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Abstract. The purpose of this paper is to study the characterization of a Hermite’s
interpolation formula to produce the generalized quotient and remainder theorem of
polynomials and its formulae.

1. Introduction

If f(x) is a polynomial of degree m ≤ n over a field F and b1, b2, . . . , bn, are any n
distinct elements in F , the Newton’s interpolation formula asserts that, there is a unique
representation

f(x) = c0 + c1(x − b1) + c2(x − b1)(x − b2) + . . . + cn(x − b1)(x − b2) . . . (x − bn)

with coefficients ci in F . The proofs of these results can be found in many standard books
(see, for instance, [1], p. 111).

In this paper, we shall be interested in the generalization of the above Newton’s in-
terpolation formula by b1, b2, . . . , bn are not necessary distinct points in F . Suppose that
only s of them, b1, b2, . . . , bs are distinct. Let m1, m2, . . . , ms be nonnegative integers, and
m1 + m2 + . . . + ms = n, the “Newton’s interpolation formula at these coincident points”
is called “Hermite’s interpolation formula” become

f(x) = r0(x) + r1(x)(x − b1)m1 + r2(x)(x − b1)m1(x − b2)m2 + . . .
+ rs(x)(x − b1)m1(x − b2)m2 . . . (x − bs)ms ,

where rj(x) is polynomials in F [x], j = 0, 1, . . . , s. This formula can apply to produce
formulae of generalized quotient and remainder of the polynomial ring F [x].

2. Preliminaries

In this section, an algorithm is presented for calculating the remainder on dividing f(x)
of degree n by the divisor g(x) = α(x − b)m, α = 1 and m < n. The extension to the case
g(x) is nonmonic where α �= 1 is trivial, and the remainder term does not change when the
divisor is changed from a nonmonic polynomial to the corresponding monic polynomial by
taking out the coefficient of the highest power of x.

Lemma 2.1. Let f(x) and g(x) = b0 + b1x + . . . + bm−1x
m−1 + bmxm be polynomials in

F [x], deg g(x) = m and bm �= 1, if g1(x) = 1
bm

g(x) = β0 + β1x + . . . + βm−1x
m−1 + xm

where βi = bi

bm
, i = 0, 1, . . . , m − 1, be the corresponding monic polynomial of g(x), and
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q1(x), q(x) be the quotients and r1(x), r(x) be the remainders on dividing f(x) by g1(x),
and by g(x) respectively, then

q(x) =
1

bm
q1(x) and r(x) = r1(x).(2.1)

Proof. Since

g(x) = b0 + b1x + . . . + bm−1x
m−1 + bmxm, bm �= 1.

Let
g1(x) = 1

bm
g(x)

= b0
bm

+ b1
bm

x + . . . + bm−1
bm

xm−1 + xm.

By the Division Algorithm, there is a unique q1(x), and a unique r1(x) in F [x] such that

f(x) = q1(x)g1(x) + r1(x) whenever r1(x) = 0 or deg r1(x) < deg g1(x),

that is
f(x) = q1(x)(β0 + β1x + . . . + βm−1x

m−1 + xm) + r1(x)
= q1(x)( b0

bm
+ b1

bm
x + . . . + bm−1

bm
xm−1 + xm) + r1(x)

= q1(x) 1
bm

(b0 + b1x + . . . + bm−1x
m−1 + bmxm) + r1(x)

=
{

1
bm

q1(x)
}

g(x) + r1(x)
= q(x)g(x) + r(x).

Thus

q(x) =
1

bm
q1(x), and r(x) = r1(x).

Now by Division Algorithm of the polynomial ring F [x], we have

f(x) = (x − b)mq(x) + c0 + c1x + . . . + cm−1x
m−1,(2.2)

where the remainder r(x) = c0 + c1x + . . . + cm−1x
m−1. After differentiating f(x) in (2.2)

with respect to x at the point x = b, denote d
dxf(x) = f (1)(x), d2

dx2 f(x) = f (2)(x) and so
on, we have a system of linear equations of m equations and m unknowns over F as follows

c0 + bc1 + b2c2 + . . . + bm−1cm−1 = f(b),
0 + 1c1 + 2bc2 + . . . + (m − 1)bm−2cm−1 = f (1)(b),
0 + 0 + 2!c2 + . . . + (m − 1)(m − 2)bm−3cm−1 = f (2)(b),

...
0 + 0 + 0 + . . . + (m − 1)!cm−1 = f (m−1)(b).

