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A VARIANCE MINIMIZATION MODEL FOR FUZZY RANDOM
MINIMUM SPANNING TREE PROBLEMS

E.-B. Mermri, H. Katagiri, M. Sakawa and H. ISHII

Abstract. In this paper, we deal with a minimum spanning tree programming prob-
lem involving fuzzy random weights and propose a fuzzy random programming model
using possibility and necessity measures. First, we focus on the degree of possibil-
ity or necessity that the objective function satisfies a fuzzy goal. Next, we formulate
the problem to minimize the variance of the degree that the objective function value
satisfies a fuzzy goal. It is shown that the problem is transformed into a determinis-
tic equivalent one, which is a nonlinear minimum ratio spanning tree problem with a
constraint. In order to solve the problem, a Tabu Search (TS) algorithm is developed.

1 Introduction The Minimum Spanning Tree (MST) problem is to find a least cost
spanning tree in an edge weighted graph. The efficient polynomial-time algorithms to solve
MST problems have been developed by Kruskal [13] and Prim [17]. In the real world, MST
problems are usually seen in network optimization. For instance, when designing a layout
for telecommunication system, if a decision maker wish to minimize the cost for connection
between cities, it is formulated as an MST problem. As other examples, the objective is to
minimize the time for construction or to maximize the reliability.

Most research papers with respect to MST problems dealt with the case where each
weight is constant. However, in order to investigate more realistic cases, it is necessary to
consider the situation that one makes a decision on the basis of data involving randomness
and fuzziness simultaneously. For instance, the cost for connection or construction often
depends on the economical environment which varies randomly, and experts often estimate
the cost not as a constant but as an ambiguous value. In order to take account of such
situations, we deal with a minimum spanning tree problem where each edge weight is a fuzzy
random variable. We call it a Fuzzy Random Minimum Spanning Tree (FRMST) problem,
which is a generalized problem of fuzzy random bottleneck spanning tree problems [11].

A fuzzy random variable was first defined by Kwakernaak [14] , and its mathematical
basis was developed by Puri and Ralescu [19]. Recently, some researchers considered fuzzy
random linear programming problems, see [8, 15, 20, 23]. We could take various approaches
to an FRMST problem according to the interpretations of the problem.

In this paper, we take a possibilistic and stochastic programming approach to fuzzy
random programming problems, which is based on the idea provided by Katagiri et al.
[8, 10, 12]. First we consider a degree of possibility or necessity that the total edge cost
is substantially smaller than or equal to some value. Since the degree varies randomly,
we formulate the problem to minimize the variance of the degree. We will show that the
formulated problem is equivalent to a deterministic constrained nonlinear minimum ratio
spanning tree problem, where the constraint is that the expected degree is larger or equal
to a constant. This problem is generally an NP-hard problem.
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For combinatorial optimization problems, there are many heuristic solution methods
such as genetic algorithms, simulated annealing, ant colony optimization, TS etc. Recently,
many literatures show that TS is one of the most efficient solution methods for combinatorial
optimization problems, see [5, 6, 16] for instance. Cunha and Ribeiro [2] applied a tabu
search algorithm to water network optimization. Blum and Blesa [1] investigated some
metaheuristic approaches for edge-weighted k-cardinality tree problems and compared the
performances of genetic algorithms, simulated annealing, ant colony optimization and TS.
They demonstrated that TS has advantages for high cardinality. Since an MST problem is
a special type of edge-weighted k-cardinality tree problems and corresponds to the highest
cardinality case, we construct a solution method through a TS algorithm.

2 MST problem with fuzzy random edge weights Consider a connected undirected
graph G = (V, E), where V = {v1, v2, . . . , vn} is a finite set of vertices representing termi-
nals or telecommunication stations etc., and E = {e1, e2, . . . , em} is a finite set of edges
representing connections between these terminals or stations. Let T be a spanning tree in
the graph G and let x = (x1, x2, . . . , xm) denote its characteristic vector defined by

xi =
{

1 if ei is an edge of T
0 otherwise. i = 1, · · · , m

In this paper, we consider an MST problem involving fuzzy random weights as follows:{
min ˜̄Cx
s. t. x ∈ X,

