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Abstract. The best constant of Sobolev inequality associated with 2N-th order
Hurwitz-type differential operator is computed. Giambelli’s formula which appears in
representation theory of finite groups plays an important role.

1 Conclusion
For N = 1, 2, 3, · · · , we introduce the following characteristic polynomial with real coef-

ficients.

Q(z) =
N−1∏
j=0

(z + aj) =
N∑

j=0

qj zN−j (1.1)

We impose the following three equivalent assumptions.

Assumption 1.1 Q(z) is Hurwitz polynomial with distinct characteristic roots.

Assumption 1.2 Suppose that N = L + 2M (L, M = 0, 1, 2, · · · )
ai �= aj (i �= j), aj > 0 (0 ≤ j ≤ L − 1)
aL+j = aL+M+j , ReaL+j > 0, Im aL+j > 0 (0 ≤ j ≤ M − 1)

Assumption 1.3

G.C.D. (Q(z), Q′(z) ) = 1,

∣∣∣∣∣ q−i+2j+1

∣∣∣∣∣
0≤i,j≤k−1

> 0 (k = 1, 2, · · · , N)

where qk = 0 (k < 0 or k > N).

In relation to Q(z), we introduce another polynomial P (z) defined by

P (z) =
N−1∏
j=0

(z + a2
j) =

N∑
j=0

pj zN−j (1.2)

which satisfies P (−z2) = Q(−z)Q(z). The following relations hold

pk =
2k∑

j=0

(−1)k+jqj q2k−j (0 ≤ k ≤ N)

2000 Mathematics Subject Classification. 46E35, 41A44, 34B27.
Key words and phrases. Green function, Sobolev inequality, Giambelli’s formula, Hurwitz polynomial,

Schur polynomial .
∗He has retired at March 2004, and now he is an emeritus professor of Osaka University.



622 Y. KAMETAKA, A. NAGAI, K. WATANABE, K. TAKEMURA AND H. YAMAGISHI

where qj = 0 (N + 1 ≤ j < ∞). From Assumption 1.3 we have qj > 0 (0 ≤ j ≤ N − 1). We

also have p0 = 1, pN =
N−1∏
j=0

a2
j > 0 from (1.2).

We introduce Sobolev space

H = H(N) =
{

u(x)
∣∣∣∣ u(i)(x) ∈ L2(−∞,∞) (0 ≤ i ≤ N)

}
(1.3)

equipped with Sobolev inner product

(u, v)H =
∫ ∞

−∞

(
Q(D)u(x)

)(
Q(D) v(x)

)
dx (1.4)

In section 4, (·, ·)H is shown to be an inner product of H and rewritten as

(u, v)H =
∫ ∞

−∞

N∑
j=0

pj u(N−j)(x) v(N−j)(x) dx =
1
2π

∫ ∞

−∞
P (ξ2) û(ξ) v̂(ξ) dξ, (1.5)

where D = d/dx and û(ξ) is Fourier transform of u(x),

û(ξ) =
∫ ∞

−∞
e−

√−1ξxu(x) dx (−∞ < ξ < ∞).

We also introduce Sobolev energy

‖ u ‖2
H = (u, u)H =

∫ ∞

−∞

∣∣∣Q(D)u(x)
∣∣∣2dx =

∫ ∞

−∞

N∑
j=0

pj

∣∣∣u(N−j)(x)
∣∣∣2 dx =

1
2π

∫ ∞

−∞
P (ξ2) | û(ξ) |2 dξ. (1.6)

The purpose of this paper is to find the supremum of Sobolev functional given by

S(u) =
(

sup
−∞<y<∞

|u(y) |
)2 /

‖ u ‖2
H. (1.7)

In our previous paper [1], we have obtained the supremum of S(u) under the assumption

that P (z) =
N∑

j=0

pjz
N−j is factorized as follows.

P (z) =
N−1∏
j=0

(z + aj), 0 < a0 < a1 < · · · < aN−1

We extend the above result in the case P (z) is given by (1.2), where not all the coefficients
pj (0 ≤ j ≤ N − 1) are positive.

We introduce a function G(x, y) = G(x − y) defined by

G(x) =
1
2π

∫ ∞

−∞
e
√−1 xξ Ĝ(ξ) dξ (−∞ < x < ∞) (1.8)



GIAMBELLI’S FORMULA AND SOBOLEV INEQUALITY 623

where

Ĝ(ξ) =
1

P (ξ2)
(−∞ < ξ < ∞) (1.9)

As is shown later in section 2, the above function G(x−y) is Green function of the boundary
value problem for 2N -th order differential operator P (−D2). We remark that the inequality

δ
(
ξ2N + 1

)−1 ≤ Ĝ(ξ) ≤ δ−1
(
ξ2N + 1

)−1
(1.10)

holds for suitable number δ > 0, which follows from

P (ξ2) =
∣∣Q(√−1ξ

) ∣∣2 =
L−1∏
j=0

(
ξ2 + a2

j

)M−1∏
j=0

[
(ξ + Im aL+j)

2 + (Re aL+j)
2
]2

(−∞ < ξ < ∞)

Our conclusion is as follows.

