz [5] gener-
alized these spaces, many studies have been done for these spaces (see, for example, [8] and
[12]). Chen and Lau [2] and Garcia-Cuerva [3] introduced the CM O spaces, which are the
dual spaces of the Beurling-type Hardy spaces, and the authors [7] proved the boundedness
of singular integral operators on CMO spaces. Weighted Herz spaces are also considered
in [6], [9] [10] and [11].

In this paper we consider the boundedness of singular integral operators on weighted
CMO spaces. We also show that our reslut is optimal by giving a couterexample.

2 Definitions and Theorems The following notation is used: For a set £ C R"™ we

denote the Lebesgue measure of E by |E|. We denote the characteristic function of E by x .

We indicate a ball of radius R centered at the origin by B(0, R) = {z € R" : |z| < R}. For a

locally integrable nonnegative function, i.e. weight function w, we write w(E) = | 5 w(T)dz.
First we define nonhomogeneous CM O spaces [3].

Definition 1. For 1 <p < oo and n/(n+1) < ¢ <1,

CMOG(R") = {f € Lige(R") 2 [ fllenroy < OO}’

loc

where

1/p
Ifllcarop = sup inf [B(0, R)['~H/P=1/a {/ [f (@) — CI”dw} :
R>1 ¢ B(

0,R)
We denote CMOP = CMOY.
The authours [7] defined weak CMO spaces.
Definition 2. For n/(n+1) < ¢ <1,
WCMOYR) = {f € Li,o(R") : |f lwenos < oo},
where

I lweaor = sup [B(0, R)|~/“infsup A| {z € B(0, R) : |f(x) —c| > A }|.
R>1 € A0
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Next we define weighted CM O spaces and weighted weak C MO spaces. .

Definition 3. For 1 <p < oo,n/(n+1) < ¢ <1 and a weight function w,

OMOY(w)(®") = {f € Li,(®") : | florog <5} -

where

1/p
£ llearor ) = sup inf | B(0, R)|*~1/P=1/a {/ |f(z) — Cl”w(ﬂﬁ)dl‘} :
R>1 ¢ B

(0,R)

Definition 4. For n/(n+1) < ¢ <1 and a weight function w,
WOMO(w)(B") = {f € Lipo(®") : | fllwonrosw < o0}
where

1 lwentop ) = sup [BO, B~V infsup do({z € B0, R) : |f(x) — | > A}).
R>1 € A>0

Next we define some classes of weight functions.

Definition 5. Let 1 < p < oco. For a weight function w, we say that w € A, if there exists
a constant C such that

IQI/ o)dz) IQI/ oDaz) <0

for all balls Q C R™.

Definition 6. For a weight function w, we say that w € A; if there exists a constant C
such that

[l / x)dx < C essinf w(x)

T€Q
for all balls Q C R™.

Definition 7 (centered reverse doubling). Let w be a weight function and § > 0. We
say w € RD(0) if there exists a constant C' such that for any R > 0 and j > 0,

w(B(0,27R) 5
1 — > (2%,
M w(BO,R) =~ ¢
The following lemmas are well-known (see, for example, [4] and [14]).

Lemma 1. If we€ Ay, then w € RD(6) for some § > 0.

Lemma 2. Let 1<p<oo,n/(n+1)<qg<1andws(z)=|z|* (e €R). Then wy € 4,
if and only if —n < a < n(p—1). Furthermore w, € RD(n + «).

Next we define a standard singular integral operator T" and its modified singular integral
operator T
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Definition 8. We say that T is a standard singular integral operator, if there exists a
function K which satisfies the following conditions:

Tf(z)=pv. | K(z-y)f(ydy

R’Il
exists almost everywhere for f € L?(R"),
CK CK
|K(x)] < PR and |VK(x)| < P where z # 0,

/ K(x)dz =0 foral 0<e<N <oo.
e<|z|<N

Remark . We can weaken the conditions in Definition 8, but we assume these conditions
for the simplicity.

Definition 9. For a standard singular integral operator 7', we define the modified singular
integral operator T as follows.

Tf(z) =p.v. RH{K(w —y) = K(=y)x{1y1>11 } f(v)dy.

Note that If f € L2(R™) N L®(R™), then Tf(z) = Tf(z) + Cs a.c., where C; is a
constant.
The authors [7] proved the following.