Write a matrix equation represent the system of linear equations as

WC = Y,(2.3)

where CT =
[

c0 c1 . . . cm−1

]
, Y T =

[
f(b) f (1)(b) . . . f (m−1)(b)

]
and the

coefficients matrix W is the Wronskian matrix

W =

⎡
⎢⎢⎢⎢⎢⎣

1 b b2 . . . bm−1

0 1 2b . . . (m − 1)bm−2

0 0 2! . . . (m − 1)(m − 2)bm−3

...
...

...
. . .

...
0 0 0 . . . (m − 1)!

⎤
⎥⎥⎥⎥⎥⎦ .

Using above symbols, we obtain the following lemma.
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Lemma 2.2. If f(x) = a0 + a1x + . . . + anxn, g(x) = (x − b)m are polynomials in F [x],
where an �= 0, m ≤ n, then the remainder on dividing f(x) by g(x) is

r(x) = f(x) − detB

detW
.(2.4)

Proof. Let B be the result of bordering W , defined by B =
[

W Y
XT f(x)

]
, where XT =[

1 x . . . xm−1
]
, Y T =

[
f(b) f (1)(b) . . . f (m−1)(b)

]
by ([1], p. 417) asserts

that

detB = −XT · adj W · Y + f(x) det W.(2.5)

It is obvious that detW =
m−1∏
k=0

k! �= 0, so that W is a invertible matrix and its inverse is

W−1 =
1

detW
adj W.(2.6)

From (2.3), we get
1

detW
adj W · Y = C.(2.7)

Multiplied (2.7) both sides on the left side by XT , we get

XT 1
detW

adj W · Y = XT C = r(x).

Therefore

r(x) = XT 1
detW

adj W · Y.(2.8)

From (2.5) and (2.8), we have

r(x) = f(x) − detB

detW
.

We need the following result concerning a special remainder theorem.

Theorem 2.3. If f(x) = a0 + a1x + . . . + anxn and g(x) = (x − b)m are polynomials in
F [x], where an �= 0, m ≤ n, then the remainder on dividing f(x) by g(x) is

r(x) =
m−1∑
i=0

(x − b)if (i)(b)
i!

.(2.9)

Proof. The theorem can be proved by mathematical induction on m, we define f (0)(b) =
f(b).

For m = 1, it is well known by “Remainder Theorem” asserts that the remainder r(x) =
f(b), thus (2.9) is true.

Suppose that (2.9) is true for all k < m. We must show that it is true for m. From
Lemma 2.2, calculate the determinant of the matrix B of order m+1 as the following. Since

B =
[

W Y
XT f(x)

]
=

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

1 b b2 . . . bm−1 f (0)(b)
0 1 2b . . . (m − 1)bm−2 f (1)(b)
0 0 2! . . . (m − 1)(m − 2)bm−3 f (2)(b)
...

...
...

. . .
...

...
0 0 0 . . . (m − 1)! f (m−1)(b)
1 x x2 . . . xm−1 f(x)

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

,
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we apply the elementary column operations on detB by multiplying −b to the (j − 1)th

column and then adds to the jth column j = 2, 3, . . . , m − 1, and multiplying −f (i)(b),
i = 0, 1, . . . , m − 1 to the 1st column and then add to the last column and then expanding
the determinant on the first row. In each step we reduce a common factor in every row out
of the determinant, after m-steps we have

detB =

0!
1!
2!
...

(m − 1)!
(x − b)m−1

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣
{

f(x)
(x − b)m

−
m−1∑
i=0

f (i)(b)
i!(x − b)m−i

}

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣
= 0!1!2! . . . (m − 1)!(x − b)m

{
f(x)

(x − b)m
−

m−1∑
i=0

f (i)(b)
i!(x − b)m−i

}

= (
m−1∏
k=0

k!)(x − b)m

{
f(x)

(x − b)m
−

m−1∑
i=0

f (i)(b)
i!(x − b)m−i

}

=
m−1∏
k=0

k!

{
f(x) − (x − b)m

m−1∑
i=0

f (i)(b)
i!(x − b)m−i

}
.

By (2.4), we see that

r(x) = f(x) − 1
detW

detB

= f(x) − 1
m−1∏
k=0

k!

m−1∏
k=0

k!

{
f(x) − (x − b)m

m−1∑
i=0

f (i)(b)
i!(x − b)m−i

}

=
m−1∑
i=0

(x − b)mf (i)(b)
i!(x − b)m−i

.

Therefore we obtain at once the formula (2.9).