Theorem 1.1 (1) C(N) = sup
u∈H, u �≡0

S(u) is given by C(N) = G(0). For any real number

y and complex number c, we have S(cG(x − y)) = C(N).

(2) inf
u∈H, u �≡0

S(u) = 0 (1.11)

The above theorem (1) is equivalently rewritten as follows.

Theorem 1.2 For any function u(x) ∈ H, there exists a positive constant C which is
independent of u(x) such that the following Sobolev inequality holds.(

sup
−∞<y<∞

|u(y) |
)2

≤ C

∫ ∞

−∞

N∑
j=0

pj

∣∣∣ u(N−j)(x)
∣∣∣2 dx (1.12)

Among such C the best constant C(N) is the same as that in Theorem 1.1(1). If we replace
C by C(N) in (1.12), the equality holds for

u(x) = c G(x − y) (−∞ < x < ∞) (1.13)

where y is an arbitrary real number and c is an arbitrary complex number.

The engineering meaning of Sobolev inequality is that the square of the maximum bending
of a string [2] (N = 1) or a beam (N = 2) is estimated from above by the constant multiple
of the potential energy.

Theorem 1.3 The best constant C(N) of Sobolev inequality is expressed in the following
two ways.

(1) C(1) =
1

2a0

C(N) =
(−1)N+1

2a0 · · ·aN−1

∣∣∣∣∣∣∣ a2i+1
j

· · · 1 · · ·

∣∣∣∣∣∣∣
/ ∣∣∣∣∣∣∣ a2i

j

∣∣∣∣∣∣∣ (N = 2, 3, 4, · · · )

(1.14)
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In the numerator of the right hand side of (1.14), we have 0 ≤ i ≤ N − 2, 0 ≤ j ≤ N − 1
and in the denominator 0 ≤ i, j ≤ N − 1.

(2) C(1) =
1

2q1

C(2) =
1

2q1q2

C(N) =
1

2 qN

∣∣∣∣∣ qN−2−2i+j

∣∣∣∣∣ /
∣∣∣∣∣ qN−1−2i+j

∣∣∣∣∣ (N = 3, 4, 5, · · · ) (1.15)

In the numerator of the right hand side of (1.15), we have 0 ≤ i, j ≤ N − 3 and in the
denominator 0 ≤ i, j ≤ N − 2.

We here list explicit forms of C(N) (N = 1, 2, 3, 4, 5).

C(1) =
1

2a0
=

1
2q1

C(2) = − 1
2a0a1

∣∣∣∣ a0 a1

1 1

∣∣∣∣/ ∣∣∣∣ 1 1
a2
0 a2

1

∣∣∣∣ =
1

2a0a1(a0 + a1)
=

1
2q1q2

C(3) =
1

2a0a1a2

∣∣∣∣∣∣
a0 a1 a2

a3
0 a3

1 a3
2

1 1 1

∣∣∣∣∣∣
/ ∣∣∣∣∣∣

1 1 1
a2
0 a2

1 a2
2

a4
0 a4

1 a4
2

∣∣∣∣∣∣
=

a0 + a1 + a2

2a0a1a2(a0 + a1)(a0 + a2)(a1 + a2)
=

1
2q3

q1

/ ∣∣∣∣ q2 q3

q0 q1

∣∣∣∣ =
q1

2q3(q1q2 − q3)

C(4) = − 1
2a0a1a2a3

∣∣∣∣∣∣∣∣
a0 a1 a2 a3

a3
0 a3

1 a3
2 a3

3

a5
0 a5

1 a5
2 a5

3

1 1 1 1

∣∣∣∣∣∣∣∣
/ ∣∣∣∣∣∣∣∣

1 1 1 1
a2
0 a2

1 a2
2 a2

3

a4
0 a4

1 a4
2 a4

3

a6
0 a6

1 a6
2 a6

3

∣∣∣∣∣∣∣∣
=

1
2q4

∣∣∣∣ q2 q3

q0 q1

∣∣∣∣/
∣∣∣∣∣∣

q3 q4 0
q1 q2 q3

0 q0 q1

∣∣∣∣∣∣ =
q1q2 − q3

2q4(q1q2q3 − q2
3 − q2

1q4)

