
Scientiae Mathematicae Japonicae Online, e-2010, 53–68 53

BEST CONSTANT AND EXTREMALS FOR A VECTOR POINCARÉ
INEQUALITY WITH WEIGHTS
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Abstract. We provide the best constant C as well as all the extremals for the
generalized Poincaré inequality

� T

0

a|u|p ≤ C

� T

0

a|u′|p

where a ∈ L∞([0, T ]) satisfies 1 ≤ a(t) ≤ L, u ∈ W 1,p
0 ([0, T ],�N ), N ≥ 1, p > 1 and

T > 0.

1 Introduction In the seminal article [15], Piccinini and Spagnolo computed the best
Hölder exponent for weak solutions to the elliptic equation in divergence form: div(A(x) ·
∇v) = 0 in Ω, where A = (aij), i, j = 1, 2 is a 2× 2 positive definite matrix-valued function
satisfying λ|ξ|2 ≤ 〈A(x)ξ, ξ〉 ≤ Λ|ξ|2 for all ξ ∈ R

2, x ∈ Ω and Ω ⊂ R
2 is a bounded

domain. More precisely, they proved that any solution v ∈ W 1,2
loc (Ω) is α-Hölder continuous

with α ≥ L−1/2, where L = Λ/λ denotes the ellipticity constant of A. Furthermore, they
showed that if A has the isotropic form A = aI for some measurable function a satisfying
1 ≤ a ≤ L, where I denotes the identity matrix, then the best Hölder exponent is improved,
namely α ≥ 4π−1 arctanL−1/2. A key ingredient used in order to obtain the second sharp
estimate is the best constant C in the following weighted Wirtinger-type inequality

∫ 2π

0

au2 ≤ C

∫ 2π

0

a(u′)2,(1)

where u satisfies
∫ 2π

0
au = 0 and a is a measurable weight function satisfying 1 ≤ a ≤ L.

The extremals for (1) are also characterized.
Motivated by various problems in analysis and geometry, several extensions and vari-

ations of (1) have been obtained in recent years. In particular, for the homogeneous case
a ≡ 1, inequalities with general powers of u and various integral constraints have been
considered, in connection with the Wulff theorem in geometry, by Dacorogna, Gangbo
and Sub́ia [2], Croce and Dacorogna [1]. The vectorial case of (1) in the homogeneous
case a ≡ 1 with general powers of u has been studied, among others, by Manásevich
and Mawhin [13, 14], Del Pino [3], under various boundary conditions, in connection with
p−Laplace equations. Variations of (1) with different weight functions were studied in
[7, 16, 17], particularly in connection to quasiharmonic maps and Beltrami equations. See
also Iwaniec and Sbordone [10], Hencl, Moscariello, Passarelli di Napoli and Sbordone [8]
for further applications and developments in this direction. Extensions of (1) with general
powers of u were derived in [5, 6].
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In consideration of these results, it is natural to investigate the following weighted vector
inequality of Poincaré type ∫ T

0

a|u|p ≤ C

∫ T

0

a|u′|p,(2)

where u belongs to the space W 1,p
0 ([0, T ],RN). Here and in what follows we set

W 1,p
0 ([0, T ],RN) =

{
u ∈ W 1,p([0, T ],RN) : u(0) = 0 and u(T ) = 0

}
,

where N ≥ 1, T > 0, p > 1. Furthermore, | · | is the Euclidean norm in R
N , a ∈ L∞(0, T )

satisfies 1 ≤ a ≤ L. Our aim is to estimate the best constant C in (2), see Theorem 2.2
below for the precise statement. Let

A = {a ∈ L∞(0, T ) : inf a = 1 and sup a = L},
and let

1
Cp(a)

= inf

{∫ T

0 a(t)|u′|p∫ T

0
a(t)|u|p

: u ∈W 1,p
0 ([0, T ],RN) \ {0}

}
,(3)

for every given function a ∈ A. By standard arguments it follows that the infimum in (3)
is achieved for some u ∈ W 1,p

0 ([0, T ],RN) \ {0}. We prove that if

1
Cp

= inf
a∈A

1
Cp(a)

,

then the infimum is achieved for a unique piecewise constant function ã ∈ A. Moreover,
we characterize the set of functions ũ ∈ W 1,p

0 ([0, T ],RN) for which (2) becomes an equality
when a = ã, in terms of generalized trigonometric functions, see Theorem 2.3 below.

