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Abstract. The major objective of this article is a refinement of treatments of the mu-
tual relationship between two notions of “sequential computability” of a function which
is possibly Euclidean-discontinuous, one using limiting recursion and one using effective
uniformity. We also speculate on these methods from a mathematician’s viewpoint.

1. Introduction

The objective of this article is to distill the general situation in which two methods
of computing some Euclidean-discontinuous functions become equivalent. Those are the
methods developed respectively on “effective uniformity” and on “limiting recursion.” In
so doing, we speculate on the two notions of “sequential computability.”

The domain of our discourse will be the real line or a subinterval of the real line as well
as some (possibly Euclidean-discontinuous) functions on it.

It has been an old practice to review mathematics from the algorithmic viewpoints. The
underlying method is the elementary theory of recursive functions (or its equivalents). On
the continuum, a computable object is approximated by a recursive sequence of rational
numbers or a recursive sequence from a discrete structure with a recursive modulus of
convergence (effective approximation).

Investigation of computability on the continuum is based on the “computable sequence
of reals.” Computability of real functions was originally defined for continuous functions
(cf. Chapter 0 in [4], for example). A continuous real function is called computable if
it maps any computable sequence of real numbers to a computable sequence (sequential
computability), and it has a recursive modulus of continuity (effective continuity). The
sequential computability is required for the following reason. In order to claim that a
function be computable, one must have a general algorithm to compute the value of that
function for any computable real number. In order to secure it, it is known to be sufficient
to assume the sequential computability.

One might expect that one could compute the values of a function without the assumption
of continuity, but it is not so. A simple function such as the floor function [x] (called also
the Gaußian function), which jumps at each integer but is continuous (constant) on the
interval of two adjacent integers, does not preserve sequential computability ([10]).

Such a problem has been discussed in [10], [8], [11]. In fact, we, human beings, easily
compute such a function at any (computable) point. We know that, for any integer n, [x]
satisfies the requirements for the computability of a continuous function on the interval
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[n, n + 1) (and the value is n). It is all too easy! There are, however, many Euclidean-
discontinuous functions which are far more complex than [x] and still allow us to somehow
“compute” their values.

We wished to express such an intellectual activity (in computing the values of a dis-
continuous function) of the human mind in a mathematical language, and have proposed
two such treatments: one expressing such a computation in terms of “limiting recursive
functions” of natural numbers ([10], [8]), and one in terms of “changing topology” of the
domain of a function, thus regarding a Euclidean-discontinuous function like [x] as continu-
ous in the new topology so that we can conceive the computability of a function as that of
a continuous function ([6]). Each of them can be interpreted as expressing a certain human
intellectual activity for a same purpose from different viewpoints.

Both methods have been well studied and applied to many examples of Euclidean-
discontinuous functions ([7], [10], [12], [14], [16]). Analyzing these individual treatments,
we have pinpointed a general framework under which two notions of sequential computabil-
ity “nearly” coincide. The framework will be introduced as the assumption [A] and the
condition [C] in Section 3.

It is notable that “near equivalence” of the two notions holds notwithstanding that
the two approaches are methodologically quite different. This has forced the authors to
speculate on the meanings of the two approaches. As for the limiting recursion method, we
have already discussed its significance and problems in [8]. Here we will put emphasis on
the contrast between the two methods.

To us, the method of uniform spaces seems most natural and intuitive. It represents the
freedom and flexibility that our mind enjoys.

We present very briefly in Section 2 some basics of computability on the continuum. No
mathematical details will be supplied except for what is necessary to our present purpose.
For basics of computability in analysis, we refer the reader to [4] and [15].

Our interest lies in the real function which is Euclidean-discontinuous but is fairly tame
so that one can attribute to it some kind of computability property. We will hence set
up a framework to meet our purpose in Section 3. Two (extended) notions of “sequential
computability” of a function in our framework are then formulated in Section 4.

Our main results (Theorems 1 and 2), expressing a close relationship of the two notions
of sequential computability in our general framework, are proved in Section 5 under a set
of premises (D) on a function.