Theorem A . Let 1 < p < oo and n/(n+1) < ¢ <1. Then T is bounded on CMOY(R™);

T fllcmor < Cllfllemor-

Theorem B . Letn/(n+1) < ¢ < 1. ThenT is bounded from CMO;(]R”) to WCMOé(R”);

Hff”WCMO}I < Clfllemoy-
Our resutls are the following.
Theorem 1. Let 1 < p < oo andn/(n+1) < q¢<1. Ifw € A, and w € RD(d) where
§/p>n(l/p+1/q—1) =1, then T is bounded on C MO} (w)(R™).

Theorem 2. Letn/(n+1) < ¢ <1. Ifw € Ay and w € RD(8) where § > n/q—1, then T
is bounded from CMOy(w)(R™) to WCMO,(w)(R™).

Corollary . Let wo(z) = |z|*. If max(—n,p(n/q—n—1)) < a < n(p —1), then T is
bounded on C MO} (wa)(R™).

Proof. Note that w, € RD(n + «). O

Remark . Compared with A, condition (see Lemma 2), the condition p(n/g—n—1) < «
is strong, but we shall show our reslut is optimal by giving a counterexample in Section
4. Note that if n = 1 and ¢ = 1, then the condition above coincides with the condition
Wo € A,
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3 Proofs First we shall show some lemmas. The following two lemmas are well-known
(see, for example, [4] and [14]).

Lemma 3. Let 1 < p < oco. Ifw € Ay, then standard singular integral operators T are
bounded on weighted LP space LP(w)(R™).

Lemma 4. If w € Ay, then standard singular integral operators T are bounded from
L' (w)(R™) to weighted weak L' space W L' (w)(R").

The next lemma is easily obtained from Hérder’s inequality and the definition of A,
weight. We denote the mean value of f on a ball @ C R™ by fo = |Q| ! fQ f(x)dx.

Lemma 5. Let 1 <p < oo andn/(n+1) < q< 1. Ifw e Ay and f € CMOY(w)(R™),
then for any R > 1,

1/p
{/ |f(z) — fB(o,R)|pw(9C)dl“} < C|lfllerron )R/ PHH a1,
B(0,R)

Throughout this paper, C is a positive constant which is independent of essential pa-
rameters and not necessarily same at each occurrence.

By using this lemma we have the following.

Lemma 6. Let 1 <p < oo andn/(n+1) <qg< 1. Ifwe Ay and f € CMOY(w)(R™),
then for any R > 1,

. /B<o o 10~ pomlde < Cllfllearoguwy R P Dw(B(0, R)~H/?.

By using Lemma 6, we obtain the following.

Lemma 7. Let 1 <p < oo andn/(n+1) <qg<1. Ifwe Ay and f € CMO¥(w)(R"),
then for any R > 1,

(3) \fB0,7) — FB02R)| < Cllfllonror )R /P9 Dw(B(0, R)) /7.

By using Lemmas 6 and 7, we have the following.

Lemma 8. Let 1 <p <oo,n/(n+1) < g <1 and w be a weight function. If w € Ap,w €
RD(0) and f € CMO}(w)(R"), then for any R> 1 and j € N,

/ V(@) ~ feumlde
B(0,2iR)

C2i(n/p+n/a=5/p) ||f||CMOg(w)Rn(l/PJrl/q)w(B(O’ R))~/»
if o/p<n(l/p+1/q-1),
Cj2 || fllenron ) B /PHY Dw(B(0, R)) /P
if 6/p>n(l/p+1/q—1).
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Proof. Let B = B(0, R) and 2/ B = B(0,2/R). By (2) and (3),

[ @ slde s [ 1)~ fplde + CRRY s~ ol
B(0,29 R)

B(0,29 R)
-1
<C|lfllerropw) (2 R)"HPHDw(@I By P + C(TR)™ Y | farp(x) — farr]
k=0
<C|| fllearon wy (27 R)™H/PHH V(29 B) =1/
-1
+ Cllfllearog) (PPR)™ D (2FR)" /P am Dy 2k By~ /P,
k=0

By (1) we have

(4) (21‘R)n(l/p+1/q)w(2j3)—1/p

ng(n/p+n/q—6/p)Rn(l/p+1/q)w(3)—1/p if 0/p<n(l/p+1/q—1),
< .
= | c2in R/t Ay (B) =1 /P it §/p>n(l/p+1/q-—1),

and

1
(5) (27R)" (28 R)"(/pH1/ a1y 9k g)~1/p
0

<.
|

i

< CRn(l/pH/q)w(B)*l/ijn Jzi 9k(n/p+n/q—n—3/p)

k=0
- {ng(n/zﬂrn/q5/p)Rn(1/p+1/q)w(B)l/p if §/p<n(l/p+1/q—1),
= | €j2im R/ Pt/ a)y(B) /P it §/p>n(l/p+1/q—1).