C(5) =
1

2a0a1a2a3a4

∣∣∣∣∣∣∣∣∣∣
a0 a1 a2 a3 a4

a3
0 a3

1 a3
2 a3

3 a3
4

a5
0 a5

1 a5
2 a5

3 a5
4

a7
0 a7

1 a7
2 a7

3 a7
4

1 1 1 1 1

∣∣∣∣∣∣∣∣∣∣

/ ∣∣∣∣∣∣∣∣∣∣
1 1 1 1 1
a2
0 a2

1 a2
2 a2

3 a2
4

a4
0 a4

1 a4
2 a4

3 a4
4

a6
0 a6

1 a6
2 a6

3 a6
4

a8
0 a8

1 a8
2 a8

3 a8
4

∣∣∣∣∣∣∣∣∣∣
=

1
2q5

∣∣∣∣∣∣
q3 q4 q5

q1 q2 q3

0 q0 q1

∣∣∣∣∣∣
/ ∣∣∣∣∣∣∣∣

q4 q5 0 0
q2 q3 q4 q5

q0 q1 q2 q3

0 0 q0 q1

∣∣∣∣∣∣∣∣ =

q1q2q3 − q2
3 − q2

1q4 + q1q5

2q5(q1q2q3q4 − q2
3q4 − q2

1q2
4 − q1q2

2q5 + q2q3q5 + 2q1q4q5 − q2
5)
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This paper is organized as follows. In section 2, we consider the 2N -th order boundary
value problem and find its Green function G(x). In section 3, we give expressions of G(0),
where Giambelli’s formula [3, 4] plays an important role. In section 4, it is shown that
Green function is a reproducing kernel for H and (·, ·)H . The section 5 and 6 are devoted to
proofs of the main Theorems 1.2 and 1.1(2), respectively. Finally, in section 7, we consider
the special case of Theorem 1.2(N = 1, 2, 3).

2 Green function
We consider the following boundary value problem for a 2N -th order linear ordinary

differential operator P (−D2) = Q(−D)Q(D).
BVP(N){

P (−D2)u = f(x) (−∞ < x < ∞) (2.1)
u(i)(x) ∈ L2(−∞,∞) (0 ≤ i ≤ 2N ) (2.2)

Concerning the uniqueness and existence of the solution to BVP(N), we have the following
theorem.

Theorem 2.1 For any function f(x) ∈ L2(−∞,∞), BVP(N) has a unique solution u(x)
expressed as

u(x) =
∫ ∞

−∞
G(x, y) f(y) dy (−∞ < x < ∞) (2.3)

where G(x, y) = G(x − y) (−∞ < x, y < ∞) is Green function given by (1.8). It also has
the following equivalent expressions.

(1) G(x) =
N−1∑
j=0

1
P ′(−a2

j)
Gj(x) (2.4)

Gj(x) =
1

2aj
e−aj|x| (0 ≤ j ≤ N − 1, −∞ < x < ∞)

(2) G(x) = (−1)N+1

∣∣∣∣∣∣∣ a2i
j

Gj(x)

∣∣∣∣∣∣∣
/ ∣∣∣∣∣∣∣ a2i

j

∣∣∣∣∣∣∣ (2.5)

In the numerator of the right hand side of (2.5), we have 0 ≤ i ≤ N − 2, 0 ≤ j ≤ N − 1
and in the denominator 0 ≤ i, j ≤ N − 1.

(3) G(x) = (G0 ∗ · · · ∗ GN−1 )(x) (2.6)

where ∗ denotes the convolution operator defined by

(f ∗ g)(x) =
∫ ∞

−∞
f(x − y) g(y) dy (−∞ < x < ∞). (2.7)

From (3), in the case of aj > 0 (0 ≤ j ≤ N − 1), we have G(x) > 0.

In order to prove Theorem 2.1(2), we prepare the following well-known fact.



626 Y. KAMETAKA, A. NAGAI, K. WATANABE, K. TAKEMURA AND H. YAMAGISHI

Lemma 2.1 For any N ×N regular matrix A and N × 1 matrices b and c, we have the
following equality.

tbA−1c = −
∣∣∣∣∣∣∣

A c

tb 0

∣∣∣∣∣∣∣
/ ∣∣∣∣∣ A

∣∣∣∣∣
Proof of Theorem 2.1 (2.3) is obtained by considering Fourier transform of (2.1). We
here show (1), (2) and (3). From the partial fraction expansion

1
P (z)

=
N−1∑
j=0

1
P ′(−a2

j)
(z + a2

j)
−1,

we have

Ĝ(ξ) =
1

P (ξ2)
=

N−1∑
j=0

1
P ′(−a2

j)
Ĝj(ξ) (−∞ < ξ < ∞)

where Ĝj(ξ) = (ξ2 + a2
j)