We note that the Euler-Lagrange equation for (3) corresponds to the nonlinear eigenvalue
problem {

(a(t)ψp(u′))′ + λa(t)ψp(u) = 0,
u(0) = 0, u(T ) = 0,

where λ = Cp(a)−1 and ψp : R
N → R

N is the continuous function defined by

ψp(x) =
{ |x|p−2x if x ∈ R

N \ {0},
0 if x = 0.(4)

We denote by φp the function ψp when N = 1. By homogeneity, any solution w to the
scalar problem: {

(a(t)φp(w′))′ + λa(t)φp(w) = 0,
w(0) = 0, w(T ) = 0,

yields a “one-dimensional” solution to (1) by setting u = wd, for any d ∈ R
N . Using

a uniqueness result of Garćia-Huidobro, Manásevich and Ôtani [4], we begin by showing
that, if a is smooth, then all solutions to (1) are one-dimensional. Hence, the technique of
Piccinini and Spagnolo [15], as extended in [6], may be applied to obtain the sharp estimate
for the best constant C. The optimal piecewise constant form ã of a also follows by such
arguments.
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Our second task is to characterize all extremals. We recall that in the scalar case with
a ≡ 1 the extremals may be written in terms of generalized trigonometric functions, see
[9, 11, 12]. By suitably gluing generalized trigonometric functions, we contruct an extremal
for (2) with a = ã, thus showing that our estimate is sharp. However, it is not a priori
clear from our previous arguments whether or not such an extremal is unique, since ã is
piecewise constant and therefore the above mentioned uniqueness argument does not apply.
Nevertheless, we are able to show that all extremals for (3) with a = ã are indeed one-
dimensional. We note that such a characterization of extremals is new even for the scalar
case of (2). The weighted vectorial analog of the Piccinini-Spagnolo inequality (1) is new
even for p = 2.

The remaining part of this paper is organized as follows. In Section 2 we clarify notation
and we recall the basic definitions and properties of generalized trigonometric functions.
With such notation at hand, we state our main results. In Section 3 we use the afore
mentioned uniqueness result from [4] in order to reduce our problem to the one-dimensional
case when a is smooth. Finally, in Section 4 we complete the proofs of our main results.

2 Notation, generalized trigonometric functions and statement of the main
results For every p > 1, we denote by p∗ the conjugate exponent of p, i.e. p∗ = p/(p− 1).
It is readily seen that the function ψp defined by (4) is a continuous function and it has an
inverse given by ψp∗ . We will denote by φp the function ψp when N = 1.

For later use, we now briefly define the generalized trigonometric functions and outline
their main properties. See, e.g., [9], [11], [12], [14], for more details. Let p > 1. The function
arcsinp : [0, 1] → R is defined by

arcsinp(σ) =
∫ σ

0

dy

(1 − yp)1/p
.

We set

πp

2
= arcsinp(1) =

1
p
B

(
1
p
,

1
p∗

)
,

where B(·, ·) denotes the Beta function defined by

B(h, k) =
∫ 1

0

th−1(1 − t)k−1dt = B(k, h),

for every h, k > 1. The function arcsinp : [0, 1] → [0, πp

2 ] is strictly increasing and its
inverse function is denoted by sinp. The function sinp is extended as an odd function to
the interval [−πp, πp] by setting sinp(t) = sinp(πp − t) in [πp/2, πp], sinp(t) = − sinp(−t) in
[−πp, 0], and to the whole real axis as a 2πp−periodic function. Furthermore, it holds that
sinp(πp + t) = − sinp(t). The function sinp is the unique global solution of the initial value
problem

{
(φp(w′))′ + p

p∗φp(w) = 0,
w(0) = 0, w′(0) = 1.

(5)

The function cosp is defined by

cosp(t) = φp(sin′
p(t)).(6)
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It is 2πp-periodic and satisfies:

cosp(−t) = cosp(t),
cosp(πp − t) = − cosp(t),
cosp(πp + t) = − cosp(t).

The following identity holds, which generalizes the fundamental identity for trigonometric
functions:

| cosp(t)|p∗
+ | sinp(t)|p ≡ 1.(7)

For later purposes, we also note the following identity:

cosp

(πp

2
− t

)
= sinp∗

(
p

p∗
t

)
.(8)

¿From (5) we derive

cos′p(t) = − p

p∗
φp(sinp(t)).(9)

On the other hand, from (6) we have:

sin′
p(t) = φp∗(cosp(t)).(10)

Finally, we define tanp as follows:

tanp(t) =
sinp(t)

φp∗(cosp(t))
.

