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Abstract. Let X be a topological space, � a cover of X and Cb(X,� ;�) the alge-
bra of all � -valued continuous functions on X, which are bounded on every S ∈ �.
Necessary and sufficient conditions for a subalgebra A of Cb(X,� ;�) to be dense in
Cb(X,� ;�) in the topology τ� of �-convergence and in the �-strict topology β� on
Cb(X,� ;�) are given. Also, necessary and sufficient conditions for the completeness
of the topological algebras (Cb(X,� ;�), τ�) and (Cb(X,� ;�), β�) are given.

1 Introduction Let X be a topological space and K one of the fields R of real numbers
or C of complex numbers. The algebra Cb(X, K) of all K-valued continuous and bounded
functions on X is one of the most studied objects in modern analysis. Usually it has been
equipped either with the topology τX of uniform convergence or with the strict topology
βX . It is well-known that the structure of (Cb(X), τX) is quite complicated. For exam-
ple, its Gelfand space (the set of all maximal regular ideals equipped with the relative
weak*-topology) is homeomorphic to the Stone-Cech compactification β(X) of X . Another
difficulty is based on the fact that (Cb(X), τX) does not satisfy the Stone-Weierstrass prop-
erty, i.e., a pointseparating subalgebra (if K = C, then a self-adjoint subalgebra), which
is bounded away from zero, is not necessarily uniformly dense in Cb(X). In fact, in order
that a subalgebra is dense in (Cb(X), τX) one has to replace the property separation of
points by separation of zero-sets. On the other hand, (Cb(X), βX) is in some sense easier to
handle than (Cb(X), τX). For example, its Gelfand space is homeomorphic to X and it also
satisfies the Stone-Weierstrass property. However, (Cb(X), βX) is not necessarily complete
whereas (Cb(X), τX) always has this property.

The structure of Cb(X), when equipped with the uniform or with the strict topology, has
been generalized in the literature in several ways. In [6] and [7] proper subalgebras of Cb(X)
and their Stone-Weierstrass type properties and ideal structures were developed. In the
present paper, Stone-Weierstrass properties as well as completeness properties of algebras
of continuous functions containing also unbounded functions (in both topologies described
above) are considered. These results are important by the remark made in [5]. Namely,
Stone-Weierstrass property is closely related to the Gelfand representations of several kinds
of topological algebras. In particular, the Gelfand representations of locally A-convex and
uniformly locally A-convex algebras can be described by means of such function algebras
(see [4]). Also, the results of this paper are needed in [3], where a description of the ideal
structure of algebras containing continuous unbounded functions is given.

2 Preliminaries
1. Let X be a topological space, S a cover1 of X and K one of the fields R of real numbers
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ness.
1That is, � is a collection of subsets of X, whose union is X. The cover � of X is a closed cover, if

every S ∈ � is closed in X, and a compact cover, if every S ∈ � is compact in X.
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or C of complex numbers. We will denote by C(X, K) the set of all K-valued continuous
functions on X , by Cb(X, K) the subset of C(X, K) consisting of bounded functions, and
by Cb(X, K; S) the subset of C(X, K) consisting of functions, which are bounded on every
S ∈ S. Obviously

Cb(X, K) ⊂ Cb(X, K; S) ⊂ C(X, K).

Herewith, Cb(X, K; S) = Cb(X, K), if S has only a finite number of elements (in particular,
if S = {X}), and Cb(X, K; S) = C(X, K), if S consists of bounding subsets2 of X , that is,
of such subsets S ⊂ X for which f(S) is bounded in K for every f ∈ C(X, K). It is easy
to see that Cb(X, K), Cb(X, K; S) and C(X, K) are algebras over K with respect to the
pointwise algebraic operations on X .