(1)

where x = (x1, . . . , xm)t is a decision variable column vector, ˜̄C = ( ˜̄C1, . . . ,
˜̄Cm) is a

coefficient vector and X stands for the set of characteristic vectors representing all possible
spanning trees of the graph G. Each ˜̄Cj is a fuzzy random variable with the following
membership function:

µ ˜̄Cj
(t) =

⎧⎪⎪⎨
⎪⎪⎩

max
{

0, 1− c̄j − t

αj

}
, if t ≤ c̄j

max
{

0, 1− t− c̄j

βj

}
, if t ≥ c̄j

j = 1, . . . , m,(2)

where c̄j denotes a random variable (or a scenario variable) whose realization under the
scenario s is cjs. Parameters αj and βj denote the left and right spread of a fuzzy number,
respectively. Let ps be the probability that a scenario s occurs, and let S denote the number
of scenarios. We assume that

∑S
s=1 ps = 1 holds.

Since the coefficients of the objective function are triangular fuzzy random variables,
the objective function also becomes the same type of fuzzy random variable ˜̄Y with the
following membership function:

µ ˜̄Y
(y) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

max

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

0 , 1−

m∑
j=1

c̄jxj − y

m∑
j=1

αjxj

⎫⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎭

if y ≤
m∑

j=1

c̄jxj

max

⎧⎪⎪⎨
⎪⎪⎩0 , 1−

y −
m∑

j=1

c̄jxj

m∑
j=1

βjxj

⎫⎪⎪⎬
⎪⎪⎭ if y ≥

m∑
j=1

c̄jxj .

(3)
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Considering the imprecision or fuzziness of the decision maker’s judgment, for each objective
function of problem (1), we introduce a fuzzy goal G̃ with the membership function expressed
as:

µG̃(y) =

⎧⎪⎪⎨
⎪⎪⎩

0, y > g0

y − g0

g1 − g0
, g1 ≤ y ≤ g0

1, y < g1.

(4)

3 Variance minimization model using a possibility measure For problems involv-
ing ambiguous coefficients, Dubois and Prade [4] considered possibilistic programming which
is based on the possibility theory introduced by Zadeh [24].

Since the membership function µ ˜̄Y
is regarded as a possibility distribution, the degree

of possibility Π ˜̄Y
(G̃) that the objective function value satisfies the fuzzy goal G̃ is defined

by

Π ˜̄Y
(G̃) = sup

y
min

{
µ ˜̄Y

(y), µG̃(y)
}

.(5)

Accordingly, instead of the original MST problem with fuzzy random edge weights, we
consider the following spanning tree problem to maximize the degree of possibility:

{
max Π ˜̄Y

(G̃)
s. t. x ∈ X.

(6)

In this research, we calculate gmax and gmin defined by

gmax = max
s

max
x ∈ X

m∑
j=1

cjsxj ,

gmin = min
s

min
x ∈ X

m∑
j=1

cjsxj .

Assume that g1 and g0 are determined by a decision maker so as to satisfy the condition
that gmin ≥ g1 and gmax ≤ g0. Then we have

g1 ≤
m∑

j=1

c̄jxj ≤ g0(7)

Using membership functions (3) and (4), and relation (7), then it is easy to show that the
degree of possibility (5) is attained at a point y∗ which satisfies the following equation

µ ˜̄Y
(y∗) = µG̃(y∗), g1 ≤ y∗ ≤

m∑
j=1

c̄jxj .

Hence

y∗ =
g1

m∑
j=1

αjxj + (g0 − g1)
m∑

j=1

c̄jxj

m∑
j=1

αjxj − g1 + g0

.(8)
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Replace y∗ by its value in the membership functions (3) or (4), then the degree of posibility
is represented as follows:

Π ˜̄Y
=

m∑
j=1

{αj − c̄j}xj + g0

m∑
j=1

αjxj − g1 + g0

.(9)