−1 (−∞ < ξ < ∞, 0 ≤ j ≤ N − 1). This shows (1). Using
well-known fact⎛⎜⎜⎝ 1

P ′(−a2
i )

⎞⎟⎟⎠ =
⎛⎜⎜⎝ (−a2

j)
i

⎞⎟⎟⎠
−1⎛⎜⎜⎝

0
...
0
1

⎞⎟⎟⎠
we have

Ĝ(ξ) =
(

Ĝj(ξ)
)⎛⎜⎜⎝ (−a2

j)
i

⎞⎟⎟⎠
−1⎛⎜⎜⎝

0
...
0
1

⎞⎟⎟⎠ =

−
∣∣∣∣∣∣∣∣∣∣

0
(−a2

j)
i

...
0
1

Ĝj(ξ) 0

∣∣∣∣∣∣∣∣∣∣

/ ∣∣∣∣∣∣∣ (−a2
j)

i

∣∣∣∣∣∣∣
=

(−1)N+1

∣∣∣∣∣∣∣∣
a2i

j

Ĝj(ξ)

∣∣∣∣∣∣∣∣
/ ∣∣∣∣∣∣∣∣ a2i

j

∣∣∣∣∣∣∣∣
This shows (2). (3) follows immediately from

Ĝ(ξ) =
N−1∏
j=0

Ĝj(ξ) (−∞ < ξ < ∞)

which completes the proof of Theorem 2.1. �
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Theorem 2.2 Green function G(x, y) = G(N ; x, y) satisfies the following properties.

(1) P (−∂2
x)G(x, y) = Q(−∂x)Q(∂x)G(x, y) = 0 (−∞ < x, y < ∞, x �= y) (2.8)

(2) ξiĜ(ξ) ∈ L∞(−∞,∞) (0 ≤ i ≤ 2N ) (2.9)

(3) ∂i
xG(x, y)

∣∣∣
y=x−0

− ∂i
xG(x, y)

∣∣∣
y=x+0

=
{

0 (0 ≤ i ≤ 2N − 2)
(−1)N (i = 2N − 1) (−∞ < x < ∞)

(2.10)

(4) ∂i
xG(x, y)

∣∣∣
x=y+0

− ∂i
xG(x, y)

∣∣∣
x=y−0

=
{

0 (0 ≤ i ≤ 2N − 2)
(−1)N (i = 2N − 1) (−∞ < y < ∞)

(2.11)

The condition (2) assures that for every f(x) ∈ L2(−∞,∞) we have ∂i
x(G ∗ f)(x) ∈

L2(−∞,∞) (0 ≤ i ≤ 2N ).

Proof of Theorem 2.2 If x �= y, we have

P (−∂2
x)G(x, y) =

N−1∏
k=0

(−∂2
x + a2

k

)N−1∑
j=0

1
P ′(−a2

j)
Gj(x − y) =

N−1∑
j=0

1
P ′(−a2

j)

N−1∏
k=0

(−∂2
x + a2

k

)
Gj(x − y) =

N−1∑
j=0

1
2ajP ′(−a2

j)

N−1∏
k=0

(−a2
j + a2

k

)
e−aj |x−y| = 0,

which proves (1). (2) is obvious from (1.9). Next we show (3), the left-hand side of which
is written as

∂k
xG(x, y)

∣∣∣
y=x−0

− ∂k
xG(x, y)

∣∣∣
y=x+0

=

(−1)N+1

∣∣∣∣∣∣∣
a2i

j

∂k
xGj(x − y)

∣∣∣
y=x−0

− ∂k
xGj(x − y)

∣∣∣
y=x+0

∣∣∣∣∣∣∣
/ ∣∣∣∣∣∣∣ a2i

j

∣∣∣∣∣∣∣
(0 ≤ k ≤ 2N − 1, −∞ < x < ∞).

Employing the fact

∂k
xGj(x − y)

∣∣∣
y=x−0

− ∂k
xGj(x − y)

∣∣∣
y=x+0

= − 1
2
(
1 − (−1)k

)
ak−1

j ={
0 (k = 2l)
− a2l

j (k = 2l + 1) (0 ≤ l ≤ N − 1) (−∞ < x < ∞),

we have (3). (4) follows from (3). This completes the proof of Theorem 2.2. �

3 The best constant of Sobolev inequality
In this section, we prove the equivalence between (1.14) and (1.15) in Theorem 1.3.
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Putting x = 0 in (2.5) and employing Gj(0) = (2aj)−1 (0 ≤ j ≤ N − 1), we have