2. Let X be a topological space. It is said that a subset A of C(X, K)

a) separates the points of X , if for any pair (x1, x2) of distinct points of X there exists
f ∈ A such that f(x1) �= f(x2);

b) separates the zero-sets3 of X , if for any pair (Z1, Z2) of disjoint zero-sets of X there
exists an R-valued f ∈ A such that f(Z1) and f(Z2) have disjoint closures in R;

c) is bounded away from zero, if for every x ∈ X there exists f ∈ A such that f(x) �= 0;

and in the case when K = C

d) is self-adjoint, if f̄ ∈ A for every f ∈ A (here f̄ denotes the complex conjugate of f).

3. Let X be a topological space and S a cover of X . It is said (see [2], p. 5) that (X, S)
has the extension property, if for every S ∈ S and f ∈ Cb(S, K) there exists g ∈ Cb(X, K; S)
such that g|S = f . It is known that (X, S) has the extension property, for example, if either
X is a completely regular Hausdorff space and every S ∈ S is compact in X (see [14], p.
43) or X is a normal space and every S ∈ S is closed in X (Tietze’s extension theorem).

4. Let X be a topological space and S a cover of X . We will say that (X, S) has
the weak extension property, if for arbitrary ε > 0, S ∈ S and f ∈ Cb(S, K) there exists
g ∈ Cb(X, K; S) such that supx∈S |f(x) − g(x)| < ε. If (X, S) has the extension property,
then (X, S) also has the weak extension property.

5. Let X be a topological space, S a cover of X and S+
0 (X) the set of all non-negative

upper semicontinuous real-valued functions on X , which vanish at infinity. We will denote
by τX the topology of uniform convergence on Cb(X, K) (defined by the norm ‖ ‖X , where

‖f‖X = sup
x∈X

|f(x)|

for every f ∈ Cb(X, K)), by βX the strict topology on Cb(X, K) (defined by the system
{pv : v ∈ S+

0 (X)} of seminorms, where

pv(f) = sup
x∈X

v(x)|f(x)|

for every f ∈ Cb(X, K)), by τS the topology of S-convergence on Cb(X, K; S) (defined by
the system {pS : S ∈ S} of seminorms, where

pS(f) = sup
x∈S

|f(x)|

2For example, pseudocompact (in particular, compact) sets.
3A subset Z of X is called a zero-set of X, if Z = {x ∈ X : f(x) = 0} for some f ∈ C(X,�).
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for every f ∈ Cb(X, K; S)), and by βS the S-strict topology on Cb(X, K; S) (defined by the
system {pS,vS : S ∈ S, vS ∈ S+

0 (S)} of seminorms, where

pS,vS(f) = sup
x∈S

vS(x)|f(x)|

for every f ∈ Cb(X, K; S)). We clearly have βX ⊂ τX on Cb(X, K) and βS ⊂ τS on
Cb(X, K; S).

It is easy to see that the multiplication on algebras Cb(X, K) and Cb(X, K; S) is jointly
continuous with respect to all topologies mentioned above. Herewith, the well-known topo-
logical algebras (Cb(X, K), τX), (Cb(X, K), βX) and (C(X, K), τK) (here K denotes the collec-
tion of all compact subsets of X , and so τK is the usual compact-open topology on C(X, K))
are special cases of the topological algebras (Cb(X, K; S), τS) and (Cb(X, K; S), βS).

6. Necessary and sufficient conditions for a subalgebra A of Cb(X, K; S) to be dense
in Cb(X, K; S) in the topology τS of S-convergence and in the S-strict topology βS are
given. Also, necessary and sufficient conditions for the completeness of (Cb(X, K; S), τS)
and (Cb(X, K; S), βS) are given in the present paper.

3 Stone-Weierstrass type theorems for algebras of bounded continuous func-
tions The classical Stone-Weierstrass theorem gives sufficient conditions for a subalgebra
A of C(X, K) to be dense in C(X, K) in the topology τX of uniform convergence with X
a compact Hausdorff space. This result and its several generalizations (see for example [6]
and [23], p. 119) are applicable in many areas of mathematics. We shall now represent
these generalizations, as they are needed later in this paper.