Now we shall prove Theorem 1.

Proof of Theorem 1. We use the same argument as in [7]. Let R > 1 and fix a ball B(0, R).
We denote 2B = B(0,2R). Since

p-v. ; {K(x - y) - K(—y)x{|y|21}} dy =0,

it follows that for z € B(0, R),
T1(0) =T = fanean)(@) = [ K01 (0) ~ fon) xan)dy
b [ K@ - K0} () - fan)dy
ly|>2R
Let

Cr == | Kw)xquen () = fap) xan )y
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and we write

Tf(x) = Cr =T((f = f28)x28)(x) + / {K(x—y) = K(=y)} (f(y) — faB) dy

ly|>2R
=T+l

First we estimate /. By Lemmas 3 and 5 we have

([, T = fapem@pui)

1/p
SC{/ |(f(x) — fQB)XzB|pw(x)dx} < C”f||CMog(w)R"(1/p+1/q_1).

Next we estimate II. By the regularity condition about K and Lemma 8, we have for
x € B(0, R),

‘/ ‘>2R{K(x —y) = K(=y)}f(y) — fap)dy

o0
>/ K~ y) - Kp)llf) - fanldy
= /B2 R\BO0,2 R)
- d
<cy | L 170) - fasldy
= /o2 r\BO2R) YT
> R
<oy B / f(y) — fan] dy
; (QJR)nJrl B(0,21+1R)| ( ) |
e . . .
< CHfHCMog(w)Rn(l/erl/q*l)w(B)*l/p E 9—i(n+1) maX(jQ],QJ(n/p*‘rn/Q*(s/p))
=1

< Cllflemron R/ P/ Dw(B) 1P,
Therefore

1/
{/ |H|pw(x)d=’”} "< Cll fllenrop wyRM/PH =D,
B(0,R) E

O

Theorem 2 is proved similarly. We use Lemm 4 and the following lemma instead of
Lemma 5 (see also [7]), therefore we omit the proof.

Lemma 9. Letn/(n+1) < ¢<1. Ifwe Ay and f € CMOé(w)(R"), then for any R > 1,
[ 15@) = Famlds < Cllflesroyul BO. B u(B0. 1)
B(0,R)
Proof. Note that

_ B(0, R)|
esssup w i (z) < C|77.
B TGION)
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4 Counterexample We show that the condition p(n/¢ — n — 1) < « in Corollary is
optimal by giving a counterexample.

Let 1 < p <oo,n/(n+1) < g <1 and we(z) = |z|* where a = p(n/q —n — 1).
We assume o > —n. We shall give a standard singular integral operator T' satisfying the
conditions in Definition 8, but T'f is not well-defined for some f € CMO¥(w,)(R™).

Let R” = {z = (x1,22,... ,25) € R" : 23, < 0 for all k}. We take a function Q(a)
defined on the unit sphere S™~! which satisfies the following conditions:

Q)=1 if 2/ €S 'nR",

Qe C™(S" 1) and / Q(z')do(2") = 0,
Sn—l

where do is the induced Euclidean measure on S"~!. We define Q(z) = Q(z/|z|) when
x # 0. Let

TS(@)=p. | K —y)f)dy where K(r)= T

Then T satisfies the conditions in Definition 8 (see, for example, [4] and [14]).
Let

Qj={reR":2 <z, <27 forallk} (j € NU{0})

and

fla) =" 2xq,(@).

j=10
We show the following.
Counterexample .
(6) [ € CMOY(wq)(R™).
(7) Tf(z) =oco where z€ Qo.

Proof. The proof of (6) is straightforward. Take R > 210 and pick a jo such that 20 < R <
2J0F1  Since we assume n + a > 0, we have

1/p Jo 1/p
F(2)Pwa(z)ds <C 9ipP9i(n+a) < CR*(1/p+1/a-1)
{ [ o r@Pua@a} ™ <oy !

j=10

Next we prove (7). Let j > 10. If z € Qo and y € Q;, then x; —yr < 0 and —yx < 0
for all k. Therefore
__ 1 L ly[>" — |z —y|*"
eyl eyl yl (y e -yl
(lyl* = |z = y[»)|y[*"V
Tz =yl fylm (bt + e —yl?)

K(r—vy) — K(~y)

Since

> =z =yl = aeQue —a1) > Y 20 —2) > > uk >y,
k=1 k=1 k=1
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and |z — y| < 2|y|, we obtain

C
|y|n+1

K(x—y)—K(-y) > for some positive constant C.

Therefore we have

ff(w)>CZ2j/Q |y|dTy+1>CZQj2j—oo.

j=10 j=10
[l
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