G(0) = (−1)N+1
∣∣∣∣∣∣∣

a2i
j

(2aj)−1

∣∣∣∣∣∣∣
/ ∣∣∣∣∣∣∣ a2i

j

∣∣∣∣∣∣∣
=

(−1)N+1 1
2a0 · · ·aN−1

∣∣∣∣∣∣∣
a2i+1

j

1

∣∣∣∣∣∣∣
/ ∣∣∣∣∣∣∣ a2i

j

∣∣∣∣∣∣∣
from which we obtain (1.14). Changing the row of the above determinant, we have

G(0) =
1

2qN

∣∣∣∣∣∣∣
a2N−3−2i

j

1

∣∣∣∣∣∣∣
/ ∣∣∣∣∣∣∣ a

2(N−1−i)
j

∣∣∣∣∣∣∣ (3.1)

where qN = a0 · · ·aN−1.
Here we introduce two partitions of natural numbers

λ = (λ0, λ1, · · · , λN−1) and µ = (µ0, µ1, · · · , µN−1)

where λi and µi are given as follows.

λi = N − 1 − i (0 ≤ i ≤ N − 1)

µi =
{

λi − 1 (0 ≤ i ≤ N − 2)
0 (i = N − 1)

By using the above λ and µ, (3.1) is rewritten as follows.

G(0) =
1

2qN

∣∣∣∣∣ aN−1−i+µi

j

∣∣∣∣∣
/∣∣∣∣∣ aN−1−i+λi

j

∣∣∣∣∣ =
1

2qN
Sµ(a)

/
Sλ(a) (3.2)

In the above expression, SY (a) denotes Schur polynomial associated with a partition Y =
(Y0, Y1, · · · , YN−1) (Y0 ≥ Y1 ≥ · · · ≥ YN−1 ≥ 0), which is defined by

SY (a) = SY (a0, · · · , aN−1) =

∣∣∣∣∣ aN−1−i+Yi

j

∣∣∣∣∣
/ ∣∣∣∣∣ aN−1−i

j

∣∣∣∣∣.
The following statement is the most important lemma in this paper.

Lemma 3.1 (Giambelli [4]) For a partition

Y = (Y0, Y1, · · · , YN−1) (Y0 ≥ Y1 ≥ · · · ≥ YN−1 ≥ 0) (3.3)

of a natural number, let Ŷ be a conjugate of Y defined by

Ŷ = (Ŷ0, Ŷ1, · · · , ŶN−1) Ŷi = #
{

j
∣∣ Yj ≥ i + 1

}
(0 ≤ i ≤ N − 1) (3.4)

Then we have

SY (a) =

∣∣∣∣∣ qj−i+�Yi

∣∣∣∣∣
0≤i,j≤N−1

(3.5)

where qj (1 ≤ j ≤ N) is the j-th fundamental symmetric polynomial of a = (a0, · · · , aN−1).
We also assume that q0 = 1 and qj = 0 for j < 0 or j > N.
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Applying Giambelli’s formula to (3.2) and considering that λ̂i = λi and µ̂i = µi, we
have the following equality.

G(0) =
1

2qN

∣∣∣∣∣ qj−i+�µi

∣∣∣∣∣
0≤i,j≤N−1

/∣∣∣∣∣ qj−i+�λi

∣∣∣∣∣
0≤i,j≤N−1

=

1
2qN

∣∣∣∣∣∣∣∣∣∣∣

qN−2 qN−1 · · · q2N−4 q2N−3

qN−4 qN−3 · · · q2N−6 q2N−5

...
...

...
...

q−N+2 q−N+3 · · · q0 q1

q−N+1 q−N+2 · · · q−1 q0

∣∣∣∣∣∣∣∣∣∣∣
/

∣∣∣∣∣∣∣∣∣∣∣

qN−1 qN · · · q2N−3 q2N−2

qN−3 qN−2 · · · q2N−5 q2N−4

...
...

...
...

q−N+3 q−N+4 · · · q1 q2

q−N+1 q−N+2 · · · q−1 q0

∣∣∣∣∣∣∣∣∣∣∣
=

1
2qN

∣∣∣∣∣∣∣∣∣
qN−2 qN−1 · · · q2N−5

qN−4 qN−3 · · · q2N−7

...
...

...
q−N+4 q−N+5 · · · q1

∣∣∣∣∣∣∣∣∣
/∣∣∣∣∣∣∣∣∣

qN−1 qN · · · q2N−3

qN−3 qN−2 · · · q2N−5

...
...

...
q−N+3 q−N+4 · · · q1

∣∣∣∣∣∣∣∣∣
where we have used the fact q0 = 1 and q−j = 0 (j ≥ 1). Thus we proved that (1.14) is
equivalent to (1.15).