Theorem 3.1. (see [20], Theorem 2.5 for4 K = R and [1], Theorem 1 for K = C) Let X be
a topological space. A subalgebra (if K = C, then a self-adjoint subalgebra) A of Cb(X, K)
is dense in Cb(X, K) in the topology τX of uniform convergence if and only if

a) A separates the zero-sets of X;

b) there exists f ∈ A such that infx∈X |f(x)| > 0.

To describe dense subalgebras of Cb(X, K) in the strict topology βX , we need the fol-
lowing results:

Lemma 3.1. Let X be a topological space, A a subalgebra of Cb(X, R) and f ∈ Cb(X, R)
arbitrary. Then f belongs to the closure of A in the strict topology βX if and only if the
following conditions are satisfied:

a) for every pair (x, y) of distinct points of X such that f(x) �= f(y) there exists g ∈ A
such that g(x) �= g(y);

b) for every x ∈ X such that f(x) �= 0 there exists g ∈ A such that g(x) �= 0.

Proof. See [22], p. 69.

Lemma 3.2. Let X be a topological space and A a self-adjoint subalgebra of Cb(X, C).
Then the set �A of real parts �f of functions f ∈ A is a subalgebra of Cb(X, R) and
A = �A + i�A.

Proof. See [19], pp. 47–48.

4See also [11], Theorem 6; [21], Corollary 1; [9] and [12].
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Theorem 3.2. Let X be a topological space. A subalgebra (if K = C, then a self-adjoint
subalgebra) A of Cb(X, K) is dense in Cb(X, K) in the strict topology βX , if (when X is a
completely regular Hausdorff space, then if and only if)

a) A separates the points of X;

b) A is bounded away from zero.

Proof. If K = R, then by [13], Theorem 3.15, the conditions a) and b) are sufficient to imply
that A is dense in Cb(X, R) in the strict topology βX . Let now K = C and suppose that A
satisfies the conditions a) and b). Then for any two distinct points x and y of X there exists
f, f ′ ∈ A such that f(x) �= f(y) and f ′(x) �= 0. By Lemma 3.2, f = g+ ih and f ′ = g′+ ih′,
where g, g′, h and h′ belong to �A. Obviously g(x) �= g(y) or h(x) �= h(y) and g′(x) �= 0 or
h′(x) �= 0. Since �A is a subalgebra of Cb(X, R), the first part of Theorem 3.2 implies that
�A is dense in Cb(X, R) in the strict topology βX . Now, for a given f ∈ Cb(X, C), the real
part �f and the imaginary part �f of f belong to Cb(X, R), and so

f = �f + i�f ∈ cl(�A) + icl(�A) ⊂ cl(�A + i�A) = cl(A).

Hence, A is dense in Cb(X, C) in the strict topology βX .
Suppose next that X is a completely regular Hausdorff space and A is a dense subalgebra

of Cb(X, K) in the strict topology βX . Then any two distinct points x and y of X define
a continuous function f : X → [0, 1] such that f(x) = 1 and f(y) = 0. As f ∈ Cb(X, R)
and A (in the complex case �A)6 is dense in Cb(X, R), Lemma 3.1 implies the existence
of g, h ∈ A such that g(x) �= g(y) and h(x) �= 0. Hence, A satisfies the conditions a) and
b).

Theorem 3.3. (see [19], p. 48) Let X be a completely regular Hausdorff space. A subalgebra
(if K = C, then a self-adjoint subalgebra) A of C(X, K) is dense in C(X, K) in the compact-
open topology τK if and only if A satisfies the conditions a) and b) of Theorem 3.2.

4 Stone-Weierstrass type theorems for algebras containing unbounded con-
tinuous functions To describe dense subalgebras of Cb(X, K; S) in the topology τS of
S-convergence and in the S-strict topology βS, we need the following two results.