An example of computation in the respective method according to our framework is
explained in Section 6. The article is concluded with a speculation on limiting recursion
versus effective uniformity in Section 7.

A similar discussion is also seen in [9]. We have also worked on a sequence of uniformities
and its limit; some mathematical results as well as the significance of such a theory are seen
in [11].

2. Preliminaries

We will list some of the basic notions and notations which are just necessary to our
discussion. In the following, m, n, p, q, k, · · · will denote positive (or non-negative) integers.

Definition 2.1. (Computable real sequence) (i) A sequence of real numbers {xm} is called
E-computable (computable in the Euclidean topology) if the following hold ([4]).

(1) There is a recursive (double) sequence of rational numbers {rmn} which approximates
{xm} .
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(2) There is a recursive modulus of convergence of {rmn} to {xm}, say β, that is,

n ≥ β(m, p) → |xm − rmn| <
1
2p

.

In such a case, and in any similar situation, we say that {rmn} effectively approximates
(converges to) {xm}.

(ii) A number-theoretic function η is called after Gold [2] limiting recursive if it is defined
to be the limit of a recursive function, that is, there is a recursive function h satisfying
η(p) = limn h(p, n), presuming that the limit exists. (In fact, a function which is recursive
in a limiting recursive function will also be called limiting recursive. )

(iii) If in (2) of (i) above the recursive β be replaced by a limiting recursive η, then we
say that {xm} is weakly E-computable (by {rmn} and η).

We will define the effective uniform topology on an arbitrary non-empty set X , although
the universe of our discourse will be the set of real numbers R or its subintervals. (We have
employed the definition of (classical) uniformity in [3].)

Definition 2.2. (Effective uniformity:[6]) U = {Un} is called an effective uniformity on X
if Un is a map from X to the powerset of X for each n, and there are recursive functions
α1, α2, α3 which satisfy the following.

∀x ∈ X. ∩n Un(x) = {x}.
∀n, m∀x ∈ X.Uα1(n,m)(x) ⊂ Un(x) ∩ Um(x).

∀n∀x, y ∈ X.x ∈ Uα2(n)(y) → y ∈ Un(x).

∀n∀x, y, z ∈ X.x ∈ Uα3(n)(y) ∧ y ∈ Uα3(n)(z) → x ∈ Un(z).

It is known that 〈X, {Un}〉 is a (uniform) topological space with {Un(x)} as the system
of fundamental neighborhoods. We will call 〈X, {Un}〉 an effective uniform space.

Definition 2.3. (Effective U-convergence:[6]) A double sequence {rmn} from X is said
to effectively U-converge to a sequence {xm} if there is a recursive function γ satisfying
∀m∀n∀k ≥ γ(m,n).rmk ∈ Un(xm). We also say that {xm} is the effective U-limit of {rmn}
with modulus of convergence γ.

Note If in Definition 2.3 γ be replaced by a limiting recursive function η, then we say that
{rmn} weakly U-converges to {xm}.
Definition 2.4. (U-computable sequences:[6]) (1) A family of sequences from X , say S,
is called a U-computability structure if it is closed under recursive re-enumeration and
U-effective convergence.

(2) A sequence in S is called U-computable.
(3) An element x of X is called U-computable if {x, x, · · · } is in S.

3. Framework

We will here set up a framework in order to attain our purpose. We will first place an
overall assumption.

Assumption [A] We work in an effective uniform space on the set of real numbers R,
U = 〈R, {Un}〉, and assume the following.

A-1 A recursive sequence of rational numbers is U-computable.
A-2 E-computable numbers and U-computable numbers coincide.
A-3 Every U-computable sequence is E-computable.
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Note It should be noted that the converse of A-3 is not assumed. In fact, the converse does
not hold in any significant case, and that is the essential point of changing the topology.

We further assume a condition on U , denoted by [C].