Lemma 2.4 (Taylor’s Polynomials). If f(x) is a polynomial of degree n in F [x], and b ∈ F
then there is a unique representation

f(x) = c0 + c1(x − b) + c2(x − b)2 + . . . + cn(x − b)n(2.10)

with coefficient ci ∈ F, i = 0, 1, 2, . . . , n.

Proof. In the polynomial ring F [x], it is well known that, if f(x), g(x) ∈ F [x], then there is
a unique q(x) ∈ F [x] and a unique r(x) ∈ F [x] such that

f(x) = q(x)g(x) + r(x), whenever r(x) = 0 or deg r(x) < deg g(x).

Dividing f(x) by g(x) = x− b, we obtain the unique quotient q1(x) in F [x] of degree n− 1,
and the unique remainder is c0 ∈ F such that

f(x) = (x − b)q1(x) + c0.

Similarly, we have

q1(x) = (x − b)q2(x) + c1.
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The process can be continued through n − 2 more stages to yield

qn−2(x) = (x − b)qn−1(x) + cn−2

qn−1(x) = (x − b)qn(x) + cn−1.

Here qn(x) is just a polynomial of degree 0, so we can write

qn(x) = cn.

By combining these equalities, we obtain the formula

f(x) = c0 + c1(x − b) + c2(x − b)2 + . . . + cn(x − b)n.

The uniqueness of ci ∈ F , i = 1, 2, . . . , n was shown in each step.

Theorem 2.5. If f(x) = a0 + a1x + . . . + anxn and g(x) = (x− b)m where an �= 0, m < n,
are polynomials in F [x], then the quotient on dividing f(x) by g(x) is

q(x) = an(x − b)n−m +
n−m−1∑

i=0

f (m+i)(b)
(m + i)!

(x − b)i.(2.11)

Proof. We extend g(x) to g1(x) by g1(x) = g(x)(x − b)n−m. That is g1(x) = (x − b)n.
Theorem 2.3 asserts that the remainder on dividing f(x) by g1(x) is

r1(x) =
n−1∑
i=0

(x − b)if (i)(b)
i!

.(2.12)

From (2.10), we have a unique representation

f(x) = c0 + c1(x − b) + c2(x − b)2 + . . . + cm−1(x − b)m−1 + cm(x − b)m + . . . + cn(x − b)n.

(2.13)

We see that the leading coefficient of (2.13) is cn and f(x) = a0 + a1x + . . . + anxn, by
equating the coefficient, we get

cn = an.(2.14)

The equation (2.13) becomes

f(x) = c0 + c1(x − b) + c2(x − b)2 + . . . + cm−1(x − b)m−1

+ cm(x − b)m + cm+1(x − b)m+1 + . . . + cn−1(x − b)n−1 + an(x − b)n.

(2.15)

Rearranging (2.15) and grouping, we get

f(x) = an(x − b)n +
{
c0 + c1(x − b) + c2(x − b)2 + . . . + cn−1(x − b)n−1

}
˜̃ = ang1(x) + r1(x),

where r1(x) = c0 + c1(x − b) + c2(x − b)2 + . . . + cn−1(x − b)n−1. Then, the uniqueness of
remainder r1(x), from (2.12), equating the coefficients of r1(x) we obtain

ci =
f (i)(b)

i!
, i = 0, 1, 2, . . . , n − 1.(2.16)

Rearranging (2.15) again and regrouping, we have

f(x) =
{
cm(x − b)m + cm+1(x − b)m+1 + . . . + cn−1(x − b)n−1 + an(x − b)n

}
+

{
c0 + c1(x − b) + c2(x − b)2 + . . . + cm−1(x − b)m−1

}
=

{
cm + cm+1(x − b) + . . . + cn−1(x − b)n−m−1 + an(x − b)n−m

}
(x − b)m

+
{
c0 + c1(x − b) + c2(x − b)2 + . . . + cm−1(x − b)m−1

}
= q(x)g(x) + r(x),
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where

r(x) = c0 + c1(x − b) + c2(x − b)2 + . . . + cm−1(x − b)m−1,(2.17)

and
q(x) = cm + cm+1(x − b) + . . . + cn−1(x − b)n−m−1 + an(x − b)n−m

= an(x − b)n−m +
n−m−1∑

i=0

cm+i(x − b)i.
(2.18)

Replacing all ci in equation (2.18) by (2.16), we obtain at once the formula states in
(2.11), that is

q(x) = an(x − b)n−m +
n−m−1∑

i=0

f (m+i)(b)
(m + i)!