Proposition 4.1. (In the case of topology τS, see also [2], p. 5) Let X be a topological
space and S a cover of X. A subalgebra A of Cb(X, K; S) is dense in Cb(X, K; S) in the
topology τS of S-convergence (respectively, in the S-strict topology βS), if

AS = {f|S : f ∈ A}
is dense in Cb(S, K) in the topology τS of uniform convergence (respectively, in the strict
topology βS) for every S ∈ S.

Proof. Let f ∈ Cb(X, K; S) be given and denote by O(f) an arbitrary neighbourhood
of f in the topology τS of S-convergence (respectively, in the S-strict topology βS) on
Cb(X, K; S). Then there exist ε > 0 and S ∈ S such that

{g ∈ Cb(X, K; S) : pS(f − g) < ε} ⊂ O(f)
5See also [22], p. 70 and [8], p. 101.
6Suppose �A is not βX -dense in Cb(X,�). Then there exist f0 ∈ Cb(X,�) and a neighbourhood O(f0)

of f0 in the strict topology βX on Cb(X,�) such that �A ∩ O(f0) is empty. Further, if g0 = f0 + if0 and
O(g0) = O(f0) + iO(f0), then g0 ∈ Cb(X, � ) and O(g0) is a neighbourhood of g0 in the strict topology βX

on Cb(X, � ) such that O(g0) ∩ A is empty, a contradiction.
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(respectively, there exist ε > 0, S ∈ S and vS ∈ S+
0 (S) such that

{g ∈ Cb(X, K; S) : pS,vS(f − g) < ε} ⊂ O(f)).

Since AS is dense in Cb(S, K) in the topology τS of uniform convergence (respectively, in
the strict topology βS), there exists g ∈ A such that

‖f|S − g|S‖S < ε (respectively, pvS (f|S − g|S) < ε).

As
pS(f − g) = ‖f|S − g|S‖S (respectively, pS,vS(f − g) = pvS (f|S − g|S)),

A∩O(f) is not empty. Hence, A is dense in Cb(X, K; S) in the topology τS of S-convergence
and in the S-strict topology βS.

For the converse, we have the following:

Proposition 4.2. Let X be a topological space, S a cover of X and A a dense subalgebra
of Cb(X, K; S) in the topology τS of S-convergence (respectively, in the S-strict topology
βS). Then for every S ∈ S

a) AS is dense in Cb(S, K) in the topology τS of uniform convergence if and only if (X, S)
has the weak extension property;

b) AS is dense in Cb(S, K) in the strict topology βS.

Proof. a) It clearly suffices to show that if (X, S) has the weak extension property, then
AS is dense in Cb(S, K) in the topology τS of uniform convergence. So, let f ∈ Cb(S, K)
and ε > 0 be given. Then there exists g ∈ Cb(X, K; S) such that

sup
x∈S

|f(x) − g(x)| = ‖f − g|S‖S <
ε

2
.

On the other hand, the set

O(g) = {h ∈ Cb(X, K; S) : pS(g − h) <
ε

2
}

is a neighbourhood of g in the topology τS of S-convergence on Cb(X, K; S). Since A is
τS-dense in Cb(X, K; S), the intersection A∩O(g) is not empty. This implies the existence
of h ∈ A such that

‖g|S − h|S‖S = pS(g − h) <
ε

2
.

Thus,
‖f − h|S‖S ≤ ‖f − g|S‖S + ‖g|S − h|S‖S <

ε

2
+

ε

2
= ε,

and so AS is dense in Cb(S, K) in the topology τS of uniform convergence.
b) Let f ∈ Cb(S, K) be given and denote by O(f) an arbitrary neighbourhood of f in

the strict topology βS on Cb(S, K). Then there exist vS ∈ S+
0 (S) and ε > 0 such that

{g ∈ Cb(S, K) : pvS (f − g) < ε} ⊂ O(f).

