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ON PETRI NETS GENERATING ALL THE BINARY n-VECTORS
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Abstract. In this paper, we construct a 1-safe Petri net that generates all the binary
n-vectors, possibly with repetitions.

1. Introduction

Carl Adam Petri[7] proposed that a discrete event system can be modeled effectively as a
net, which is a 4-tuple C = (P, T, F, µ0)
where,
(a) P is a finite set of ′places ′

(b) T is a finite set of ′transitions ′

(c) P ∪ T �= ∅, P ∩ T = ∅,
(d) F ⊆ (P × T ) ∪ (T × P ), called flow relation or causal dependency relation, is chosen
such that dom F ∪ codom F = P ∪ T , where

dom F = {x ∈ P ∪ T | y ∈ P ∪ T : (x, y) ∈ F},

codom F = {x ∈ P ∪ T | y ∈ P ∪ T : (y, x) ∈ F}, and

(e) µ0 : P −→ N, called the initial marking, is a function that assigns to each place pi a
non-negative integer µ0(pi) often referred to as being the number of tokens placed at pi.
Most of the work on Petri nets since then has been based on the final report of Holt et.al.[4] to
the U.S. Air Force which translated Petri’s dissertation into English as well as extended the
work considerably (also see [7]). Petri net can be used as a visual communication tool similar
to flowchart, block diagram or a network. Theoretically, Petri nets have been used as a
powerful and convenient tool for representing and studying the structure of decision making
processes which can often be tricky or complex. The development of high speed computers
has greatly enhanced the use of Petri nets in diverse fields(e.g., see [7]). In this paper, we
construct a Petri net that generates all the binary n-vectors, possibly with repetitions. Such
a system is often required in practice to construct control systems (e.g., see [1,2]).

2. Preliminaries

For standard terminology and notation on Petri nets, we refer the reader to Peterson [8]. Jenson
[6] has given the following more operative definition of a Petri net, which we shall adopt in
this paper.
A Petri net is a 5-tuple C = (P, T, I−, I+, µ 0), where
(a) P is a nonempty set of ′places ′,
(b) T is a nonempty set of ′transitions ′,
(c) P ∩ T = ∅,
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(d) I−, I+ : P×T −→ N, where N is the set of nonnegative integers, are called the negative
and the positive incidence functions respectively,
(e) ∀ p ∈ P, ∃ t ∈ T : I−(p, t) �= 0 or I+(p, t) �= 0
and

∀ t ∈ T, ∃ p ∈ P : I−(p, t) �= 0 or I+(p, t) �= 0
(f) µ0 : P → N is the initial marking.
In fact, I−(p, t) and I+(p, t) represent the number of arcs from p to t and t to p respectively.
(I−, I+, µ0 can be viewed as matrices of size |P | × |T |, |P | × |T |, |P | × 1, respectively).
Petri nets have a well known graphical representation in which transitions are represented
as boxes and places as circles with directed arcs interconnecting places and transitions to
represent the flow relation. The initial marking is represented by placing a token in the
circle representing a place pi as a black dot whenever µ0(pi) = 1, 1 ≤ i ≤ n =| P | .
In general, a marking µ is a mapping µ : P −→ N . A marking µ can hence be represented
as a vector µ ∈ Nn, n = |P |, such that the ith component of µ is the value µ(pi).
Let C = (P, T, I−, I+, µ) be a Petri net. A transition t ∈ T �fires′ at the marking µ (or
it is enabled at µ) iff I−(p, t) ≤ µ(p), ∀ p ∈ P . After firing at µ, the new marking µ′ is given
by the rule

µ′(p) = µ(p) − I−(p, t) + I+(p, t), for all p ∈ P .

We say t fires at µ to yield µ′ (or t fires µ to µ′), and we write µ
t−→ µ′, whence µ′ is said

to be directly reachable from µ. Hence, it is clear, what is meant by a sequence like

µ0 t1−→ µ1 t2−→ µ2 t2−→ µ3 · · · tk−→ µk,

which simply represents the fact that the transitions t1, t2, t3, . . . , tk have been successively
fired to transform the marking µ0 into the marking µk. The whole of this transformation
is also written in short as µ0 σ−→ µk, where σ = t1, t2, t3, . . . , tk.
A marking µ is said to be reachable from µ0, if there exists a sequence of transitions which
can be successively fired to obtain µ from µ0. The set of all markings of a Petri net C
reachable from a given marking µ is denoted by R(C,µ).
A place in a Petri net is safe if the number of tokens in that place never exceeds one. A
Petri net is safe if all its places are safe.
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3.1-Safe Star Petri Net