Condition [C] on U Given an E-computable sequence {xm}, there is a U- computable
sequence {zmp} and a limiting recursive function ν such that {xm} is weakly U-computable
by {zmp} and ν, that is, {zmp} weakly U-converges to {xm} (cf. Definition 2.3), or

∀m, n∀p ≥ ν(m,n).zmp ∈ Un(xm).(1)

We may say that {zmp} and ν are associated with {xm}.
Note We have employed the term “weakly U-computable” according to [14], in which the
term is used in the context of “weakly Fine-computable.”

Proposition 3.1. If {xm} is U-computable, then ν can be recursive, since zmp = xm will
do.

Definition 3.1. (Framework) The framework of our subsequent study of real functions
consists of [A] and [C].

Note (i) The condition [C] signifies that, although an E-computable sequence may not be
U-computable, it is U-computable in a weak sense.

(ii) All the uniform spaces on R we have dealt with satisfy the assumption [A] and the
condition [C] ([6], [7], [11], [12], [14]), and hence they represent natural requirements.

4. Two notions of sequential computability of a function

We here define two notions of sequential computability of a real function similarly to
[12]. Although the definitions are stated for a function whose domain is the whole real line,
the definitions can be easily modified to any interval with computable end-points. We will
henceforth assume the Framework in Definition 3.1.

Definition 4.1. (Sequential computability of a function) (i) (L-sequential computability)
A real function f is called L-sequentially computable if, for any E-computable sequence of
real numbers {xm}, which is weakly U-computable by {zmp} and ν (cf. [C]), the sequence of
function values {f (xm)} is weakly E-computable (cf. (iii) of Definition 2.1) with a recursive
sequence of rational numbers {smn} and a function η which is recursive in ν.

(ii) (U-sequential computability) f is called U-sequentially computable if, for any U-
computable sequence of real numbers {xm}, the sequence of function values {f (xm)} is
E-computable.

Note In fact, L-sequential computability of a function f should be defined independent of
any uniformity. With each concrete example we have worked on, it was so defined, namely,
a limiting modulus of convergence is defined independent of any uniformity, and later some
conditions corresponding to those in the framework have been demonstrated. In an abstract
setting, however, we must set those conditions as assumptions.

5. Mutual relationship of the two notions

We will prove the “near” equivalence of two notions of sequential computability of a real
function as has been defined in Definition 4.1 in the general framework of Section 3. The
proof is a generalized version of the corresponding ones in [12] and [14].

Theorem 1. (From L-sequential computability to U-sequential computability) If f is L-
sequentially computable, then f is U-sequentially computable.
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Proof Suppose f is L-sequentially computable, and let {xm} be U-computable. By [A],
{xm} is E-computable, and hence, by [C], a limiting recursive ν is associated with it. So,
by L-sequential computability, there is a recursive sequence of rational numbers {tmp} and
a function η which is recursive in ν satisfying

∀m, p∀q ≥ η(m, p).|f(xm) − tmq| <
1
2p

.

By virtue of Proposition 3.1, one can take a recursive ν for a U-computable sequence {xm},
and so we can take a recursive η so that {f (xm)} is E-computable by {tmq} and η, and
hence f is U-sequentially computable.

Note Notice that for Theorem 1 we do not need to assume any kind of continuity on the
function f . The converse of Theorem 1 will be proved under “effective U-continuity” as
well as some supplementary conditions on the space. Effective U-continuity can be found
also in [12] and [14].

Definition 5.1. (Effective U-continuity) f is called effectively U-continuous if there is a
U-computable sequence {ei} and a recursive function γ which satisfy the following for each
p.

∪iUγ(i,p)(ei) = R; ∀i, x.x ∈ Uγ(i,p)(ei) → |f(x) − f(ei)| <
1
2p

.(2)

Condition [D] on a function f :
D-1: f is effectively U-continuous with {ei} and γ as in Definition 5.1.
D-2: For each E-computable sequence {xm}, with which ν is associated, there is a

function ι, which is recursive in ν and satisfies, for each p,

∀m.xm ∈ Uγ(ι(m,p),p)(eι(m,p)).

D-3: For each E-computable sequence {xm} with ν as above , there is a function ε which
is recursive in ν and satisfies

∀i, m, n.xm ∈ Un(ei) → Uε(m,i,n)(xm) ⊂ Un(ei).

