Scientiae Mathematicae Japonicae Online, e-2010, 45-52 45
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ABSTRACT. Let R be a Noetherian ring and let Z(R) be the set of all zero-divisors of
R. We denote by G(R) the simple graph whose vertices are elements of R and in which
two distinct vertices « and y are joined by an edge if © —y is in Z(R). Let x(R) be the
chromatic number of the graph G(R). If x(R) is finite, then R is an integral domain
or R is a finite Artin ring. In the former case we have x(R) = 1 and in the latter case
we get x(R) = max{|Mi|,...,|M:|} where Mi,..., M, are all maximal ideals of R
and |M;| denotes the number of elements of the set M; for i =1,... ,t.

Let R be a commutative ring with the identity element. An element x of R is called a
zero-divisor of R if there exists a non-zero element y of R satisfyihg xy = 0. We denote
Z(R) the set of all zero-divisors of R. We consider the simple graph G(R) whose vertices
are elements of R and in which distinct two vertices # and y are joined by an edge if x —y is
in Z(R). We color the vertices of G(R) so that no two joined vertices have the same color.
If we color the vertices, we call it a coloring of G(R). The chromatic number x(R) of the
graph G(R) is the minimum number of colors of colorings of G(R). We denote by V(R) the
vertices of a graph G(R).

Our notation is standard and for unexplained terms, our general reference to commuta-
tive algebra is [1], [3] and our general reference to graph theory is [2].

Example 1. Let Z be the ring of all integers and let R be the residue class ring Z/6Z.
We denote by i the residue class of ¢ + 6Z for i = 0,1,...,5 because no fear of confusion.
Therefore R = {0,1,2,3,4,5}. Then V(R) = {0,1,2,3,4,5} and Z(R) = {0,2,3,4}. We
color vertices 0 and 5 as red, 1 and 2 as blue, 3 and 4 as yellow. This is a coloring of G(R)
with three colors. The triangle of vertices 0, 2, 4 needs three colors. Hence x(R) = 3.

Let C be a non-empty subset of V(R). We call C' a clique of G(R) if every pair of
distinct two elements of C' is joined by an edge. The clique number C(R) of G(R) is the
maximum number of elements of cliques of G(R).

Example 2. The clique number C(R) of R in Example 1 is 3.

Lemma 3. The following inequality holds:
C(R) = x(R).
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Proof. In the case that x(R) is finite, let C' be an arbitrary clique of G(R). Then every
vertix of C' must be colored with different color because C' is a clique of G(R). Moreover,
G(R) needs at least |C| colors because C is a subset of G(R) where |C| denotes the number
of elements of C. Hence C(R) < x(R). In the case x(R) is not finite, then C(R) < x(R)
also holds. Q.E.D.

The symbol [] denotes the disjoint union of sets.

Lemma 4. Let
viR)=w[w]] - IIv

is a disjoint union of V(R) such that no pair of distinct two elements of V; is joined by an
edge fori=1,2,...,t. Then x(R) £ t.

Proof. We color all vertices of V; by the same color and we color the vertices of V; and
the vertices of V; by different colors for i # j. It is a coloring of G(R). We need t kinds of

colors. Hence x(R) < t. Q.E.D.
Remark 5. If x(R) = n and ¢y, ... ,c¢, are colors of minimum coloring of G(R), then
we set

Vi = {x € V(R); x is colored by a color ¢;}

VR)=Wi[[V]T - TTV-

is a disjoint union of V' (R) such that no pair of distinct two elements of V; is joined by an
edge.

Then

Proposition 6. If R is an integral domain, then x(R) =1

Proof. Let x and y be elements of V(R). If x — y is a zero-divisor, then x = y because
R is an integral domain and 0 is only one zero-divisor of R. Hence G(R) has no edge and
G(R) is colored by a single color. This means that x(R) = 1. Q.E.D.

Primary decompositions of a Noetherian ring is reffered to [3].

Lemma 7. Let R be a Noetherian ring and

0)=Q:1[ Q)@

be an irredundant primary decomposition of (0). Set P, = /Q; fori=1,2,... ,t. Then the
following hold:
t
(1) Z(R) = Ui:l P
(2) ASSR(R) = {Pl,PQ, PN Pt}
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Under the notations in Lemma 7, P; is a clique of G(R) for i = 1,2, ... ,t because z —y
isin P; C Z(R) for all z and y in P;. Therefore by Lemma 3, we have

max{|P|; P € Assg(R)} £ C(R) = x(R).

Theorem 8. Let R be a Noethrian ring. If x(R) is finite, then R is an integral domain
or R is a finite ring.