The function tanp is πp-periodic, with singularities at the zeros of cosp. The inverse of tanp

restricted to the interval [−πp/2, πp/2], denoted by arctanp, is given by

arctanp(σ) =
∫ σ

0

dy

1 + |y|p ,

for every σ ∈ R. It results that

lim
σ→+∞ arctanp(σ) =

πp

2
.(11)

The next lemma generalizes to the case p 
= 2 a well known identity.

Lemma 2.1. For every p > 1 and for every σ > 0 the following identity holds

arctanp(σ−p∗/p) +
p∗

p
arctanp∗(σ) =

πp

2
.(12)

Proof. In view of (11) we have

πp

2
=
∫ +∞

0

dy

1 + yp
= arctanp(σ−p∗/p) +

∫ +∞

σ−p∗/p

dy

1 + yp
.

Performing the change of variables y = z−p∗/p we obtain∫ +∞

σ−p∗/p

dy

1 + yp
=
p∗

p

∫ σ

0

dz

1 + zp∗ .

Hence, the asserted identity follows.
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Now, we can state our main results. Our first result provides an estimate for the best
constant C in inequality (2). It is convenient to define:

β(L) =
[
Lp∗/p(L− 1)
Lp∗/p − 1

]1/p∗

.(13)

With this notation, we have:

Theorem 2.2. Let N ≥ 1, p > 1 and T > 0. Let a : [0, T ] → R be a measurable function
such that 1 ≤ a(t) ≤ L. Then, the following inequality holds:∫ T

0

a(t)|u(t)|pdt ≤ Cp

∫ T

0

a(t)|u′(t)|pdt(14)

for every u ∈ W 1,p
0 ([0, T ],RN), where

Cp =
(
T

2

)p (p/p∗)p/p∗[
πp∗
2 − arctanp∗ β(L) + arctanp∗ β(L)

L

]p .

We note that in view of identity (12) we may write:

πp∗

2
− arctanp∗ β(L) + arctanp∗

β(L)
L

=
p

p∗
arctanp

[
L−p∗/p2

(
Lp∗/p − 1
L− 1

)1/p
]

+ arctanp∗

[
L−1/p∗

(
L− 1

Lp∗/p − 1

)1/p∗]
.

Therefore, in the special case p = 2 and T = π, the best constant Cp takes the value

C2 =
( π

4 arctanL−1/2

)2

,

in agreement with Piccinini and Spagnolo’s result [15].
Our next result shows that Theorem 2.2 is sharp, and characterizes all extremals.

Theorem 2.3. Inequality (14) reduces to an equality if and only if a = ã, where ã is defined
by

ã(t) =

⎧⎨
⎩

1 for 0 ≤ t < τ̃ , T − τ̃ ≤ t ≤ T,

L for τ̃ ≤ t < T − τ̃ ,

with

τ̃ =
T

2

(
1 − arctanp∗ β(L)

L
πp∗
2 − arctanp∗ β(L) + arctanp∗ β(L)

L

)
,(15)

and u = ũ = w̃d for some d ∈ R
N , where w̃ is the scalar function defined by

w̃(t) =

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

(
λ̃p∗

p

)−1/p

sinp

[(
λ̃p∗

p

)1/p

t

]
for 0 ≤ t ≤ τ̃ ,(

λ̃p∗

p

)−1/p

L−1/p cosp∗

[(
p
p∗

)1/p∗

λ̃1/p
(
t− T

2

)]
for τ̃ ≤ t ≤ T − τ̃ ,(

λ̃p∗
p

)−1/p

sinp

[(
λ̃p∗
p

)1/p

(T − t)
]

for T − τ̃ ≤ t ≤ T .

(16)

with

λ̃ = C−1
p =

(
2
T

)p(
p∗

p

)p/p∗ [
πp∗

2
− arctanp∗ β(L) + arctanp∗

β(L)
L

]p

.
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3 Reduction to the one-dimensional case In this section we consider the nonlinear
eigenvalue problem: {

(a(t)ψp(u′))′ + λa(t)ψp(u) = 0,
u(0) = 0, u(T ) = 0(17)

corresponding to the Euler-Lagrange equation for (3). Our aim is to show that if a is
smooth, then solutions to (17) are necessarily one-dimensional, see Proposition 3.2 below.
We shall need the following uniqueness result.