Theorem 2. (From U-sequential computability to L-sequential computability) Assume
that the condition [D] holds for a function f . In particular, f is effectively U-continuous
(cf. D-1). If f is U-sequentially computable, then f is L-sequentially computable.

Proof Suppose f is U-sequentially computable.
Let {xm} be E-computable, and let p be a positive integer.

(i) By [C], there are a U-computable sequence {zmq} and a limiting recursive function ν
such that

∀m, n∀q ≥ ν(m,n).zmq ∈ Un(xm)
Since f is U-sequentially computable and {zmp} is U-computable, {f (zmp)} is E-computable.

From this follows:
(ii) There are a recursive sequence of rational numbers {smql} and a recursive function β
so that

∀n, m, q∀l ≥ β(m, q, n).|f(zmq) − smql| <
1
2n

(iii) Put tmq := smqβ(m,q,q).
(iv) By D-2, there is an ι, recursive in ν, such that xm ∈ Uγ(i,p+2)(ei) holds, where
i = ι(m,p + 2).
(v) From (iv) and D-3, there is a function ε which is recursive in ν so that with n =
γ(i, p + 2),

Uε(m,i,γ(i,p+2))(xm) ⊂ Uγ(i,p+2)(ei).
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For short, put ε0(m, i, p) = ε(m, i, γ(i, p + 2)).
(vi) In (i), put n = ε0(m, i, p) to obtain

q ≥ ν(m, ε0(m, i, p)) → zmq ∈ Uε0(m,i,p)(xm).

(vii) From (v) and (vi), we obtain

q ≥ ν(m, ε0(m, i, p)) → zmq ∈ Uγ(i,p+2)(ei).

(viii) From D-1 with x = zmq and p = p + 2 in the formula (2) of Definition 5.1, we obtain

zmq ∈ Uγ(i,p+2)(ei) → |f(zmq) − f(ei)| <
1

2p+2
.

(ix) From (vii) and (viii), follows

q ≥ ν(m, ε0(m, i, p)) → |f(zmq) − f(ei)| <
1

2p+2
.

(x) In D-1, put x = xm and p = p + 2. Since by (iv) xm ∈ Uγ(i,p+2)(ei), it follows

|f(xm) − f(ei)| <
1

2p+2
.

(xi) From (ii) and (iii) with n = q and l = β(m, q, q), we have

|f(zmq) − smqβ(m,q,q)| <
1
2q

or

|f(zmq) − tmq| <
1
2q

.

(xii) Define
δ(m, p) := max(ν(m, ε0(m, i, p)), p + 2),

and notice that

q ≥ δ(m, p) → q ≥ p + 2 → 1
2q

≤ 1
2p+2

,

q ≥ δ(m, p) → q ≥ ν(m, ε0(m, i, p)).

(xiii) Summing up (ix)∼(xii), we obtain, presuming that q ≥ δ(m, p),

|f(xm) − tmq| ≤ |f(xm) − f(ei)| + |f(ei) − f(zmq)| + |f(zmq) − tmq|

<
3

2p+2
<

1
2p

.

{tmq} is a recursive sequence of rational numbers. Since i = ι(m,p) is recursive in ν, so
is δ(m, p). (xiii) therefore proves that {f (xm)} is weakly E-computable by {tmq} and δ.

Note 1) Recall that γ is recursive and ι and ε are recursive in ν. So, δ is obtained by
repeated substitutions of ν. It is known, and is explicitly explained in [14] that the family
of limiting recursive functions is closed under substitutions. (This does not mean that it is
closed with respect to repeated applications of the limit operation.)

2) The conditions in D-2 and D-3 may appear somewhat arbitrary. However, those
properties in fact hold for the examples in preceding works (cf. [12],[14]). For example, in
[14], ε(m, i, n) = n for D-3. In [12], the theorem holds without even assuming that f be
U-continuous.
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6. An example

There are many examples of Euclidean discontinuous functions whose sequential com-
putabilities have been successfully treated; among them are the floor function and the
Rademacher functions ([6], [10], [16]) as well as Brattka’s Fine continuous function ([1]).
Brattka’s function is an example of a Fine continuous but not locally uniformly Fine con-
tinuous function.