4 Reproducing kernel
In this section, we show that Green function G(x, y) is a reproducing kernel for a set of

Hilbert space H and its inner product (·, ·)H introduced in section 1.
We first show that (·, ·)H is positive definite. Applying Parseval equality to (1.4), we

have

(u, v)H =
∫ ∞

−∞

(
Q(D)u(x)

)(
Q(D) v(x)

)
dx =

1
2π

∫ ∞

−∞

(
Q
(√−1 ξ

)
û(ξ)

)(
Q
(√−1 ξ

)
v̂(ξ)

)
dξ =

1
2π

∫ ∞

−∞
|Q(√−1 ξ

) |2û(ξ) v̂(ξ) dξ .

(4.1)

Sobolev energy (u, u)H is calculated as

‖ u ‖2
H = (u, u)H =

1
2π

∫ ∞

−∞
|Q(√−1 ξ

) |2 | û(ξ) |2 dξ

By the inequality (1.10) we have

‖ u ‖2
H ≥ δ

2π

∫ ∞

−∞

(
ξ2N + 1

) | û(ξ) |2 dξ

from which it is concluded that (·, ·)H is positive definite.
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Moreover, the right-hand side of (4.1) is expanded as follows.

(u, v)H =
1
2π

∫ ∞

−∞
P (ξ2) û(ξ) v̂(ξ) dξ =

1
2π

∫ ∞

−∞

N∑
j=0

pj ξ2(N−j) û(ξ) v̂(ξ) dξ =

1
2π

∫ ∞

−∞

N∑
j=0

pj

( (√−1ξ
)N−j

û(ξ)
)( (√−1ξ

)N−j
v̂(ξ)

)
dξ =

∫ ∞

−∞

N∑
j=0

pj u(N−j)(x) v(N−j)(x) dx

Theorem 4.1 (1) For any u(x) ∈ H, we have the following reproducing relation.

u(y) = (u(x), G(x, y) )H (−∞ < y < ∞) (4.2)

This means that Green function G(x, y) = G(x − y) is a reproducing kernel for H with the
inner product (·, ·)H .

(2) G(0) = G(y, y) = (G(x, y), G(x, y) )H (−∞ < y < ∞) (4.3)

Proof of Theorem 4.1 We note that

G(x − y) −̂→ e−
√−1 yξĜ(ξ)

Using Parseval equality, we have

(u(x), G(x, y) )H =
1
2π

∫ ∞

−∞
P (ξ2) û(ξ) e−

√−1yξĜ(ξ)dξ =

1
2π

∫ ∞

−∞
e
√−1yξû(ξ) dξ = u(y)

where we have used the fact

P (ξ2) Ĝ(ξ) = 1 (−∞ < ξ < ∞).

(2) is shown by putting u(x) = G(x, y) in (4.2). This completes the proof of Theorem 4.1.
�

5 Sobolev inequality and the best constant
In this section, we prove Theorem 1.2.

Proof of Theorem 1.2 Applying Schwarz inequality to (4.2) and using (4.3), we have

|u(y) |2 ≤ ‖ u ‖2
H ‖G(x, y) ‖2

H = G(0) ‖ u ‖2
H

Taking the supremum with respect to y (−∞ < y < ∞), we have(
sup

−∞<y<∞
|u(y) |

)2

≤ G(0) ‖ u ‖2
H.

Hence, we can take a positive constant C such that the following Sobolev inequality holds
for any function u(x) ∈ H .(

sup
−∞<y<∞

|u(y) |
)2

≤ C ‖ u ‖2
H. (5.1)
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The best constant C(N) among such C obviously satisfies

C(N) ≤ G(0). (5.2)

In the second place, for any fixed y0 (−∞ < y0 < ∞), we apply this inequality (5.1) to
u(x) = G(x, y0) ∈ H and have(

sup
−∞<y<∞

|G(y, y0) |
)2

≤ C(N) ‖G(x, y0) ‖2
H = C(N)G(0)

Combining this and trivial inequality

G(0)2 = |G(y0, y0) |2 ≤
(

sup
−∞<y<∞

|G(y, y0) |
)2

we have G(0) ≤ C(N). Together with (5.2), it is concluded that C(N) = G(0) and that
G(x, y0) is a best function for arbitrarily fixed y0, that is,(

sup
−∞<y<∞

|G(y, y0) |
)2

= C(N)||G(x, y0) ||2H

This proved Theorem 1.2. �

6 Infimum of Sobolev functional
In this section, we prove Theorem 1.1(2) concerning the infimum of Sobolev functional

S(u).
Proof of Theorem 1.1(2) Let h(x, t) be a heat kernel given as follows.

h(x, t) =
1√
4πt

exp
(−x2/(4t)

)
(−∞ < x < ∞, 0 < t < ∞)