(x − b)i.

Remark, in above theorem if m = n, it is easy to see that q(x) = an.

The well known “Remainder Theorem” asserts that the remainder on dividing f(x) by
x − b is f(b), now we have the following corollary is called “Quotient Theorem”.

Corollary 2.6 (Quotient Theorem). If f(x) = a0 + a1x + . . . + anxn and g(x) = x − b
where an �= 0 are polynomials in F [x], then the quotient on dividing f(x) by x − b is

q(x) = an(x − b)n−1 +
n−2∑
i=0

f (i+1)(b)
(i + 1)!

(x − b)i.

Proof. From Theorem 2.5, we replace m by 1, to obtain

q(x) = an(x − b)n−1 +
n−2∑
i=0

f (i+1)(b)
(i + 1)!

(x − b)i.

Resulting polynomials can be evaluated efficiently using Horner’s Rule, from (2.17),

r(x) = c0 + c1(x − b) + c2(x − b)2 + . . . + cm−1(x − b)m−1

= c0 + (x − b)(c1 + (x − b)(c2 + . . . + (x − b)(cm−1) . . . )),

it is clear that, (see [2], p. 84) this algorithm required just m − 1 multiplications and m
additions and/or subtractions.

From (2.18),

q(x) = cm + cm+1(x − b) + . . . + cn−1(x − b)n−m−1 + an(x − b)n−m

= cm + (x − b)(cm+1 + . . . + (x − b)(cn−1 + (x − b)(an)) . . . ).

By this method ([3], and [5]), the remainder and the quotient without the renumbering is
about half as expensive. This is quite efficient in computational cost.

The classical Taylor expansion of a smooth function in terms of a polynomial, (see [2] p.
15) asserts that, if f(x) ∈ Cn[a, b] there exists a ≤ ξi ≤ b such that

f(x) =
n−1∑
j=0

f (j)(a)(x − a)j

j!
+

f (n)(ξi)(x − a)n

n!
,

where f (j)(a) is the jth derivatives of f(x) at x = a. The proof uses integrating by parts
m−1 times, and the remainder term is obtained by using the integral mean value theorem.

From Lemma 2.4 and (2.16) we obtain the “Taylor expansion” for any polynomial f(x) ∈
F [x].
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Corollary 2.7 (Taylor Expansion). If f(x) = a0 +a1x+a2x2 + . . .+anxn is a polynomials
of degree n in F [x], and b ∈ F then there is a unique representation

f(x) =
f (0)(b)

0!
+

f (1)(b)
1!

(x − b) + . . . +
f (n−1)(b)

n − 1!
(x − b)n−1 + an(x − b)n

=
n−1∑
j=0

f (j)(a)(x − a)j

j!
+ an(x − a)n.

Proof. Replacing all ci, i = 0, 1, . . . , n−1 from (2.16) into the equation (2.10), and cn = an

from (2.14).

3. A Hermite’s Interpolation Formula

Theorem 3.1 (Hermite’s Interpolation Formula). Let f(x) = a0 + a1x + . . . + anxn be a
polynomial over a field F of degree n, and mi, i = 1, 2, . . . , s be positive integers such that
n ≤ m1 + m2 + . . . + ms = m, and let b1, b2, . . . , bs be s distinct elements in F . Then there
is a unique representation

f(x) = r0(x) + r1(x)(x − b1)m1 + r2(x)(x − b1)m1(x − b2)m2 + . . .
+ rs(x)(x − b1)m1(x − b2)m2 . . . (x − bs)ms ,

(3.1)

where rj(x) =
mj+1−1∑

i=0

(x−bj+1)
iq

(i)
j (bj+1)

i! , j = 0, 1, 2, . . . , k − 1.

Proof. Dividing (x− b1)m1 into f(x) there exist the quotient q1(x) ∈ F [x] of degree n−m1,
and the remainder is r0(x) ∈ F [x]

f(x) = (x − b1)m1q1(x) + r0(x),

we denote f(x) = q0(x), from (2.9) and (2.11), then r0(x) =
m1−1∑
i=0

(x−b1)
iq

(i)
0 (b1)

i! , and q1(x) =

an(x − b1)n−m1 +
n−m1−1∑

i=0

q
(m1+i)
0 (b1)
(m1+i)! (x − b1)i.