Proof. Assume that R is not an integral domain. We will show that R is a finite ring.
The ideal (0) is not a prime ideal of R because R is not an integral domain. Let P be an
arbitrary element of Assg(R), then P # (0). Since x(R) is finite, we know that |P| is finite
by the previous argument. Furtheremore there exists a non-zero element a of P. Then
aR C P, hence |aR)] is finite. Let Anng(a) = {z € R;ax = 0} be the annihilator ideal of
a. Then we know that there is an R-module isomorphism aR = R/Anng(a). Note that
Anng(a) C Z(R) = Upeassp(ry - Hence |[Anng(a)| = 3 pepss,(ry [P| < 00. Since [aR] is
finite, we have |R/Anng(a)| < co. This means that |R| is finite. Q.E.D.

Note that a commutative ring R is an Artin ring if and only if every family of ideals of
R has a minimal element with respect to inclusion relation. Hence if R is a finite ring, then
R is an Artin ring.

The following is a structure theorem of Artin rings. A x B denotes the direct product
of sets A and B. If A and B are rings, then we cosider A x B as a ring.

Lemma 9([1] Theorem 8.7) Let R be an Artin ring and

0= Ne

be irredundant primary decomposition of (0). Set m; = /Q; fori=1,2,....t. Then
(1) R is isomorphic to a finite direct product of Artin local rings:

RgR1XR2X---XRt

where Ry = R/Q1,R/Q2,... ,Ri = R/Q.
(2) There exists a one-to-one correspondence between the set of mazimal ideals of R and
the set of mazximal ideals of Ry X Rg X -+ X Ry.

Lemma 10. Let Ry and Ry be commutative rings with the identity element. Let V
and W be finite subsets of V(Ry1) and V(R2) respectively such that no pair of distinct two
elements of V' is joined by an edge and so is W. Then there exist finite subsets Uy, ... , U,
of V. x W satisfying the following:

(1) VW= U1HU2HHUT

(2) No pair of distinct two elements of U; is joined by an edge fori=1,2,... r.

B3) U] = U] = --- = |Us|.

(4) r = max{ |V, |W]}.
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Proof. Set n = |V|,m = |W|,V = {a1,...,an} and W = {by,... , by} We will prove
the case n < m. We set

U1 = {(al, bl), (ag, bg), ceey (an, bn)},
Us = {(alv b2)7 (a27 b3)7 ceey (anv bn+1)}7

Um—n+1 = {(0»17 bm—n+1)a (a2; bm—n+2)a ey (ana bm)}y
Um7n+2 - {(ala bm7n+2)7 ((12; bmfnJrB)a ey (an; bl)}a

Um = {(al, bm), (ag, bl), ceey (an, bn—l)}-

Then V' x W is equal to the disjoint union Uy [[U2 ] - [[Um and m = max{|V|, |W|}.
Furtheremore we have |Uy| = |Uz| = - - = |Up| = n = /rmmin{|V],|W|}. We shall show
that no pair of distinct two elements of U, is joined by an edge for i = 1,2,... ,m. Let
x and y be distinct two elements of U; and set © = (x1,y1),y = (22,y2). Then by the
definition of U;, we see that x1 # x2 and y; # yo. Hence 1 — ¥ is not a zero-divisor of Ry
because no pair of distinct two elements of V' is joined by an edge. Also x5 — y2 is not a
zero-divisor of R5.This means that x — y is not a zero-divisor of Ry X Ry. Therefore x and
y are not joined by an edge.

We can also prove the case n > m. Q.E.D.

Lemma 11. Let Ry and Ro be finite commutative rings with the identity element.
Assume that the following hold:

(D) V(R) =Vi[IV2I1--- I Vs,

(2) V(Rz) = Wi [IW2 [T+ - [T W,

(3) Vi, Va, ..., V;, are finite subsets of V(Ry).

(4) Wy, Wa, ..., W,, are finite subsets of V(Rz).

(

(

5) No pair of distinct two elements of V;, is joined by an edge forii =1,2,...,r1.

6) No pair of distinct two elements of sz is joined by an edge foris =1,2,...  ro.

Then there exist finite subsets Th,Ts, ... ,Ts of R1 X Ry satisfying the followmg condi—
tions:

(a) V(Rl X Rg) = T1HT2H~'~HTS.
(b) No pair of distinct two elements of Ty, is joined by an edge fork =1,2,...,s.

(c)

T1

= Z max{|V;, [, [Wi,|}.