It is easy to see that

sup
−∞<y<∞

|h(y, t) | = h(0, t) =
1√
4πt

holds. Since Fourier transform of h(x, t) is given by

ĥ(ξ, t) = e−ξ2t (−∞ < ξ < ∞, 0 < t < ∞)

its Sobolev energy is calculated as

‖ h(x, t) ‖2
H =

1
2π

∫ ∞

−∞
P (ξ2) e−2ξ2tdξ =

1
2π

∫ ∞

−∞

N∑
j=0

pj ξ2(N−j)e−2ξ2tdξ =

1
2π

N∑
j=0

pj

(
− 1

2
∂t

)N−j∫ ∞

−∞
e−2ξ2tdξ =

1
2
√

2π

N∑
j=0

pj

(
− 1

2
∂t

)N−j

t−1/2.

Hence we have

S(h(x, t)) =
(

1
4πt

)/⎛⎝ 1
2
√

2π

N∑
j=0

pj

(
− 1

2
∂t

)N−j

t−1/2

⎞⎠ −→ 0 (t → +0)
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which completes the proof of Theorem 1.1(2). �
Another proof of Theorem 1.1(2) For A > 0, we introduce a function

u(A; x) =
1
2π

∫ ∞

−∞
e
√−1xξ û(A; ξ) dξ (−∞ < x < ∞)

where

û(A; ξ) =
{

Ĝ(ξ) (|ξ| ≥ A)
0 (|ξ| < A)

It is easy to see

sup
−∞<y<∞

|u(A; y) | = u(A; 0) =
1
2π

∫
|ξ|≥A

Ĝ(ξ) dξ

On the other hand, we have

‖ u(A; x) ‖2
H =

1
2π

∫
|ξ|≥A

P (ξ2) |û(A; ξ)|2 dξ =
1
2π

∫
|ξ|≥A

Ĝ(ξ) dξ = u(A; 0).

Considering that Ĝ(ξ) ∈ L1(−∞,∞), we conclude that

S(u(A;x)) = u(A; 0) −→ 0 (A → ∞).

�

7 Explicit forms of best constants and functions
In this section, we find explicit forms the best constants C(N) and best functions in

simple cases N = 1, 2, 3. Although some of the results, where all the characteristic roots
aj are real, are obtained in our previous paper [1], we also list them for the sake of self-
containedness.

In the simplest case N = 1, or equivalently (L, M) = (1, 0), Sobolev space is given as
follows.

H = H(1) =
{

u(x)
∣∣∣∣ u(x), u′(x) ∈ L2(−∞,∞)

}
(7.1)

Corresponding Sobolev inner product is

(u, v)H =
∫ ∞

−∞

[
u′(x) v′(x) + p1 u(x) v(x)

]
dx (7.2)

where p1 = a2
0. Moreover we note that q1 = a0. We here rewrite a0 = a (0 < a < ∞) for

the sake of simplicity.
As a special case of Theorem 1.2 we have the next theorem.

Theorem 7.1 For any function u(x) ∈ H(1), there exists a positive constant C which is
independent of u(x) such that the following Sobolev inequality holds.(

sup
−∞<y<∞

|u(y) |
)2

≤ C

∫ ∞

−∞

[
|u′(x) |2 + p1 |u(x) |2

]
dx (7.3)
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Among such C the best constant is

C(1) =
1
2a

=
1

2q1
(7.4)

If we replace C by C(1) in (7.3), the equality holds for u(x) = c G(x − y) (−∞ < x < ∞)
where y is an arbitrary real number and c is an arbitrary complex number.

Green function G(x) is given by the following formula.

G(x) =
1
2a

e−a|x| (−∞ < x < ∞) (7.5)

In the second place, we treat the case N = 2, or equivalently (L, M) = (2, 0) or (0, 1).
In these cases, we consider Sobolev space

H = H(2) =
{

u(x)
∣∣∣∣ u(x), u′(x), u′′(x) ∈ L2(−∞,∞)

}
(7.6)

Sobolev inner product

(u, v)H =
∫ ∞

−∞

[
u′′(x) v′′(x) + p1 u′(x) v′(x) + p2 u(x) v(x)

]
dx (7.7)

where p1 = a2
0 + a2

1, p2 = a2
0a

2
1. We note that q1 = a0 + a1, q2 = a0a1.

In the case (L, M) = (2, 0), we put a0 = a, a1 = b (0 < a < b), then we have

p1 = a2 + b2, p2 = a2b2, q1 = a + b, q2 = ab

In the case (L, M) = (0, 1), we put a0 = a +
√−1 b, a1 = a−√−1 b (0 < a, b), then we

have

p1 = 2(a2 − b2), p2 = (a2 + b2)2, q1 = 2a, q2 = a2 + b2

As a special case of Theorem 1.2 we have the next theorem.