Here we explain how the requirements of our framework are met and how sequential
computability can be established with an easy example of the floor function [x], by partly
reviving the corresponding content in [10].

Recall that the value [x] is an integer, a computable number, for any real number x.
There is thus no sense in questioning about the computability of the function value at a
single point x. It is computable. With a sequence of values, it takes on a new aspect.

In [10], an E-computable sequence of real numbers {bm} such that the sequence {[bm]}
is not E-computable has been constructed. It is defined as follows. Let a be a recursive
injection whose range is not recursive.

bm =
{

1 − 1
2l if m = a(l) for some (unique) l,

1 otherwise.

{bm} is E-computable, since it is effectively approximated by the recursive sequence of
rational numbers {rmk} defined below.

rmk =
{

1 − 1
2l if m = a(l) for some l ≤ k,

1 otherwise.(3)

From the definition we have

[bm] =
{

0 if m = a(l) for some l,
1 otherwise.

If {[bm]} were E-computable, then the range of a would be recursive, yielding a contra-
diction. So, {[bm]} cannot be an E-computable sequence.

This counter-example assures us of the following fact: the floor function [x] does not
necessarily preserve E-sequential computability.

With the function [x], we associate a uniform space U = 〈R, {Un}〉 by mutually isolating
the half-open intervals [l, l + 1) for all integer l. Namely,

Un(x) = (x − 1
2n

, x +
1
2n

) ∩ [l, l + 1) if x ∈ [l, l + 1), n = 0, 1, 2, · · · .

It is easy to prove that U = 〈R, {Un}〉 forms an effective uniform space. (This uniformity
is different from that of [6] associated with the same function [x].)

The computability structure is defined by taking recursive sequences of rational numbers
and by adding the U-effective limits of recursive double sequences of rational numbers. Then
it follows immediately that the assumption [A] is satisfied.

Note The sequence {bm} defined above is not U-computable, for suppose {bm} were U-
computable. Then there would be a recursive sequence of rational numbers, say {smk}, and
a recursive function γ such that ∀k ≥ γ(m,n).smk ∈ Un(bm), with which holds

sm,γ(m,0) ∈ [0, 1) ↔ bm < 1 ↔ m ∈ range of a.

Since the left-hand side is decidable (recursive in m), so must be the right-hand side. But
then the range of the function a would be recursive, contradicting the property of a.

Proposition 6.1. An E-computable sequence of real numbers is weakly U-computable,
and hence the condition [C] holds.
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Proof We can prove the proposition in a manner similar to the corresponding proposition
in Section 3 of [14]. Suppose {xm} is E-computable with a recursive sequence of rational
numbers {rmp} and a recursive modulus of convergence α. It is known that these data
induce a recursive non-increasing sequence of rationals which effectively converges to {xm}.
So we might as well assume that {rmp} and α have such a property. We can then define
a recursive function κ(m, p) such that rmp ∈ [k, k + 1) with k = κ(m, p). κ(m, p) is non-
increasing and eventually constant with respect to p. If we put km = limp κ(m, p), then
xm ∈ [km, km + 1).

Define a recursive function ν0 as follows.

ν0(m, 1) = 1;

ν0(m, p + 1) = ν0(m, p) if κ(m, p + 1) = κ(m, p);

ν0(m, p + 1) = p + 1 if κ(m, p + 1) < κ(m, p);

Then ν0(m, p) is non-decreasing and becomes eventually constant. So, ν(m) = limp ν0(m, p)
is a limiting recursive function. Define

β(m,n) = max(α(m, n), ν(m)).

β is recursive in ν, hence is limiting recursive, and satisfies that |xm − rmp| < 1
2n and

rmp ∈ [km, km + 1) if p ≥ β(m,n), or rmp ∈ Un(xm), and hence {xm} is weakly E-
computable by {rmp} and β(m,n).