Proposition 3.1 ([4]). Suppose that β ∈ L1
loc(R) with β > 0 a.e. Then, for any ξ, η ∈ R

N

and s0 ∈ R, the problem {
(ψp(v′))′ + β(s)ψp(v) = 0,
v(s0) = ξ, v′(s0) = η

(18)

has a unique C1 solution globally defined on R.

The existence of a local solution is a direct application of Schauder’s fixed point theorem.
The main idea to prove the uniqueness is to write the equation in (18) in the equivalent
form

v′(s) = ψp∗

[
ψp(η) −

∫ s

s0

β(θ)ψp(v(θ))dθ
]
.

Then, a careful use of the properties of β allows to overcome the possible lack of Lipschitz
continuity of the function ψp.

Proposition 3.2. Let a : [0, T ] → R be a smooth function such that 1 ≤ a(t) ≤ L for any
t ∈ [0, T ]. If u ∈ W 1,p

0 ([0, T ],RN) is a weak solution of the vector eigenvalue problem

(a(t)ψp(u′))′ + λa(t)ψp(u) = 0,(19)

then u ∈ C1 and it follows that

u(t) = w(t)d,(20)

where d = u′(0) and w is a solution of the scalar eigenvalue problem{
(a(t)φp(w′))′ + λa(t)φp(w) = 0,
w(0) = 0, w(T ) = 0(21)

satisfying w′(0) = 1.

Proof. We first prove that if u is a solution of (19) then u ∈ C1. By continuity of a, ψp, u and
using equation (19), we have that (a(t)ψp(u′))′ is continuous. Therefore, h(t) = a(t)ψp(u′)
belongs to C1([0, T ],RN) and ψp(u′) = a(t)−1h(t) is continuous. Now the claim follows by
continuity of ψp∗ = ψ−1

p .
By a change of variables, we first reduce the equation in (19) to an equation of the form
(18). Let us first consider the function G : [0, T ] → [0, T ] defined by

G(t) =
T∫ T

0 a−
1

p−1

∫ t

0

a−
1

p−1 .
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Since 1 ≤ a(t) ≤ L the function G is well defined. It is easily seen that G is a nondecreasing
differentiable function whose derivative is given by

G′(t) =
T∫ T

0 a−
1

p−1
a(t)−

1
p−1 .

Now, suppose that u is a solution of (19) with u(0) = 0 and u′(0) = d; we claim that the
function v : [0, T ] → R

N defined by

v(s) = u(G−1(s)),

is a C1 solution of the initial value problem⎧⎨
⎩

(ψp(v′))′ + µα(s)ψp(v) = 0,

v(0) = 0, v′(0) = γa(0)
1

p−1 d,

(22)

where

α(s) = a(G−1(s))p∗
, µ = γpλ γ =

1
T

∫ T

0

a−
1

p−1 .(23)

Indeed, it results that u(t) = v(G(t)) and consequently the derivative of u is given by

du

dt
(t) = γ−1a(t)−

1
p−1

dv

ds
(G(t)).(24)

From (24) it follows that

d

dt

[
a(t)ψp(u′(t))

]
= γ−pa(t)−

1
p−1

[
d

ds
ψp(v′(s))

]
s=G(t)

,

and therefore we obtain

d

dt

[
a(t)ψp(u′(t))

]
+ λa(t)ψp(u(t)) =

= γ−pa(t)−
1

p−1

[
d

ds
ψp(v′(s)) + µα(s)ψp(v(s))

]
s=G(t)

,

with α, γ and µ given by (23). On the other hand, the function s ∈ [0, T ] �→ γa(0)
1

p−1 g(s)d ∈
R

N , where g is the unique solution of the scalar initial value problem (see again Proposition
3.1 for N = 1) {

(φp(g′))′ + µα(s)φp(g) = 0,
g(0) = 0, g′(0) = 1,

is a solution of the problem (22). Therefore, v(s) = γa(0)
1

p−1 g(s)d. Consequently, the
vector initial value problem{

(a(t)ψp(u′))′ + λa(t)ψp(u) = 0,
u(0) = 0, u′(0) = d.



60 F. FARRONI, R. GIOVA AND T. RICCIARDI

has a unique C1 solution given by u(t) = v(G(t)) = w(t)d where w(t) = γa(0)
1

p−1 g(G(t)).
Moreover, w is the unique C1 solution of the scalar initial value problem{

(a(t)φp(w′))′ + λa(t)φp(w) = 0,
w(0) = 0, w′(0) = 1.

Since u in (20) also satisfies u(T ) = 0 it must be that w(T ) = 0; thus w is a solution to the
scalar eigenvalue problem (21) and this completes the proof.