Therefore the leading coefficient of q1(x) is an.
From (x − b2)m2 and q2(x), obtain similarly

q1(x) = (x − b2)m2q2(x) + r1(x),

where deg q1(x) = n − m1, by (2.9), r1(x) =
m2−1∑
i=0

(x−b2)
iq

(i)
1 (b2)

i! and by (2.11), q2(x) =

an(x − b2)n−m1−m2 +
n−m1−m2−1∑

i=0

q
(m2+i)
1 (b2)
(m2+i)! (x − b2)i.

Since n ≤ m there is some positive integer k, 1 ≤ k ≤ s such that the process can be
continued through k − 2 stages to yield

qk−2(x) = (x − bk−1)mk−1qk−1(x) + rk−2(x)
qk−1(x) = (x − bk)mkqk(x) + rk−1(x),

where rj(x) =
mj+1−1∑

i=0

(x−bj+1)iq
(i)
j (bj+1)

i! , j = 0, 1, 2, . . . , k−1 and qj(x) = an(x−bj)n−m1−...−mj

+
n−m1−...−mj−1∑

i=0

q
(mj+i)
j−1 (bj)

(mj+i)! (x − bj)i, j = 1, 2, . . . , k. Here qk(x) is just a polynomial of de-

gree less than mk, the qk(x) is the remainder on dividing qk−1(x) by (x− bk)mk , so we can
write

qk(x) = rk(x)
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and define rk+1(x) = . . . = rs(x) = 0.
The polynomials r0(x), r1(x), . . . , rs(x) are all in F [x]. By combining these equalities,

we obtain at once the formula (3.1) stated.
The uniqueness of ri(x), i = 1, 2, . . . , s, was shown by the uniqueness of division algorithm

in the Euclidean domain F [x] in each step.

Corollary 3.2 (Newton’s Interpolation Formula). If f(x) is a polynomial of degree n ≤ m,
and b1, b2, . . . , bm are m distinct elements in the field F , then there is a unique representa-
tion

f(x) = c0 + c1(x − b1) + c2(x − b1)(x − b2) + . . . + cm(x − b1)(x − b2) . . . (x − bm)

with coefficient ci in F , i = 0, 1, . . . , m.

Proof. This Corollary is a special case of Theorem 3.1, when mi = 1 for all i = 1, 2, . . . , s,
and s = m. Then we have r0(x) = c0, r1(x) = c1, . . . , rm(x) = cm, for all c0, c1, . . . , cm ∈
F .

4. Main Results

The author [4] was proved the generalized quotient theorem and the generalized re-
mainder theorem when the dividend is f(x) = a0 + a1x + . . . + anxn, and the divisor is
g(x) = bmxm − bm−1x

m−1 − . . . − b1x − b0 are polynomials in F [x].
Now if the field F is an algebraically closed field of the divisor polynomial g(x) then it

is factored completely over F , let g(x) = (x − b1)m1(x − b2)m2 . . . (x − bs)ms then we have
another form of “Generalized Quotient and Remainder Theorem” this is an application of
the Hermite’s Interpolation Formula. It is sufficient to consider divisors which are monic
polynomial, because in the another case it is obvious by Lemma 2.1.

Theorem 4.1 (Generalized Quotient and Remainder Theorem). If f(x) = a0+a1x+ . . .+
anxn, and g(x) = (x − b1)m1(x − b2)m2 . . . (x − bs)ms are polynomials in F [x], where
b1, b2, . . . , bs are all nonzero distinct elements of F , and deg g(x) = m ≤ n = deg f(x),
then the quotient and the remainder on dividing f(x) by g(x) is

q(x) = rs(x) + anxn−m and r(x) = r0(x) +
s−1∑
j=1

rj(x)
j∏

i=1

(x − bi)mi ,(4.1)

respectively, where rj(x) =
mj+1−1∑

i=0

(x−bj+1)iq
(i)
j (bj+1)

i! , j = 0, 1, 2, . . . , s.

Proof. Since b1, b2, . . . , bs are all nonzero distinct elements of F . Let g1(x) = (x−b1)m1(x−
b2)m2 . . . (x− bs)ms(x− 0)ms+1 , where ms+1 = n− m, we can apply by the formula (2.18),
to obtain

f(x) = r0(x) + r1(x)(x − b1)m1 + r2(x)(x − b1)m1(x − b2)m2 + . . .
+ rs(x)(x − b1)m1(x − b2)m2 . . . (x − bs)ms