It should be noted here that the degree of possibility in problem (6) varies randomly because
the degree of possibility includes the random variables c̄j as it is shown in (9). Therefore,
problem (6) is regarded as a stochastic MST problem. Katagiri et al. [9] considered an
FRMST problem, which is to maximize the expected degree of possibility or necessity that
the objective function value satisfies a fuzzy goal. This model is useful for decision making
under fuzzy stochastic environments; however, in the obtained solution based on this model,
there are often cases where the degree corresponding to a certain scenario is fairly small
because the variance of the degree is not considered. Therefore, in this section, we propose
the model to minimize the variance of degree of possibility under the condition that the
expected degree is larger or equal to some constant. Then the problem to be considered is
formulated as follows: ⎧⎨

⎩
min V ar[Π ˜̄Y

(G̃)]

s. t. E
[
Π ˜̄Y

(G̃)
]
≥ δ, x ∈ X,

(10)

where E[·] and V ar[·] denote the expectation and the variance functions, respectively. The
expectation and the variance of degrees of possibility are calculated as follows:

E[Π ˜̄Y
(G̃)] =

S∑
s=1

ps

⎡
⎣ m∑

j=1

{αj − cjs}xj + g0

⎤
⎦

m∑
j=1

αjxj − g1 + g0

,

V ar[Π ˜̄Y
(G̃)] =

1(
m∑

j=1

αjxj − g1 + g0

)2 V ar

⎡
⎣ m∑

j=1

c̄jxj

⎤
⎦ .

Let V denote the variance-covariance matrix of c̄. Then the problem to minimize the
variances of degrees of possibility is formulated as:⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎩

min z(x) =
1(

m∑
j=1

αjxj − g1 + g0

)2 xT V x

s. t.
m∑

j=1

{
S∑

s=1

pscjs + (δ − 1)αj

}
xj ≤ (1− δ)g0 + δg1

x ∈ X.

(11)

The variance-covariance matrix is expressed by

V =

⎡
⎢⎢⎢⎣

v11 v12 · · · v1m

v21 v22 · · · v2m

...
...

. . .
...

vm1 vm2 · · · vmm

⎤
⎥⎥⎥⎦ ,
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where

vjj = V ar[c̄j ] =
S∑

s=1

ps{cjs}2 −
{

S∑
s=1

pscjs

}2

,

j = 1, . . . , m,

vjl = Cov[c̄j , c̄l] = E[c̄j , c̄l]− E[c̄j ]E[c̄l],

j �= l, j, l = 1, . . . , m

and

E[c̄j , c̄l] =
S∑

s=1

pscjscls

4 Variance minimization model using a necessity measure In the case where the
decision maker prefers to hedge a risk or find a pessimistic solution, the model using a pos-
sibility measure may not be appropriate because a solution of the model using a possibility
measure might be too optimistic for such a decision maker. Therefore, in this section, we
consider the variance minimization model using a necessity measure.

The degree of necessity N ˜̄Y
(G̃) that the objective function values satisfy fuzzy goals is

expressed as:
N ˜̄Y

(G̃) = inf
y

max
{
1− µ ˜̄Y

(y), µG̃(y)
}

.(12)

If the decision maker prefers to maximize the degree of necessity, then problem (1) is
reformulated as {

maxN ˜̄Y
(G̃)

s. t. x ∈ X.
(13)

By using membership functions (3) and (4), and relation (7), it is easy to see that the degree
of necessity (12) is attained at a point y∗ which satisfies the following equation

1− µ ˜̄Y
(y∗) = µG̃(y∗),

m∑
j=1

c̄jxj ≤ y∗ ≤ g0.

Hence

y∗ =
−g0

m∑
j=1

βjxj + (g1 − g0)
m∑

j=1

c̄jxj

−
m∑

j=1

βjxj + g1 − g0

.(14)

Replace y∗ by its value in the membership functions (3) or (4), then the degree of posibility
is expressed as follows:

N ˜̄Y
(G̃) =

g0 −
m∑

j=1

c̄jxj

m∑
j=1

βjxj − g1 + g0

.(15)

Since N ˜̄Y
(G̃) varies randomly due to the randomness of c̄j , then problem (13) can be

regarded as a stochastic maximization model. In this section, we apply the variance mini-
mization model to this problem and reformulate it to minimize the variance of the degree
of necessity: {

min V ar[N ˜̄Y
(G̃)]

s. t. E[N ˜̄Y
(G̃)] ≥ δ, x ∈ X,

(16)
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Which can be expressed as:⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎩

min
1(

m∑
j=1

βjxj − g1 + g0

)2 xT V x

s. t.
m∑

j=1

{
S∑

s=1

pscjs + δβj

}
xj ≤ (1− δ)g0 + δg1, x ∈ X,

(17)