The notion of a star is from graph theory[3]; it is the complete bipartite graph
K1, n which consists of exactly one vertex c, called the center, joined by a sin-
gle edge cvi to the pendant vertex vi (i.e. the degree of vi is 1) for each
i ∈ {1, 2, . . . , n }, n ≥ 1. A 1-safe star Petri net Sn is obtained by subdividing every
edge of the graph K1,n, n ≥ 1, so that every subdividing vertex is a place node and the
original vertices of K1,n, n ≥ 1, are the (n + 1) transition nodes, (n + 1)th being the central
node. Further, every arc incident to the central node is directed towards it, and every arc
incident to a pendent node is directed towards the pendent node. The general configuration
of a 1-safe star Petri net is shown in Fig.1.
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Figure 1: 1-safe star Petri net Sn

Now we prove the following theorem which is the main result of this paper.

Theorem : The reachability tree of Sn with µ0 = (1, 1, 1, 1, . . . , 1) as the initial
marking contains every binary n-vector (a1, a2, a3, . . . , an), ai ∈ {0, 1}.
Proof: We shall prove this result by using the Principle of Mathematical Induction (PMI).
Clearly, the reachability tree R(S1, µ

0) of S1 generates both the binary 1-vectors (1) and
(0) as shown in Figure 2. Next, consider the 1-safe star Petri net S2 as shown in Figure 3
and its R(S2, µ

0) displayed in Figure 4.
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Figure 3: 1-safe star Petri net S2
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Figure 4: R(S2, µ0), µ0 = (1, 1)

It is clear from Figure 4 that R(S2, µ
0) has all the 4 = 22, binary 2-vectors (a1, a2), a1, a2 ∈

{0, 1}.We can construct R(S2, µ
0) from R(S1, µ

0) as follows. Take two copies of R(S1, µ
0). In

the first copy, augment each vector of R(S1, µ
0), by putting a 0 entry at the second position

of every marking vector and denote the resulting labeled tree as R0(S1, µ
0). Similarly, in

the second copy, augment each vector by putting 1 at the second position of every marking
and let R1(S1, µ

0) be the resulting labeled tree (See Figure 5).
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Now, using the following steps we construct the reachability tree R(S2, µ0) of S2 from
R0(S1, µ

0) and R1(S1, µ
0).

1. Clearly, the set of binary 2-vectors in R0(S1, µ0) is disjoint with the set of those appear-
ing in R1(S1, µ0) and together they contain all the binary 2-vectors.

2.In R0(S1, µ
0), transition t2 does not satisfy the enabling condition, since

I−(pi, t) ≤ µ(pi), for each pi ∈ S1 is violated. So, we can ignore this transition at this stage.

3. In R1(S1, µ0), transition t2 is enabled and the marking obtained after firing of t2 is actu-
ally (1, 0) whereas the augmented vector attached to this node is (0,1). So, we concatenate
R0(S1, µ0) by fusing the node labeled (1, 0) with the node labeled (0, 1) in R1(S1, µ0) and
replacing (0, 1) by the label (1, 0) which is the initial marking of R0(S1, µ0).

4. We then augment an extra pendent node labeled y0 joined to the new root node x0 la-
beled by the 2-vector (1, 1) by the new arc (x0, y0) labeled as t3. The resulting labeled tree
T ∗ has all the binary 2-vectors as its node labels, possibly with repetitions. It remains to
show that it is the reachability tree R(S2, µ

0) of S2 with 2-vector (1, 1) as its initial marking
µ0. For this, consider an arbitrary 2-vector µ = (a1, 1), where a1 ∈ {0, 1}. When transition
t2 is enabled, this yields

µ′(pi) = µ(pi) − I−(pi, t2) + I+(pi, t2)

= 1 − 1 + 0 = 0
Then, we get a new marking µ′ = (a1, 0), where a1 ∈ {0, 1}. The marking µ′ is found in
R0(S2, µ0). If all ai

′s are zero then µ′ is a dead marking. Hence, suppose some ai �= 0. In
this case, ti is enabled and in the next new marking µ′′, the ith component is reduced to
zero. Eventually, this process will lead to a dead marking. Further, the marking vectors of
the form µ = (a1, 0) are already obtained as a result of firing t1, t2, through some subse-
quences. Thus, T is indeed the reachability tree R(S2, µ

0) of S2.
Now, we assume that the result is true for all the 1-safe star Petri nets Sk having k-
places, k ≤ n. We will prove the result for the 1-safe star Petri net Sn+1 having (n + 1)
places. For this purpose, consider two copies of the reachability tree of R(Sn, µ0) of Sn. In
the first copy, we extend each vector by augmenting a 0 entry at the (n + 1)th position and
let R0(Sn, µ0) denote the resulting labeled tree. Next, in the second copy of R(Sn, µ0), we
augment the entry 1 to the (n + 1)th position in every marking vector and let R1(Sn, µ0)
be the resulting labeled tree. Hence, using the following steps we construct the reachability
tree of the 1-safe star Petri net Sn+1 having (n + 1) places.