Moreover, the set Cb(X, K; S)S = {g|S : g ∈ Cb(X, K; S)} is clearly a subalgebra (if K = C,
then a self-adjoint subalgebra) of Cb(S, K), which separates the points of S and is bounded
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away from zero. So, by Theorem 3.2, Cb(X, K; S)S is dense in Cb(S, K) in the strict topology
βS . Thus, there exists g ∈ Cb(X, K; S) such that

pvS (f − g|S) <
ε

2
.

Let now
O(g) = {h ∈ Cb(X, K; S) : pS,vS(g − h) <

ε

2
}.

Then O(g) is a neighbourhood of g in the S-strict topology βS on Cb(X, K; S). Since A is
βS-dense in Cb(X, K; S), the intersection A∩ O(g) is not empty. Thus, there exists h ∈ A
such that

pvS (g|S − h|S) = pS,vS(g − h) <
ε

2
,

and so
pvS (f − h|S) ≤ pvS (f − g|S) + pvS (g|S − h|S) <

ε

2
+

ε

2
= ε.

Hence, AS ∩O(f) is not empty, and therefore AS is dense in Cb(S, K) in the strict topology
βS .

Theorem 4.1. Let X be a topological space, S a cover7 of X and A a subalgebra (if
K = C, then a self-adjoint subalgebra) of Cb(X, K; S). Then A is dense in Cb(X, K; S) in
the topology τS of S-convergence, if (when (X, S) has the weak extension property, then if
and only if) for every S ∈ S

a) AS separates the zero-sets of S;

b) there exists f ∈ A such that infx∈S |f(x)| > 0.

Proof. Theorem 4.1 holds by Propositions 4.1 and 4.2 and Theorem 3.1.

Theorem 4.2. (see [2], Corollary 2) Let X be a completely regular Hausdorff space and
S a compact cover of X, which is closed with respect to finite unions. A subalgebra (if
K = C, then a self-adjoint subalgebra) A of C(X, K) is dense in C(X, K) in the topology
τS of S-convergence if and only if A separates the points of X and is bounded away from
zero.

Proof. Since X is a completely regular Hausdorff space and every S ∈ S is compact, (X, S)
has the extension property and Cb(X, K; S) = C(X, K). If A is dense in C(X, K) in the
topology τS of S-convergence, then AS is, by Proposition 4.2, dense in C(S, K) in the
topology τS of uniform convergence for every S ∈ S. Let now x and y be any two distinct
points of X . Then there exists S ∈ S such that x, y ∈ S. By the classical Stone-Weierstrass
theorem, there exists f, g ∈ A such that f|S(x) �= f|S(y) and g|S(x) �= 0. Thus, A separates
the points of X and is bounded away from zero.

Suppose next that A separates the points of X and is bounded away from zero. Then for
every S ∈ S, AS is a subalgebra (if K = C, then a self-adjoint subalgebra) of C(S, K), which
satisfies corresponding conditions. So, again by the classical Stone-Weierstrass theorem, AS

is τS-dense in C(S, K) for every S ∈ S. Thus, by Proposition 4.1, A is dense in C(X, K) in
the topology τS of S-convergence.

7The case when � consists of all pseudocompact C∗-embedded subsets of X (that is, of such subsets
S ⊂ X for which every f ∈ Cb(S,�) can be extended to a function from Cb(X,�)) is considered in [20],
Theorem 3.1, and the case in which X is a real Banach space and � consists of all bounded subsets of X
is considered in [17], Proposition 5.
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Similarly to Theorem 4.2, we can prove (using Theorem 3.2 instead of the classical
Stone-Weierstrass theorem) the following result:

Theorem 4.3. Let X be a topological space and S a cover of completely regular Hausdorff
subsets of X, which is closed with respect to finite unions. A subalgebra (if K = C, then a
self-adjoint subalgebra) A of Cb(X, K; S) is dense in Cb(X, K; S) in the S-strict topology
βS if and only if A separates the points of X and is bounded away from zero.