’Ll 112 1

Proof. We apply Lemmal0 to V;, and W;,. Then there exist finite subsets Ul(“’i2), R Ur(z;zfz))
of V;, x W,, satisfying the following properties:
( ‘/;1 X "A/'z2 — U(7417742 H H 11712)

r(i1,i2)"

i2)

)

2) No pair of distinct two elements of U(“’ is joined by an edge fori =1,2,... ,r(i1,i2).
)
)

(
(3 |U(u,z2)| = | ""(Zil,lj;)|
(4

r(in, iz) = maX{Ian (Wi, [}
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Hence we have

V(R1 x Rg) = HHVlesz

’Ll 112 1

- T T Ty

’Ll 112 1

‘/(}%1 X }%2) = ZH I;[be ];I s I;[ 1}

with the property (b). Moreover,

T1 T2 T1 To
s= 33 r(iniz) =Y. Y max{|Vi, |, [Wa,}.

i1=11i2=1 i1=1142=1

Then we can write

Q.E.D.

Lemma 12. Let Ry and Ro be finite commutative rings with the identity element.
Assume that the following hold:

(1) V(By) =Vi[IVa -1 Vi, -

(2) V(R2) = Wi [[W2 IT--- [ Wr,.

(3) Vi, Va,...,V,, are finite subsets of V(Ry).

(4) Wi, Wa, ..., Wy, are finite subsets of V(Rz).

(5) Vil = Vo = -+ = [Vi.|.

(6) [Wh] = [Wa| = - = [Wp,|.

(7) No pair of distinct two elements of Vi, is joined by an edge for iy =1,2,... ,71.
(8) No pair of distinct two elements of W, is joined by an edge foris =1,2,... 9.

Then there exist finite subsets Ty, Ts, ... ,Ts of R1 X Ro satisfying the following condi-

tions:

(a) V(R x Ry) = T1]_[T2]_[---]_[Ts-

(b) [Th| = [T| = - - = [T

(¢) No pair of dzstmct two elements of Ty, is joined by an edge for k =1,2,.
(d) s = max{ri1|Rs|, |R1|r2}.

Proof. Set t1 = |V;,| for i1 = 1,2,...,7r and ty = |W,,]| for i = 1,2,... ,r2. Under
the notations in the proof of Lemma 11, note that

U = = U | = mind |V, |, W, |} = min{ty, ta}.

r(i1,i2)

Hence we know that |Ti| = |Tz| = -+ = |Ts|. On the other hand, we see that |Ri| = rit;
and |Rg| = rota. This asserts that

71 (] 1 72

= >0 > max{|Vy [, |Wa,l} = D > max{ty, t2}

i1=11is=1 i1=14d2=1
= riromax{ty,t2} = max{riraty, rirata}
= max{|R1|r2, 1| Ra2|}-

Q.E.D.
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Example 13. Set Ry = Ry = Z/4Z. We denote by i the residue class of ¢ + 4Z for
1 = 0,1,2,3. Let m; and my be the maximal ideals of R; and Ry respectively. Then
m1 =mg = {0,2}. Set V1 = Wy ={0,1} and Vo = Wy = {2,3} Then

V(R) = Vi [V, V(B2) = Wi [T W

Set R = R; X Ry and set

T = {(O, 0)7 (17 1)}v Ty = {(O, 1)7 (17 0)}’
Ty = {(07 2)’ (17 3)}7 Ty = {(07 3)a (17 2)}7
Ts = {(27 O)’ (37 1)}7 Ts = {(27 1)a (37 0)}7
T7 = {(2, 2)7 (37 3)}’ Ty = {(2, 3)7 (37 2)}
Then no pair of distinct two elements of T}, is joined by an edge for £k = 1,2,...,8 and
VIR)=T1]1]-- 1 Ts.
Proposition 14. Let Ry,... , R be finite commutative rings with the identity element.

Assume that the following hold:

(1) V(R) =V TL--- 1TV fori=1,2,... ,t.

(2) Vl(i), .. ,V,«(f) are finite subsets of V(R;) fori=1,2,... ,t.

G) Vi = =V fori=1,2,... L.

(4) No pair of distinct two elements of Vk(i) is joined by an edge fork =1,2,... ,r; and
fori=1,2,... t.

Then there exist finite subsets Uy, ... ,Us of Ry X --- X Ry satisfying the following con-
ditions:

(a) V(R1XXRt):U1HHU5

(b) [Ur] = - = |Us.
(c) No pair of distinct two elements of U; is joined by an edge for j =1,2,...,s.
(d) s = max{|R1| """ |Ri_1|Ti|Ri+1| e |Rt|;i = 1, 2, cen ,t}.