Remark 3.1. Proposition 3.2 shows that the problems (19) and (21) share the same eigen-
values; moreover, it is possible to prove that they form a sequence λn = λn(a) such that
0 < λ1(a) < λ2(a) < · · · < λn(a) < · · · . Indeed, we recall that (see Section 3 in [4] when
N ≥ 1 and Section 2 in [18] when N = 1) for any α ∈ L1(0, T ) with α > 0 a.e. and for any
µ > 0, a problem of the type{

(ψp(v′))′ + µα(s)ψp(v) = 0,
v(0) = 0, v(T ) = 0,(25)

has a strictly monotone sequence of eigenvalues. On the other hand, the proof of Proposi-
tion 3.2 implies that λ is an eigenvalue of (19) if and only if µ = γpλ is an eigenvalue of
(25) with α and γ as in (23). This proves the asserted property.

4 Proofs of Theorem 2.2 and Theorem 2.3

Proof of Theorem 2.2. By a standard approximation argument it is sufficient to prove The-
orem 2.2 in the special case where a ∈ A is a smooth function. It is well known that
C−1

p (a) = λ1(a), hence the following estimate holds

∫ T

0

a(t)|u(t)|pdt ≤ 1
λ1(a)

∫ T

0

a(t)|u′(t)|pdt,

for every u. Therefore, in order to prove (14) it is sufficient to show that, if λ 
= 0 and u 
≡ 0
satisfy (19), then necessarily

λ ≥
(

2
T

)p (
p∗

p

)p/p∗ [
πp∗

2
− arctanp∗ β(L) + arctanp∗

β(L)
L

]p

.

In view of Proposition 3.2 there exists a vector d ∈ R
N such that u(t) = w(t)d where

w is a solution of the scalar problem (21). Now we apply the arguments of Piccinini and
Spagnolo [15], as extended by one of the authors [6], to problem (21). By standard properties
of eigenfunctions any solution w of (21) in [0, T ] has at least two zeros, and between any pair
of zeros of w there is exactly one zero of its derivative w′. Let t0 and t2 be two consecutive
zeros of w and let t1 be a zero of w′ in such a way that t0 < t1 < t2. Without loss of
generality we may suppose that w(t1) > 0. It is obvious that

t2 − t0 ≤ T.(26)

We define, for t0 < t ≤ t1, the function

f(t) =
a(t)φp(w′(t))
φp(w(t))

.
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In view of (21) it results that f satisfies the following first order differential equation

f ′(t) = −λa(t) − p

p∗
|f(t)|p∗

a(t)p∗/p
.

We remark that f is strictly decreasing, since f ′(t) < 0. Furthermore limt→t+0
f(t) = +∞,

f(t1) = 0. Hence, there is exactly one point, say τ , in the interval (t0, t1) such that
f(τ)=(λp∗/p)1/p∗

β(L), where β(L) is defined in (13). Now we prove that the following
inequalities hold:

⎧⎪⎨
⎪⎩

−λa(t) − p
p∗

|f |p∗

ap∗/p ≥ −λ− p
p∗ |f |p∗

for t0 < t ≤ τ

−λa(t) − p
p∗

|f |p∗

ap∗/p ≥ −λL− p
p∗

|f |p∗

Lp∗/p for τ ≤ t ≤ t1.

(27)

Indeed, it is readily checked that the first inequality in (27) is equivalent to

f(t)p∗ ≥ λp∗

p
βp∗

(a(t)) for t0 < t ≤ τ

where the function β is defined in (13). Since f is decreasing and β is increasing in (1, L),
for t ≤ τ we obtain

f(t)p∗ ≥ f(τ)p∗
=
λp∗

p
βp∗

(L) ≥ λp∗

p
βp∗

(a(t)).

Hence, the first inequality in (27) is established. On the other hand, the second inequality
in (27) is equivalent to

f(t)p∗ ≤ λp∗

p
Lp∗/pγ(a(t)) for τ ≤ t ≤ t1

where γ is the function defined for 1 ≤ a ≤ L by

γ(a) =
ap∗/p(L− a)
Lp∗/p − ap∗/p

.

Since f is decreasing and γ is increasing, we have for t ≥ τ :

f(t)p∗ ≤ f(τ)p∗
=
λp∗

p
βp∗

(L) =
λp∗

p
Lp∗/pγ(1) ≤ λp∗

p
Lp∗/pγ(a(t)).