+ rs+1(x)(x − b1)m1(x − b2)m2 . . . (x − bs)ms(x − 0)ms+1 ,
(4.2)

where rj(x) =
mj+1−1∑

i=0

(x−bj+1)iq
(i)
j (bj+1)

i! j = 0, 1, 2, . . . , s, and qj(x) = an(x−bj)n−m1−...−mj +

n−m1−...−mj−1∑
i=0

q
(mj+i)
j−1 (bj)

(mj+i)! (x − bj)i, j = 1, 2, . . . , s + 1. Thus the leading coefficient of f(x)

is rs+1(x) = an.
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Rearranging (4.2) and grouping, we have

f(x) = {rs(x)(x − b1)m1(x − b2)m2 . . . (x − bs)ms

+ an(x − b1)m1(x − b2)m2 . . . (x − bs)ms(x − 0)ms+1}
+ {r0(x) + r1(x)(x − b1)m1 + . . .
+ rs−1(x)(x − b1)m1(x − b2)m2 . . . (x − bs)ms−1}

= {rs(x) + anxms+1}(x − b1)m1(x − b2)m2 . . . (x − bs)ms

+ {r0(x) + r1(x)
1∏

i=1

(x − bi)mi + . . . + rs−1(x)
s−1∏
i=1

(x − bi)mi}

= {rs(x) + anxn−m}(x − b1)m1(x − b2)m2 . . . (x − bs)ms

+ {r0(x) +
s−1∑
j=1

rj(x)
j∏

i=1

(x − bi)mi}.

If the divisor g(x) = (x− b1)m1(x− b2)m2 . . . (x− bs)ms has some zero roots, bs = 0 say,
then the formula of quotient on dividing f(x) by g(x) in (4.1) is changed to q(x) = anxn−m,
but the formula of the remainder is unchanged, as follows.

Corollary 4.2. If f(x) = a0+a1x+. . .+anxn, and g(x) = (x−b1)m1(x−b2)m2 . . . (x−bs)ms

are polynomials in F [x], where b1, b2, . . . , bs are all distinct elements of F , bs = 0, say, and
deg g(x) = m ≤ n = deg f(x), then the quotient and the remainder on dividing f(x) by g(x)
is

q(x) = anxn−m+ms and r(x) = r0(x) +
s−1∑
j=1

rj(x)
j∏

i=1

(x − bi)mi(4.3)

respectively, where rj(x) =
mj+1−1∑

i=0

(x−bj+1)iq
(i)
j (bj+1)

i! , j = 0, 1, 2, . . . , s − 1.

Proof. Let g1(x) = (x − b1)m1(x − b2)m2 . . . (x − bs)ms(x − 0)ms+1 , where ms+1 = n − m,
where bs = 0, write g1(x) = (x−b1)m1(x−b2)m2 . . . (x−bs)ms+n−m applying by the formula
(3.1), we have

f(x) = r0(x) + r1(x)(x − b1)m1 + r2(x)(x − b1)m1(x − b2)m2 + . . .
+ rs(x)(x − b1)m1(x − b2)m2 . . . (x − bs)ms+n−m.

(4.4)

where rj(x) =
mj+1−1∑

i=0

(x−bj+1)iq
(i)
j (bj+1)

i! j = 0, 1, 2, . . . , s−1, and qj(x) = an(x−bj)n−m1−...−mj +

n−m1−...−mj−1∑
i=0

q
(mj+i)
j−1 (bj)

(mj+i)! (x − bj)i, j = 1, 2, . . . , s.

Consider, in this case the leading coefficient of f(x) is rs(x) = an. Then equation (4.4)
become

f(x) =
{
anxn−m+ms

}
(x − b1)m1 . . . (x − bs)ms +

⎧⎨
⎩r0(x) +

s−1∑
j=1

rj(x)
j∏

i=1

(x − bi)mi

⎫⎬
⎭ ,

we obtain at once the formula (4.3).



192 WIWAT WANICHARPICHAT

References

[1] J. W. Archbold, Algebra, 4th ed., Publishing Limited, London, 1977.
[2] L. L. Schumaker, Spline Functions: Basic Theory, Krieger Publishing Company, Florida, 1993.
[3] H. Spath, One Spline Interpolation Algroithms, A K Peters. Ltd, 1995.
[4] W. Wanicharpichat, Hessenberg-Toeplitz Matrices with Generalized Quotient and Remainder Theo-

rems, to appear.
[5] W. Werner, Polynomial Interpolation: Lagrange versus Newton, Mathematics of computaion 43 (1984),

205-217.

Department of Mathematics, Faculty of Science, Naresuan University, Phitsanulok, 65000,
Thailand

E-mail address: wiwatw@nu.ac.th