Proof. We shall show Proposition 14 by induction on ¢t. The case ¢t = 1 is obvious.
Suppose that ¢ 2 1 and the assertion holds for ¢. Then by the induction hypothesis, we get
V(Ry x -+ x Ry) =Ur[]--]]Us with the properties (a)-(d). Furthermore

V(Re) = VTV T vy

P |W(tt:1)|- By Lemma 12, there exist finite subsets T1,...,Ty of

= S
(Ry X -+ X Ry) X Ryy1 satisfying the following conditions:
X

(1) V((Rl XRt)XRt+1):T1HHTS’
(2) T1] = - = T, |. ,
(3) No pair of distinct two elements of T}, is joined by an edge for k =1,2,...,s .
(4) s = max{s|Ryy1],[R1 X - X Ry|reqa}.
Hence s = max{|Ry|-----|Ri—1|ri|Rit1| - -~ |Re1];¢ = 1,2, ... ,t}. We prove the assertion.
Q.ED.

Proposition 15. Let (R,m) be finite Artin local ring. Then the following assertions
hold:
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(1) There exist finite subsets Ty, Ts, ..., T, of R satisfying the following conditions:

(a) V(R) = T [ T2 11+ L1 -

(b) T3] = T,| = |R/m].

(c) No pair of distinct two elements of T is joined by an edge for j =1,2,...,r.

(d) r =|m]|.

(2) X(R) = |m]

Proof. (1) Let ay+m, ... ,a;+m be all residue classes of R/m and set m = {z1,... ,z,}.
Furthermore set y;; = a; + «; for ¢ = 1,2,...,¢t and j = 1,2,...,r. Then we have
R={yy,;i=1,2,...,t;5=1,2,...,r}. Set Tj = {y;5;i =1,2,... ¢t} for j =1,2,...,r.
Then we get V(R) =T1 [[T2]]--- 11T and |Th| = --- = |T;| =t = |R/m|. Let y;; and y;

be distinct two elements of T;(j = 1,2,...,7). Then
Yis — ykg = (ai + ;) — (ar + 25) = a; —ax ¢ m = Z(R).

Hence no pair of distinct two elements of T is joined by an edge for j =1,2,...,r.

(2) By the assertion (1) and Lemma 4 we see that x(R) < r. Note that m = Z(R)
because Assg(R) = {m}. Therefore m is a clique of G(R). By Lemma 3 we have r < x(R).
This means that x(R) = r = |m|. Q.E.D.

Theorem 16. Let (R1,m1),..., (R, my) be finite Artin local rings. Then the following
assertions hold:
(1) There exist finite subsets Uy,... ,Us of Ry X - -+ x Ry satisfying the following condi-

(a) V(Rl Xoeee xRt):UlL[UQHHUq

(b) [UL] = -+ = [Us].

(c) No pair of distinct two elements of U; is joined by an edge for j =1,2,...,s.
(d) s:max{|R1| """ |Ri_1||mi||Ri+1| """" |Rt|;i: 1,2,... ,t}.

(2) x(B1 x -+ x By) = max{|Rq| - - - [Rima||mil|[Ria| - -+ - [Resi = 1,2, ... ¢}

Proof. (1) By Propositions 14 and 15, we get the assertion (1) noting that r; = |my]
under the notation r; in Proposition 15.
(2) Lemma 4 asserts that

X(Ri X -+ X Ry) Smax{|Rq| - |Ric1||mu||Riga] - |Re|;0 =1,2,... ,t}.

On the other hand Ry X «-+ X Rj_1 X m; X Rj11 X -+ X Ry is a clique of G(Ry X -+ X Ry).
Hence by Lemma 3 we have

max{|Ry| - [Rici||mil|Riga| -+ - |Relse =1,2,. .. ,t} S x(R1 X -+ X Ry).

Hence we get the assertion (2). Q.E.D.

Let R be a Noetherian ring. If x(R) is finite, then R is an integral domain or R is a
finite ring by Theorem 8.

Theorem 17. Let R be a Noetherian ring. Assume that x(R) is finite. Then the
following assertions hold:
(1) If R is an integral domain, then x(R) = 1.



52

JUNRO SATO AND KIYOSHI BABA

(2) If R is a finite ring, then

X(R) = max{|Mi]|,...,|M}

where My, ... , My are all mazimal ideals of R.

Proof. (1) The assertion (1) is clear from Proposition 6.
(2) If R is a finite ring, then R is a finite Artin ring. By Lemma 9, we know that R is

isomorphic to a finite direct product of Artin local rings (R1,m1),. .. , (R, m;). Moreover,
there is a one-to-one correspondence between {My - ---- My} and {Ry X -+ X R;_1 X m; X
Riy1 X -+ X Ri;i=1,2,...,t} by Lemma 9 (2). Hence Theorem 16 asserts that x(R) =
max{|Mi|,...,|M}. Q.E.D.

1]
2]
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