Theorem 7.2 For any function u(x) ∈ H(2), there exists a positive constant C which is
independent of u(x) such that the following Sobolev inequality holds.(

sup
−∞<y<∞

|u(y) |
)2

≤ C

∫ ∞

−∞

[
|u′′(x) |2 + p1 |u′(x) |2 + p2 |u(x) |2

]
dx (7.8)

Among such C the best constant is

C(2) =
1

2a0a1(a0 + a1)
=

1
2q1q2

=⎧⎪⎪⎪⎨⎪⎪⎪⎩
1

2ab(a + b)
(L, M) = (2, 0)

1
4a(a2 + b2)

(L, M) = (0, 1)
(7.9)

If we replace C by C(2) in (7.8), the equality holds for u(x) = c G(x − y) (−∞ < x < ∞)
where y is an arbitrary real number and c is an arbitrary complex number.

Green function G(x) is given by the following formula.
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G(x) =
1

a2
1 − a2

0

[
1

2a0
e−a0|x| − 1

2a1
e−a1|x|

]
=

⎧⎪⎪⎪⎨⎪⎪⎪⎩
1

b2 − a2

[
1
2a

e−a|x| − 1
2b

e−b|x|
]

(L, M) = (2, 0)

1
4ab(a2 + b2)

e−a|x|
[

a sin( b|x| ) + b cos( b|x| )
]

(L, M) = (0, 1)

(−∞ < x < ∞) (7.10)

Finally, we treat the case N = 3, or equivalently (L, M) = (3, 0) or (1, 1). In these cases,
we consider Sobolev space

H = H(3) =
{

u(x)
∣∣∣∣ u(x), u′(x), u′′(x), u′′′(x) ∈ L2(−∞,∞)

}
(7.11)

Sobolev inner product

(u, v)H =
∫ ∞

−∞

[
u′′′(x) v′′′(x) + p1 u′′(x) v′′(x) + p2 u′(x) v′(x) + p3 u(x) v(x)

]
dx

(7.12)

where p1 = a2
0 + a2

1 + a2
2, p2 = a2

0a
2
1 + a2

1a
2
2 + a2

2a
2
0, p3 = a2

0a
2
1a

2
2.

In the case (L, M) = (3, 0), we put a0 = a, a1 = b, a2 = c (0 < a < b < c), then we
have

p1 = a2 + b2 + c2, p2 = a2b2 + b2c2 + c2a2, p3 = a2b2c2

In the case (L, M) = (1, 1), we put a0 = a, a{ 1
2

= b ±√−1 c (0 < a, b, c), then we have

p1 = a2 + 2b2 − 2c2, p2 = b4 + c4 + 2a2b2 + 2b2c2 − 2c2a2, p3 = a2(b2 + c2)2

As a special case of Theorem 1.2 we have the next theorem.

Theorem 7.3 For any function u(x) ∈ H(3), there exists a positive constant C which is
independent of u(x) such that the following Sobolev inequality holds.(

sup
−∞<y<∞

|u(y) |
)2

≤

C

∫ ∞

−∞

[
|u′′′(x) |2 + p1 |u′′(x) |2 + p2 |u′(x) |2 + p3 |u(x) |2

]
dx (7.13)

Among such C the best constant is

C(3) =
a0 + a1 + a2

2a0a1a2(a0 + a1)(a1 + a2)(a2 + a0)
=

⎧⎪⎪⎪⎨⎪⎪⎪⎩
a + b + c

2abc(a + b)(b + c)(c + a)
(L, M) = (3, 0)

a + 2b

4ab(b2 + c2)(a2 + b2 + c2 + 2ab)
(L, M) = (1, 1)

(7.14)
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If we replace C by C(3) in (7.13), the equality holds for u(x) = c G(x − y) (−∞ < x < ∞)
where y is an arbitrary real number and c is an arbitrary complex number.

If (L, M) = (3, 0), Green function G(x) is given by

G(x) =
1

2a(a2 − b2)(a2 − c2)
e−a|x| +

1
2b(b2 − a2)(b2 − c2)

e−b|x| +
1

2c(c2 − a2)(c2 − b2)
e−c|x| (−∞ < x < ∞) (7.15)

and if (L, M) = (1, 1)

G(x) =
1

(a2 + b2 + c2 + 2ab)(a2 + b2 + c2 − 2ab)

[
1
2a

e−a|x| +

1
4bc(b2 + c2)

e−b|x|{c(a2 − 3b2 + c2) cos(c|x|) + b(a2 − b2 + 3c2) sin(c|x|)}]
(−∞ < x < ∞)

(7.16)
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