Hence, the second inequality in (27) is also established.
Now, we prove that the Cauchy problem⎧⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩
f ′
0(t) =

⎧⎪⎨
⎪⎩

−λ− p
p∗ |f0|p∗

for t0 < t ≤ τ

−λL− p
p∗

|f0|p∗

Lp∗/p for τ ≤ t < t1

f0(τ) = (λp∗/p)1/p∗
β(L)

(28)
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has a unique solution. Indeed, note that f0 is strictly decreasing. Denoting by g0 its inverse,
it results that⎧⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩
g′0(s) =

⎧⎪⎪⎨
⎪⎪⎩

−
(
λL+ p

p∗L
−p∗/psp∗

)−1

for f0(t1) < s ≤ f0(τ)

−
(
λ+ p

p∗ s
p∗
)−1

for f0(τ) ≤ s < f0(t0)

g0(f0(τ)) = τ.

(29)

Hence, there exists a unique solution for (29). It follows that uniqueness holds for (28) and
that f0 is given by:

f0(t) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎩

(λp∗

p )1/p∗
tanp∗

[
λ1/p

(
p
p∗

)1/p∗

(τ − t) + arctanp∗ β(L)
]

for t0 < t ≤ τ

L(λp∗

p )1/p∗
tanp∗

[
λ1/p

(
p
p∗

)1/p∗

(τ − t) + arctanp∗ β(L)
L

]
for τ ≤ t ≤ t1.

(30)

In particular, we obtain ⎧⎨
⎩

f0(t) ≥ f(t) for t ≤ τ

f0(t) ≤ f(t) for t ≥ τ.
(31)

Since

lim
t→πp∗

2

tanp∗(t) = +∞

we have that

f0(t) → +∞ as t→ τ − 1

λ1/p
(

p
p∗

)1/p∗

(πp∗

2
− arctanp∗ β(L)

)

and vanishes for t = τ + 1

λ1/p( p
p∗ )1/p∗ arctanp∗ β(L)

L . It follows:

t1 − t0 ≥ 1

λ1/p
(

p
p∗

)1/p∗

[
πp∗

2
− arctanp∗ β(L) + arctanp∗

β(L)
L

]
.

In a similar way we can prove that

t2 − t1 ≥ 1

λ1/p
(

p
p∗

)1/p∗

[
πp∗

2
− arctanp∗ β(L) + arctanp∗

β(L)
L

]
;

hence by the relations above we derive

t2 − t0 ≥ 2

λ1/p
(

p
p∗

)1/p∗

[
πp∗

2
− arctanp∗ β(L) + arctanp∗

β(L)
L

]
.
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So recalling (26), we can state

T ≥ 2

λ1/p
(

p
p∗

)1/p∗

[
πp∗

2
− arctanp∗ β(L) + arctanp∗

β(L)
L

]
,

that is

λ ≥

⎧⎪⎨
⎪⎩

2

T
(

p
p∗

)1/p∗

[
πp∗

2
− arctanp∗ β(L) + arctanp∗

β(L)
L

]⎫⎪⎬
⎪⎭

p

.(32)

The proof of Theorem 2.2 is complete.

In order to characterize the extremals as in Theorem 2.3 we shall need the following.

Lemma 4.1. Let u ∈W 1,p
0 ([0, T ],RN) be a weak solution of the equation

(ã(t)ψp(u′))′ + λ̃ã(t)ψp(u) = 0.(33)

with λ̃ and ã as in Theorem 2.3. Let

lim
t→τ̃−

u′(t) = u′(τ̃−), lim
t→τ̃+

u′(t) = u′(τ̃+).

Then

u′(τ̃−) = Lp∗−1u′(τ̃+).(34)

Proof. Since ã(t) ≡ 1 in [0, τ̃ ] and ã(t) ≡ L in [τ̃ , T/2], from (33) we conclude that the
restrictions of u respectively to the intervals [0, τ̃ ] and [τ̃ , T/2] are both C1 functions. Now,
we prove that u′(τ̃+) is completely determined by u′(τ̃−). Since u is a weak solution of (33)
we have, for any function ϕ ∈W 1,p([0, T/2],RN)

−
∫ T/2

0

ã(t)〈ψp(u′);ϕ′〉 = λ̃

∫ T/2

0

ã(t)〈ψp(u);ϕ〉,(35)

Let 1 ≤ j ≤ N and ε > 0. In (35) we first choose vector valued piecewise linear test function
ϕ(t) = (ϕ1(t), ϕ2(t), . . . , ϕN (t)) defined by

ϕk(t) = 0 if k 
= j, ϕj(t) =

⎧⎨
⎩

0 if 0 ≤ t ≤ τ̃ − ε,
1
ε (t− τ̃ + ε) if τ̃ − ε ≤ t ≤ τ̃ ,
1, if τ̃ ≤ t ≤ T/2.