5 Completeness Let X be a topological space, S a cover of X and Fb(X, K; S) the
set of all K-valued functions on X , which are bounded on every S ∈ S. It is easy to see
that Fb(X, K; S) is an algebra over K with respect to the pointwise algebraic operations on
X . If we endowe Fb(X, K; S) with the topology τS of S-convergence or with the S-strict
topology βS, then the multiplication on Fb(X, K; S) is jointly continuous.

In this section we shall study completeness properties of Cb(X, K; S), first in the topol-
ogy τS of S-convergence, and then in the S-strict topology βS. The next useful lemma
and the definition following it, are needed in several results of the section.

Lemma 5.1. Let X be a completely regular Hausdorff space and S a cover of X. Then
Fb(X, K; S) is complete in the topology τS of S-convergence and in the S-strict topology
βS.

Proof. For the topology τS of S-convergence, see [18], p. 71. For the S-strict topology βS

the proof is similar to the proof for the usual strict topology.

Definition 5.1. Let X be a topological space and S a cover of X . We will say that X
is a SR-space, if from f ∈ Fb(X, R; S) and f|S ∈ C(S, R) for every S ∈ S, it follows that
f ∈ C(X, R).

So in particular, when S = K, then a SR-space is just a usual kR-space, that is, such
a topological space X for which every f : X → R is continuous, if the restriction f|K is
continuous for every compact subset K of X .

Proposition 5.1. Let X be a completely regular Hausdorff space, S a cover of X and

A = {f ∈ Fb(X, K; S) : f|S ∈ C(S, K) for every S ∈ S}.

Then A is complete in the topology τS of S-convergence.

Proof. Let (fα) be a Cauchy net in (A, τS). Then, by Lemma 5.1, (fα) converges to a
function f ∈ Fb(X, K; S) in the topology τS of S-convergence. In particular, for every
x ∈ X the net (fα(x)) converges to f(x). Let now S ∈ S be given. Then (fα|S) is
clearly a Cauchy net in (Cb(S, K), τS). So, by the completeness of (Cb(S, K), τS), the net
(fα|S) converges to a function gS ∈ Cb(S, K) in the topology τS of uniform convergence. In
particular, for every x ∈ S the net (fα(x)) converges to gS(x). Thus, f|S = gS ∈ C(S, K),
and so A is complete in the topology τS of S-convergence.

Corollary 5.1. Let X be a completely regular Hausdorff space and S a cover of X. If X
is a SR-space, then (Cb(X, K; S), τS) is complete.

Theorem 5.1. Let X be a completely regular Hausdorff space, S a cover of X, and suppose
that (X, S) has the weak extension property. Then (Cb(X, K; S), τS) is complete if and only
if X is a SR-space.
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Proof. By Corollary 5.1, it suffices to show that if (Cb(X, K; S), τS) is complete, then X is
a SR-space. For this, let8 f ∈ A be given and denote by O(f) an arbitrary neighbourhood
of f in the topology τS of S-convergence on A. Then there exist ε > 0 and S ∈ S such
that

{g ∈ A : pS(f − g) < ε} ⊂ O(f).

Since (X, S) has the weak extension property and f|S ∈ Cb(S, K), there exists g ∈ Cb(X, K; S)
such that

pS(f − g) = sup
x∈S

|f(x) − g(x)| < ε.

Thus, the intersection Cb(X, K; S)∩O(f) is not empty, and so Cb(X, K; S) is dense in A in
the topology τS of S-convergence. However, since (Cb(X, K; S), τS) is a complete subset
of the Hausdorff space A, we must have Cb(X, K; S) = A. Hence, X is a SR-space.