Note One must be careful in reading this proof. Although we have the formula xm ∈
[km, km + 1), we need not “compute” {km}. {km} is not involved in the construction of β.
Each km is used only in claiming that xm and rmp belong to the same half interval without
referring to any computation.

Corollary 1. For any E-computable sequence {xm}, there is a sequence of integers {jm}
which is recursive in ν (defined in the proof above) such that xm ∈ [jm, jm + 1).

Proof For the sequence of rational numbers {rmp} above, one can effectively determine
{qmp} so that rmp ∈ [qmp, qmp + 1). Since rmp ∈ Un(xm) if p ≥ β(m,n), we can take
jm = qm,β(m,0).

Note The fact that the sequence {bm} defined above is weakly U-computable can be
shown as follows (whose treatment is slightly different from the general construction in the
proposition). As for {zmk}, it suffices to take {rmk} in (3). Since this is a recursive sequence
of rational numbers, it is U-computable by A-1. Define a function h as follows.

h(m, k) = 1 if ∀l ≤ k.rml = 1;

h(m, k) = k0 + 1 if k0 is the least l ≤ k.rml < 1.

h is recursive, and it is easy to see that ν(m) = limk h(m, k) exists. ν(m) = 1 or = k0 + 1,
and ν serves as a limiting recursive modulus of convergence of {rmn} to {bm}.

Proposition 6.2. (Condition D for [x]) The floor function [x] satisfies the condition D.

Proof D-1: For the sequence {ei}, we can take {l}, the set of all integers. We will take l
itself as an index, instead of the i of ei in the general case (by extending relevant functions
accordingly). Put γ(l, p) = 0 (a constant function). Then x ∈ Uγ(l,p)(l) = U0(l) = [l, l + 1)
implies [x] − [l] = 0.

D-2: Let {xm} be an E-computable sequence. We can take jm in Corollary after Propo-
sition 6.1 as ι(m,p) for all p.
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D-3: Let {xm} and {jm} be as above. Evaluate a q = qm,n such that xm + 1
2q < jm + 1

2n .
Now put ε(m, i, n) = qmn if i = jm; = 1 otherwise. ε is recursive in ν, and it is obvious
that it satisfies the condition.

Proposition 6.3. (U-sequential computability of [x]) The function [x] is U- sequentially
computable.

Proof Suppose {xm} is U-computable. Then there are recursive {rmn} and α which
represent {xm}. For k ≥ α(m, 0), rmk ∈ U0(xm), that is, if xm ∈ [l, l + 1), then rmα(m,0) ∈
[l, l + 1) and hence [xm] = [rmα(m,0)] = l. Since {rmα(m,0)} is a recursive sequence of
rational numbers, {[rmα(m,0)]} is E-computable (a recursive sequence of integers), hence so
is {[xm]}.

From the fact that [A] is satisfied, Propositions 6.1, 6.2 and 6.3 and Theorem 2, we
obtain: [x] is L-sequentially computable.

Note 1) With this topology, Proposition 6.2, that is, the condition [D], is in fact not
necessary for the L- sequential computability of [x]. It can be proved without the condition
[D] due to the peculiarity of the uniformity U . The situation is similar to Theorem 3 of
[12]. We have proved Proposition 6.2 in order to show how the condition [D] holds for this
uniformity.

2) L-sequential computability of [x] has been directly shown in detail in Section 2 of
[10].

Now, an attempt of computing {[bm]} goes very roughly as follows (cf. [10],[8]). It holds
that 0 < bm < 2 for all m. In order to determine whether 0 < bm < 1 or bm ≥ 1, we define
a recursive sequence of rational numbers (integers as a matter of fact) {Nmp} as follows.

Nmp =
{

1 if rmα(m,p) ≥ 1 − 1
2p ,

0 if rmα(m,p) < 1 − 1
2p .(4)

So, {[bm]} is weakly computable by {Nmp} with a modulus of convergence which is recursive
in ν (cf. Proposition 6.1).