The derivative of ϕj is given by

ϕ′
j(t) =

{
1
ε , if τ̃ − ε ≤ t ≤ τ̃ ,
0, if 0 ≤ t ≤ τ̃ − ε, τ̃ ≤ t ≤ T/2.

Let us set for every 1 ≤ j ≤ N

ψp,j(x) =
{ |x|p−2xj if x ∈ R

N \ {0},
0 if x = 0.
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Hence,

∫ T/2

0

ã(t)〈ψp(u′);ϕ′〉 =
1
ε

∫ τ̃

τ̃−ε

ψp,j(u′),(36)

and in a similar way

∫ T/2

0

ã(t)〈ψp(u);ϕ〉 =
1
ε

∫ τ̃

τ̃−ε

(t− τ̃ + ε)ψp,j(u),+L
∫ T/2

τ̃

ψp,j(u).(37)

By substituting (36) and (37) in (35) and letting ε→ 0+ we obtain

−|u′(τ̃−)|p−2u′j(τ̃
−) = λ̃L

∫ T/2

τ̃

ψp,j(u), dt,(38)

A second choice of ϕ, namely

ϕk(t) = 0 if k 
= j, ϕj(t) =

⎧⎨
⎩

0 if 0 ≤ t ≤ τ̃ ,
1
ε (t− τ̃) if τ̃ ≤ t ≤ τ̃ + ε,
1, if τ̃ + ε ≤ t ≤ T/2

and an argument similar to the one that yields (38) leads to

−|u′(τ̃+)|p−2u′j(τ̃
+) = λ̃

∫ T/2

τ̃

ψp,j(u), dt.(39)

Thus, from (38) and (39) we have, for every 1 ≤ j ≤ N

−L|u′(τ̃+)|p−2u′j(τ̃
+) = −|u′(τ̃−)|p−2u′j(τ̃

−),

and therefore

Lψp(u′(τ̃+)) = ψp(u′(τ̃−)).

From the above and from the fact that ψ−1
p = ψp∗ we obtain (34).

Proof of Theorem 2.3. The inequalities (26), (27), (31), (32) in the proof of Theorem 2.2
hold strictly unless t0 = 0, t2 = T , f(t) = f0(t) and a(t) = ã(t). In this case the function
f0 satisfies

lim
t→0+

f0(t) = +∞.(40)

Since tanp∗(θ) → +∞ as θ → (πp∗/2)−, in view of (30) there is a unique value of τ , denoted
by τ̃ , such that (40) holds. Thus τ̃ satisfies

(
p

p∗

)1/p∗

λ̃1/pτ̃ + arctanp∗ β(L) =
πp∗

2
,(41)

and this yields (15). By requiring that f0(t1) = 0 we obtain

(
p

p∗

)1/p∗

λ̃1/p(τ̃ − t1) + arctanp∗
β(L)
L

= 0,(42)
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and this implies t1 = T/2. It remains to prove that all extremals of inequality (14) with
a = ã are of the form u = ũ = w̃ d, where w̃ is defined by (16). Hence, we seek all non-trivial
solutions of the equation

(ã(t)ψp(u′))′ + λ̃ã(t)ψp(u) = 0,(43)

such that u(0) = 0 and u(T ) = 0. Since ã(t) ≡ 1 in [0, τ̃ ], in view of Proposition 3.1 (see
also Lemma 3.1 in [13]) we have that, for any given d ∈ R

N , there exists a unique solution
ũ defined in the interval [0, τ̃ ] of equation (43) satisfying the initial conditions

u(0) = 0, u′(0) = d.

Recalling the definition of sinp, we may write ũ in the form

ũ(t) =

(
λ̃p∗

p

)−1/p

sinp

⎡
⎣
(
λ̃p∗

p

)1/p

t

⎤
⎦ d ∀t ∈ [0, τ̃ ].