1. Clearly, the set of binary (n+1)-vectors in R0(Sn, µ0) is disjoint with the set of those
appearing in R1(Sn, µ0) and together they contain all the binary (n+1)-vectors.

2. In R0(Sn, µ0), transition tn+1 does not satisfy the enabling condition, since I−(pi, t) ≤
µ(pi), for each pi ∈ Sn is violated. So, we can ignore this transition for the moment.

3. In R1(Sn, µ0), transition tn+1 is enabled and the marking obtained after firing of tn+1 is
actually (1, 1, 1, . . . , 0). So we concatenate R0(Sn, µ0) at this node with the (n+1)-vector
(0, 0, 0, . . . , 1) replaced by the actual marking (1, 1, 1, . . . , 0) being the initial marking
of R0(Sn, µ0).

4. We then augment an extra pendent node labeled y0 joined to the new root node x0 labeled
by the (n+1)-vector (1, 1, 1, . . . , 1) by the new arc (x0, y0) labeled as tn+2. The tree T ∗

so obtained has all the binary (n+1)-vectors as its node labels, possibly with repetitions. It
remains to show that T ∗ is indeed the reachability tree R(Sn+1, µ

0) of Sn+1 with binary
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(n+1)-vector (1, 1, 1, . . . , 1) as its initial marking µ0. For this, consider an arbitrary
(n+1)-vector
µ = (a1, a2, a3, . . . , an, 1), where ai ∈ {0, 1}, ∀ i. When transition tn+1 is enabled, this
yields

µ′(pi) = µ(pi) − I−(pi, tn+1) + I+(pi, tn+1) = 1 − 1 + 0 = 0

Then, we get a new marking µ′ = (a1, a2, a3, . . . , an, 0), where ai ∈ {0, 1}. The
marking µ′ is found in R0(Sn+1, µ0). If all ai

′s are zero, then µ′ is a dead marking. Hence,
suppose some ai �= 0. In this case, ti is enabled and in the next new marking µ′′, the ith com-
ponent is reduced to zero. Eventually, this process will lead to a dead marking. Further, the
marking vectors of the form µ = (a1, a2, a3, . . . , an, 0) are already obtained as a result of
firing t1, t2, t3, ...., tn through some subsequences by virtue of the hypothesis of the PMI.
Thus, T ∗ is precisely the reachability tree R(Sn+1, µ0) of Sn+1. Hence, the result follows
by PMI. �

Remark

We also have an alternative proof for the above theorem using incidence matrix of Sn. As
we know when I− and I+ can be viewed, as matrices of size |P | × |T |, the incidence matrix
of any Petri net is defined by I = I+ − I−. The incidence matrix of Sn is

−

⎛
⎜⎜⎜⎜⎜⎝

1 0 0 · · · 0 1
0 1 0 · · · 0 1
0 0 1 · · · 0 1
...

...
... · · · 0 1

0 0 0 · · · 1 1

⎞
⎟⎟⎟⎟⎟⎠

The rth column of the incidence matrix will have only one non-zero entry at the rth place
and the last column of the incidence matrix is (1, 1, 1, . . . , 1). So the incidence matrix of
Sn contains the column vectors (1, 0, 0, . . . ,0), (0, 1, 0, . . . ,0)
. . . , (0, 0, 0, . . . ,1), and (1, 1, 1, . . . ,1). The first of these n-vectors can be viewed as a ba-
sis, where the initial marking vector (1, 1, 1, . . . , 1) can be written as a linear combination
of these vectors. Similarly, any binary n-vector can be expressed as a linear combination of
these basis vectors. Here, the matrix I generates all the vectors having 0, 1 entries. Thus the
incidence matrix of Sn generates every binary n-vector (a1, a2, . . . , an), ai ∈ {0, 1}.

4.Conclusions

In this paper, we have constructed a 1-safe Petri net that generates all the binary n-
vectors, possibly with repetitions. There do exist other 1-safe Petri nets that generate all
the binary n-vectors. For instance, the 1-safe Petri net with three places and four transitions
shown in Figure 6, also generates all the binary 3-vectors.This throws open not only the gen-
eral problem of determining all such Petri nets but also raises the question of determining
such optimal Petri nets ; for example, one can ask

1. Precisely which Petri nets produce the set of all binary n-vectors with minimum repeti-
tions ?

2. Precisely which Petri nets produce all the binary n-vectors in the smallest possible
number of steps ? As pointed out, these questions could be quite important from practical
application point of view.
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