5 Tabu search algorithm TS is a metaheuristic method that has proven to be very
effective for many combinatorial optimization problems such as scheduling, vehicle routing,
traveling salesman problem, etc. Hanafi and Freville [7] considered a TS algorithm based
on strategic oscillation and showed that the proposed algorithm was well performed for the
0-1 multidimensional knapsack problems.

In this section, we shall construct a solution algorithm based on TS incorporating strate-
gic method. The algorithm starts from an initial spanning tree solution constructed by an
adequate algorithm. Then the improvement strategy, which consists of exchanging a pair
of edges, generates the neighborhood of the current solution. In TS method a pair of ex-
changed edges is called move. Hence the resulting solution is a spanning tree. In order to
prevent cycling between the same solutions, certain exchanges can be forbidden by earning
them the status of “tabu move”, and the set of tabu moves defines the tabu list. Tabu moves
are not permanent; a short-term memory function enables them to leave the tabu list. The
use of an aspiration criterion permits certain moves on the tabu list to overcome any tabu
status. In the proposed algorithm, we use strategic oscillation to intensively explore the
region around the current neighborhood. Strategic oscillation was originally introduced to
provide an effective interplay between intensification and diversification over the interme-
diate to long term memory. In addition to a short-term memory, we use a frequency-based
memory as a long-term memory. On the other hand, the intensification undertakes to create
solutions aggressively encouraging the incorporating of solutions from an elite solution set.
The process goes on until the termination criterion is satisfied.

Let G = be a graph with n vertices and m edges, and let E = {e1, e2, . . . , em} be the set
of edges of the graph G. Let T be a spanning tree in the graph G and let x = (x1, x2, . . . , xm)
denote its characteristic vector defined by

xi =
{

1 if ei is an edge of T
0 otherwise. i = 1, · · · , m

Problems (11) and (17) can be written on the following form:⎧⎨
⎩ min z(x) =

xtV x

(F (x))2

s. t. cx ≤ b, x ∈ X,

(18)

where F is an affine function, c is an m-vector of real numbers and b is a real number. In
what follows we say that a solution x ∈ X is feasible if the condition cx ≤ b is satisfied.

In the TS algorithm for solving FRMST problem, we shall use the following notations
and parameters:

xc: Current solution of the algorithm.
T c: Current spanning tree with characteristic vector xc.
xb: Best solution found so far.
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T b: Best spanning tree with characteristic vector xb.
NIO: Number of iterations in the oscillation procedure.
MAX NIO: Threshold of the counter NIO.
k: Counts the iterations where the best solution is unrenewed during the improvement
strategy process.
MAX k: Threshold of the counter k.
UNRIter: Counts the iterations of the algorithm where the best solution is unrenewed.
MAX Iter: Threshold of the counter UNRIter.

The proposed TS algorithm is described in the following steps, which are followed by the
description of each feature implemented in this algorithm.

Step 0 (Initial solution)
Set NIO = UNRIter = k = 0. Generate an initial solution x0 corresponding to an
initial spanning tree T 0. If the solution x0 is feasible then denote it by x0

f ; otherwise
move it to a feasible solution x0

f by using the rule described in section 5.2. Set xc := x0
f

and xb := x0
f .

Step 1 (Improvement)
If k > MAX k, then go to step 3. Otherwise, improve the obtained solution by the
improvement strategy.

Step 2 If z(xc) < z(xb), then set k = 0 and xb := xc, and return to step 1. Otherwise,
set k := k + 1 and return to step 1.

Step 3 (Strategic oscillation)
If NIO > MAX NIO, then go to step 5. Otherwise, add a1 edges among E \ T c by
using the edge addition rule and continue to remove one of the edges in a cycle by
using the edge remove rule until a spanning tree is formed. Where E \T c denotes the
set of edges in G which are not elements of T c. If this new solution is infeasible then
move it to a feasible one by using the rule in section 5.2.