Next we will study the completeness of (Cb(X, K; S), βS). Note first that even for a
completely regular Hausdorff space X , (Cb(X, K), βX) is not necessarily complete. Namely,

(Cb(X, K), βX)c = {f ∈ Fb(X, K) : f|K ∈ C(K, K) for every K ∈ K},
where (Cb(X, K), βX)c denotes the completion of (Cb(X, K), βX) and Fb(X, K) denotes the
set of all K-valued bounded functions on X (see [16], p. 27 and [15], p. 278). So in
particular, (Cb(X, K), βX) is complete if and only if X is a kR-space.

Proposition 5.2. Let X be a completely regular Hausdorff space, S a cover of X and

B = {f ∈ Fb(X, K; S) : f|S ∈ (Cb(S, K), βS)c for every S ∈ S}.
Then B is complete in the S-strict topology βS.

Proof. Let (fα) be a Cauchy net in (B, βS). Then, by Lemma 5.1, (fα) converges to a
function f ∈ Fb(X, K; S) in the S-strict topology βS. In particular, for every x ∈ X the
net (fα(x)) converges to f(x). Let now S ∈ S be given. Then (fα|S) is clearly a Cauchy
net in (Cb(S, K), βS)c. So, it converges to a function gS ∈ (Cb(S, K), βS)c. In particular,
for every x ∈ S the net (fα(x)) converges to gS(x). Thus, f|S = gS , and so B is complete
in the S-strict topology βS.

Theorem 5.2. The completion of (Cb(X, K; S), βS) is (B, βS).

Proof. By Proposition 5.2, we only have to prove that Cb(X, K; S) is dense in B in the
S-strict topology βS. For this, let f ∈ B be given and denote by O(f) an arbitrary
neighbourhood of f in the S-strict topology βS on B. Then there exist S ∈ S, vS ∈ S+

0 (S)
and ε > 0 such that

{g ∈ B : pS,vS(f − g) <
ε

2
} ⊂ O(f).

Further, since f|S ∈ (Cb(S, K), βS)c, there exists g ∈ Cb(S, K) such that

pvS (f|S − g) <
ε

2
.

On the other hand, by Proposition 4.2 b), Cb(X, K; S)S = {f|S : f ∈ Cb(X, K; S)} is dense
in Cb(S, K) in the strict topology βS . Thus, there exists h ∈ Cb(X, K; S) such that

pvS(g − h|S) <
ε

2
.

8The set A has been defined in Proposition 5.1.
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Hence,

pS,vS(f − h) = pvS(f|S − h|S) ≤ pvS (f|S − g) + pvS (g − h|S) <
ε

2
+

ε

2
= ε,

and so Cb(X, K; S) is dense in B in the S-strict topology βS.

Corollary 5.2. Let X be a completely regular Hausdorff space and S a cover of kR-subsets
of X (in the relative topology of X). Then (Cb(X, K; S), βS) is complete if and only if X is
a SR-space.

Proof. The result follows from Theorem 5.2 and the fact that for a given S ∈ S, (Cb(S, K), βS)
is complete if and only if S is a kR-space.
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504 (1981), 3–9.

[3] M. Abel, J. Arhippainen and J. Kauppi: Description of closed ideals in function algebras
containing continuous unbounded functions. To appear in Mediterr. J. Math.

[4] J. Arhippainen: On locally A-convex function algebras. General topological algebras (Tartu,
1999), 37–41, Math.Stud. (Tartu), 1, Est. Math. Soc. Tartu, 2001.

[5] J. Arhippainen: On extensions of Stone-Weierstrass theorem. Contemp. Math. 427 (2005),
41–48.

[6] J. Arhippainen and J. Kauppi: Generalization of the B∗-algebra (C0(X), ‖ ‖∞). Math Nachr.
1 (2009), 7–15.

[7] J. Arhippainen and J. Kauppi: Generalization of the topological algebra (Cb(X), β). Studia
Math. 191 (2009), no. 3, 247–262.

[8] A. G. Babiker: Locally convex topologies on rings of continuous functions. Rend. Inst. Mat.
Univ. Trieste 5 (1973), 95–119.
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