Observe that

ũ(τ̃−) =

(
λ̃p∗

p

)−1/p

sinp

⎡
⎣
(
λ̃p∗

p

)1/p

τ̃

⎤
⎦ d.(44)

In order to simplify the above expression for ũ(τ̃−) we note that, using identity (8), we may
write

sinp

⎡
⎣( λ̃p∗

p

)1/p

τ̃

⎤
⎦ = sinp

[
p∗

p

(
p

p∗

)1/p∗

λ̃1/pτ̃

]

= cosp∗

(
πp∗

2
−
(
p

p∗

)1/p∗

λ̃1/pτ̃

)
= cosp∗(arctanp∗ β(L))

where we used (41) in order to derive the last equality. In turn, from identity (7) we derive

| cosp∗(t)|p =
1

1 + | tanp∗(t)|p∗

and therefore we may write

cosp∗(arctanp∗ β(L)) =
(

1
1 + βp∗(L)

)1/p

=
[
Lp∗/p − 1
Lp∗ − 1

]1/p

.

We conclude from (44) and the arguments above that

ũ(τ̃−) =

(
λ̃p∗

p

)−1/p [
Lp∗/p − 1
Lp∗ − 1

]1/p

d.

We still denote by ũ the restriction of the solution of equation (43) to the interval [τ̃ , T − τ̃ ].
By continuity of ũ,

ũ(τ̃+) = ũ(τ̃−) =

(
λ̃p∗

p

)−1/p [
Lp∗/p − 1
Lp∗ − 1

]1/p

d.(45)
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Now we compute derivatives. Using (10), we have

ũ′(τ̃−) = φp∗

⎛
⎝cosp

⎡
⎣( λ̃p∗

p

)1/p

τ̃

⎤
⎦
⎞
⎠ .(46)

On the other hand, similarly as before, using (8) and (41) we compute:

cosp

⎡
⎣
(
λ̃p∗

p

)1/p

τ̃

⎤
⎦ = cosp

[
p∗

p

(
p

p∗

)1/p∗

λ̃1/pτ̃

]

= sinp∗

(
πp∗

2
−
(
p

p∗

)1/p∗

λ̃1/pτ̃

)
= sinp∗(arctanp∗ β(L)).

¿From the basic identity (7) we derive

| sinp(t)|p =
| tanp(t)|p

1 + | tanp(t)|p
and consequently

sinp∗(arctanp∗ β(L)) =
[
Lp∗ − Lp∗/p

Lp∗−1

]1/p∗

.

We conclude from (46) and the arguments above that

ũ′(τ̃−) =
[
Lp∗ − Lp∗/p

Lp∗ − 1

]1/p

d.

Now, in view of Lemma 4.1 we have

ũ′(τ̃+) = L−p∗/p

[
Lp∗ − Lp∗/p

Lp∗ − 1

]1/p

d =
[

L− 1
L(Lp∗ − 1)

]1/p

d.(47)

Since ã(t) ≡ L in [τ̃ , T − τ̃ ], again by Proposition 3.1, ũ coincides in [τ̃ , T − τ̃ ] with the
unique solution of (43) satisfying the initial conditions

u(τ̃) =

(
λ̃p∗

p

)−1/p [
Lp∗/p − 1
Lp∗ − 1

]1/p

d,(48)

u′(τ̃ ) =
[

L− 1
L(Lp∗ − 1)

]1/p

d.(49)

according to (45) and (47). We claim that

ũ(t) =

(
λ̃p∗

p

)−1/p
1

L1/p
cosp∗

[(
p

p∗

)1/p∗

λ̃1/p

(
t− T

2

)]
d ∀t ∈ [τ̃ , T − τ̃ ].

Indeed, using (42) it follows that ũ satisfies (48). Moreover, recalling that (see (9)) p cos′p∗(t) =
−p∗φp∗(sinp∗(t)) we have

ũ′(t) = − 1
L1/p

φp∗

{
sinp∗

[(
p

p∗

)1/p∗

λ̃1/p

(
t− T

2

)]}
d.(50)
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By similar arguments as above, we compute

sinp∗(arctanp∗
β(L)
L

) =
(
L− 1
Lp∗ − 1

)1/p∗

.

Hence, ũ satisfies (49). From (50) we have

φp (ũ′(t)) = − 1
L1/p∗ sinp∗

[(
p

p∗

)1/p∗

λ̃1/p

(
t− T

2

)]
d.(51)

Differentiating (51) we obtain

(φp (ũ′(t)))′ = −λ̃φp (ũ(t)) ,

and thus we check that ũ solves (43) in [τ̃ , T − τ̃ ]. By similar arguments we evaluate ũ in
the interval [T − τ̃ , T ]. The proof is complete.
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