Step 4 If z(xc) < z(xb), then set NIO = k = 0, xb := xc, and return to step 1. Otherwise,
set NIO := NIO + 1 and return to step 3.

Step 5 (Intensification by elite solutions)
Select a set of edges (SE) that are in most of the last M elite solutions. Then, starting
from an edge chosen uniformly at random from T c, construct a new solution by adding
edges from T c and and SE, using edge addition rule in section 5.7, until a spanning
tree is formed. If the constructed solution is not feasible then move it to the feasible
region. Set UNRIter := UNRIter + 1. If UNRIter > Max Iter, then terminate.
Otherwise go the next step.

Step 6
If z(xb) < z(xc), then set xb := xc, UNRIter = k = 0 and return to step 1.
Otherwise, set k = 0 and go to step 1.

The essential features that have been considered in building this TS algorithm for solving
a minimum spanning tree problem are: generating an initial solution, move from infeasi-
ble to feasible region, the neighborhood structure, the improvement strategies, short-term
and long-term memories, diversification procedure and oscillation strategy, intensification,
termination criterion.
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5.1 Initial solution Let SCC(i) denote a Set of Connected Component that consists
of i edges. To construct a spanning tree T , first, an edge e ∈ E is chosen uniformly at
random. With this edge, a subtree SCC(1) which consists of only one edge is created.
Then, a set of connected component SCC(k + 1) is constructed by adding an edge e ←
argmin{z(SCC(k) + e′) − z(SCC(k))|e′ ∈ ENC(SCC(k))} to the current SCC(k) under
construction, where ENC(SCC(k)) is defined as follows:

ENC(SCC(k)) = {e ∈ E|SCC(k) + e has no cycle}.

5.2 Move from infeasible to a feasible region strategy Suppose that a solution x
is in the infeasible region, i.e., cx > b. In this procedure we move x to an element in the
feasible region. Let y be an m-vector. We set y := x. Let j = argmax{ci|yi = 1} and let
k = argmin{ci|yi = 0 and T \ − ej + ei is a spanning tree}, provided k exists. If k does not
exist, then set yi = 0 and repeat this step until j and k are found. Then set xj := 0 and
xk := 1. Repeat this procedure until the inequality cx ≤ b is satisfied.

5.3 Neighborhood structure Let T be a set of edges which forms a spanning tree, and
let T be the family of all possible spanning trees in the given graph. A neighborhood N(T )
is defined as a set of all spanning trees which can be generated by removing an edge e from
T and by adding an edge e′ from the set ENH(T − e) \ {e}, where ENH(T − e) is defined
as follows:

ENH(T − e) = {e′ ∈ E|T − e + e′ ∈ T }.

5.4 Improvement strategy Let T c be the current solution spanning tree. Randomly
select a subset of feasible solutions from the neighborhood N(T c). Then choose a tree with
the lowest objective function and non tabu status, to form a new solution. The tabu status
can be overriden if an aspiration criterion is satisfied. If a feasible solution is not found in
N(T c), then move the current solution xc to a feasible one by the rule in in section 5.2.

5.5 Short-term memory TS uses a short-term memory to escape from local minima
and to avoid cycling. The short-term memory is implemented as a set of tabu lists that
store solution attributes. Attributes usually refer to components of solutions, moves, or dif-
ferences between two solutions. The use of tabu lists prevents the algorithm from returning
to recently visited solutions.

Our TS approach is to tackle the MST problem uses only one tabu list denoted by
TabuList. The attribute it stores is the index of the edges that were recently added or
removed. Every move involves removing one edge e from the current spanning tree T c, and
adding a different edge to T c − e. The status of the forbidden moves are explained as: If
an edge ej is in TabuList and xj = 0, then adding the edge ej is forbidden. In addition, if
an edge ei is in TabuList and xi = 1, then removing the edge ei is forbidden.

5.6 Aspiration criterion An aspiration criterion is activated to overcome the tabu sta-
tus of a move whenever the solution then produced is better than the best historical solution
achieved. This criterion will be effective only after a local optimum is reached.