Remark We can define a metric d on R by putting

d(x, y) = |x − y| if x, y ∈ [l, l + 1) for some l;

d(x, y) = 1 otherwise.
It can be shown that 〈R, d〉 can be endowed with a computability structure and d is equiv-
alent with U with respect to effective convergence (cf. [5] and [13]). The floor function is a
computable function in this metric space.

7. Limiting recursion versus effective uniformity

The notion of L-sequential computability and that of U-sequential computability appear
mutually quite different. Let us see this with the example [x]. As has been mentioned
in 2) of Note after Proposition 6.3, L-sequential computability of [x] has been analyzed
in [10] in detail. Given an E-computable sequence {xm}, one attempts to compute the
values {[xm]} step by step, but one can obtain the value only after a complete process of
evaluation ad infinitum and with an observation of the entire process. The “computation
from the infinity” corresponds to accepting the limit of a recursive process.

On the other hand, with the uniform topology, one does not even attempt to compute
the function value for certain E-computable sequences such as {bm} in Section 6. For each
l, only the interval [l, l + 1) is in one’s sight, and one knows that there [x] = l.
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Considering these situations, the mathematical equivalence of two notions of sequential
computability of a function seems to need some speculations.

Let us first observe the limiting recursion method. Here one attempts to compute the
function values mechanically. The input values for a function are supplied with a recursive
sequence of rationals and a recursive modulus of convergence, but the outputs, viz. the
function values, are represented by a recursive sequence of rationals with a limiting recursive
modulus of convergence, and the result cannot be improved. This has been discussed in
[10] and [8] in detail.

The merit of this method lies in its simplicity. The only tool in need beyond the recur-
sive function is taking the limit of a recursive function. The function value at a point of
discontinuity is represented with a recursive sequence of rational numbers. At each step of
computation one is approaching the right value, and one knows that eventually one gets
the proper value, though not knowing how close we are to the value. This may be a bit
tantalizing if one wishes to know where one is now. It is, however, assuring and in a way
sufficient to know that one stands on the right track. It is along the straight extension of
the computation of continuous functions; only the speed of convergence is modulated by
limiting recursion instead of recursion. The idea is simple and easily understood. No extra
knowledge is required. This is its advantage. A disadvantage may be that it does not seem
to represent the mental activity of a mathematician computing the function value at a point
of discontinuity.

In the method of effective uniformity, with each function a uniform space in which it
becomes continuous is associated. The theory of computability structure in such a space
can be developed in a general setting, and a function is defined to be computable as a
continuous function in this topology. We can thus adhere to the computability problem
of a continuous function. Except for recursive functions, we do not need any special tool
beyond ordinary mathematical knowledge. For each instance of a function, we only need to
associate a uniformity by isolating the points of discontinuity or the intervals determined by
the points of discontinuity. This approach is also quite intuitive. The values of a function
in each interval (possibly consisting of a singleton) of continuity can be computed as in the
case of a Euclidean-continuous function.

In the effective uniformity method, it is important to notice that one can recognize
the points of discontinuity “intuitively.” In the case of [x], these are integers, and they
are the most obvious points that a human being can recognize on the real line. Consider
another example. Let τ denote the function which coincides with the tan function where
tan is defined, and takes the value 0 where tan is not defined. The computation of τ at a
point of discontinuity like π

2 , which should cause a problem in a mechanical computation,
is the easier part: the value is 0. Isolating the such points (and the computation of the
function values at them), though not a decidable procedure, is thus intuitively appealing.
The effective uniformity method thus describes the human mental activity of computing a
Euclidean-discontinuous function.

We need not attempt to judge effectively if a real number is a point of discontinuity.
The judgement is taken care of in the definition of the effective uniformity; Un(π

2 ) = {π
2 }

for τ , for example. We have also seen another example [x]. It is a mathematical activity,
and we are at liberty to do that. In that sense, the theory of effective uniformity yields a
“supple method” (according to the phrasing of Nakatogawa) for computing a discontinuous
function. It reflects the flexibility that a mathematician wishes to practice and experience.

It is Theorems 1 and 2 that related the two methods.
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