5.7 Strategic oscillation procedure The strategic oscillation approaches by adding or
removing edges to a boundary which is represented by a set of spanning trees. Instead of
stopping in the boundary, it crosses over the boundary by the modified evaluation criteria
for selecting moves. In this paper, we use one type of strategic oscillation approach for
the problem, which recedes the boundary by continuing to add edges to a spanning tree
and then approaches to the boundary by continuing to remove edges until a spanning tree
is formed. Adding edges proceeds for a specified depth beyond the boundary, and turns
around. At this point the boundary is again approached and is reached by removing edges.
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Edge addition rule Let SCC(i) denote a set of connected component that consists of i
edges. Then SCC(k + 1) is constructed by adding an edge e← argmin{z(SCC(k) +
e′)− z(SCC(k))|e′ /∈ SCC(k)} to the current set SCC(k) under construction.

Edge remove rule Let SCC(k) be a connected set of k edges. Then we construct a
spanning tree from the set SCC(k) by performing the procedure used to construct
the initial solution, where we use SCC(k) instead of E.

5.8 Long-term memory The roles of intensification and diversification in TS are es-
pecially relevant in longer term search processes. Frequency-based memory is one of the
long-term memories and consists of gathering pertinent information about the search pro-
cess so far. In our algorithm, we use residence frequency memory, which keeps track of the
number of iterations where no improvement has been done and keeps in memory a num-
ber of elite solutions . By using the residence frequency memory, we provide the following
diversification and intensification processes.

1. Diversification procedure The diversification derives the search into a new region.
It begins at the situation that some spanning tree is formed. In order to explore
a new search region a number of edges are removed and replaced by other edges.
This procedure is illustrated in the strategic oscillation steps of the algorithm. If the
strategic oscillation procedure is iterated in MAX NIO times, then the intensification
procedure is started.

2. Intensification procedure using The intensification procedure begins at the condi-
tion that no edge is selected after a long tune. It forces the current solution to be
improved. We tray to construct a better solution from the last M best solution by
using the edge addition rule.

5.9 Termination criterion The counter UNRIter counts the iterations of the algo-
rithm where the best solution T b is unrenewed. The proposed algorithm terminates if
UNRIter is greater than the threshold Max Iter. The quality of the final solution and the
computer running time are both influenced by the termination criterion.

6 Genetic algorithm In order to compare the performance of the proposed TS method
with another heuristic search method, we consider a genetic algorithm (GA) approach in-
spired from the work of Zhou and Gen [25] to solve quadratic minimum spanning tree prob-
lems by GA. Their approach uses Prüfer number for solution encoding, uniform crossover
and mutation, and mixed strategy with (µ + λ) selection and roulette wheel selection. In
this section we briefly describe this genetic algorithm approach.

The choice of an encoding solution is one of the most important step in the application
of genetic algorithm to a problem. One of the classical theorems in enumeration is Cayley’s
theorem [3], which says that in a complete undirected graph with n vertices there are
nn−2 distinct labeled trees. Prüfer [18] provided a constructive proof of Cayley’s theorem
by establishing a one to one correspondence between such spanning trees and the set of all
permutations of n−2 digits. Prüfer numbers are n−2 digit sequences, P = [p1, p2, · · · , pn−2],
where the digits pi, 1 ≤ i ≤ n− 2, are numbers between 1 and n.

Prüfer numbers consist one of the most efficient encoding method for spanning trees in
genetic algorithm search, since they are unbiased, cover the hall space of spanning trees and
represent only spanning trees. However, this representation method has little locality, since
even a small change in a parent P which is represented by a Prüfer number, may result an
offspring with a tree not in the neighborhood of the parent tree.
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In the uniform crossover operation individual bits in the strings of two parents are
swapped with a fixed probability pc. For each crossover operation one generates a random
binary string with the same size as of chromosome, with respect to the probability pc of a
string being 1. Then genes in two parents which their positions in the string mask take the
digit 1 are swapped. In the mutation operation each gene can be selected with a probability
pm, to be replaced with a random digit in the set of all possible digits. The mixed strategy
with (µ+λ) selection and roulette wheel selection selects µ best chromosomes from µ parents
and λ offsprings. If there are no µ different chromosomses available, then the vacant pool of
population are filled up with roulette wheel selection. For further details on this approach
see the work in [25].

7 Computational experiments Let G be a complete undirected graph with n vertices
and m edges, and let X be the set of all possible spanning trees of the graph G, represented
by 0 − 1 m-vectors as it is described in section 5. In this section we apply the proposed
Tabu Search algorithm (TS) and the Genetic Algorithm (GA) described in the previous
section to solve FRMST problem (11):

min z(x) =
1(

m∑
j=1

αjxj − g1 + g0

)2 xT V x

s. t.
m∑

j=1

{
S∑

s=1

pscjs + (δ − 1)αj

}
xj ≤ (1− δ)g0 + δg1

x ∈ X.

The experiments were conducted on complete undirected graphs with different number
of vertices, n. Data of these experiments are generated randomly. The scenarios (cjs),
j = 1, · · · , m, s = 1, 2, 3, are random real numbers distributed uniformly over [10,13]. The
left spreads (αj) are random real numbers distributed uniformly over (0,1]. The probabilities
that each scenario s occurs are given as, p1 = 0.41, p2 = 0.28 and p3 = 0.31. The matrix
V and parameters g0 and g1 are computed by formulas given in section 3. We assume that
the expected degree is larger or equal to δ = 0.6 for n = 5, and δ = 0.8 for n = 10 and over.

The TS parameters are set as follows: maximum of iterations in the improvement strat-
egy MAX k = 500, maximum of iterations in the oscillation strategy MAX NIO = 5,
MAX UNRIter = 10, number of ellite solutions M = 10 and number of add remove edge
a1 = 3. In the GA approache, the parameters are set as follows: crossover probability
pc = 0.4, mutation probability pm = 0.01, population size 100, and maximum number of
generations 800.

The algorithms were coded in C++ programming language and implemented on a com-
puter with a CPU 1.7GHz and RAM 256MB. We have run each experiment ten times. The
following tables illustrates computation results of two instances of the above problem.

Example 1.

Best values Average values Time (second)
Nodes TS GA TS GA TS GA

5 1.32×10−2 1.32×10−2 1.32×10−2 1.32×10−2 – 0.06
10 2.65×10−3 2.65× 10−3 2.65× 10−3 2.65× 10−3 0.04 2.2
15 5.76×10−6 5.97×10−6 5.76×10−6 17.31×10−6 0.84 8.11
20 2.00×10−10 3.67×10−10 10.40×10−10 184×10−10 9.7 26
30 2.28×10−11 94.6×10−11 8.7×10−11 357×10−11 83.8 133
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Example 2.

Best values Average values
Nodes TS GA TS GA

5 6.55×10−3 6.55×10−3 6.55×10−3 6.55×10−3

10 2.18×10−3 2.18×10−3 2.18×10−3 2.18×10−3

15 2.63×10−6 2.63×10−6 2.63×10−6 3.92×10−6

20 6.75×10−7 37×10−7 8.41×10−7 77.3×10−7

30 2.19×10−11 198×10−11 3.01×10−11 122×10−11

From these computational results, we remark that GA approach is quite uncompetitive
with the constructed TS method for solving the problem in question. In addition, the best
and average values obtained by TS are very close or the same for number of nodes less
or equal than 15. One conclude that the proposed TS method has good performances for
solving FRMST problems.

8 Conclusion In this paper, we have considered FRMST problems. Introducing a fuzzy
goal, we formulated the problem to minimize the variance of the degree of possibility or
necessity that an objective function satisfies the fuzzy goal. It has been shown that the
problem was transformed into a deterministic equivalent nonlinear minimum ratio spanning
tree programming problem. In order to solve the problem, we have constructed a TS
algorithm based on oscillation strategy, intensification by elite solutions and so on.

In the future, we will consider the fractile criterion optimization model for FRMST
problems and try to extend and apply the proposed method to the problem. If the problem
is formulated based on the fractile criterion optimization model, the objective will be to
maximize a satisfaction level under the condition that the degree of possibility or necessity
is greater than or equal to the satisfaction level. In order to solve the problem efficiently, it
is expected that the solution technique for inverse MST problems can be applied.
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