Scientiae MathematicaeJaponicae Online,e-2009 95

MOORE REDUCIBILITY FOR REGULAR LANGUAGES

PaurL CuLL

Received September 25, 2008

ABSTRACT. We investigate a simple notion of reduction for Regular sets. We call
this Moore reduction because the transformations use Moore machines. We show that
under this reduction the Regular sets form a bi-hierarchy with complete sets.

1 Introduction When is one regular language simpler than another? There are a vari-
ety of answers based on various metrics for various representations of the languages. For
example: [2] [8] [11]
(a) number of states in the minimal automaton,
(b) star height of the regular expression,
¢) number of loops in the state diagram,
) number of loops in the circuit diagram,
)
)

EA

number of neurons in the neural net diagram,

loop depth in the circuit or neural net diagram,

g) etc.

In each of these representations, there is reasonable idea of “minimal” and a language cannot
have a representation with a smaller value than its minimum value for the metric. Each of
these metrics gives a hierarchy for regular sets. Sets at a higher level cannot be represented
with only the resources for a lower level. It seems obvious that there cannot be any complete
regular sets because each of these metrics gives values in the natural numbers, and so there
cannot be an upper bound on the complexity of all regular languages.

Most complexity classes other than the regular languages are usually described with
some notion of “reducibility”. For example, the BIG open question ?P = NP ? is usu-
ally described using polynomial time reducibility. [5] We will investigate some notions of
reducibility for regular languages.

In a recent course, I made an off-hand remark that if a class of sets had a corresponding
function class, then any non-trivial set in the class is complete for the class when the notion
of reduction is many-one reduction with transformers from the function class. When I
attempted to demonstrate this claim for regular languages, I ran into some problems and
discovered a reasonable notion of regular reduction under which the regular sets form an
infinite hierarchy but also have complete sets.

o~
= D

1.1 Trivial Reductions Question about reductions for regular languages is usually re-
garded as trivial because all nontrivial regular languages are equivalent with respect to
certain notions of reduction. A language is nontrivial if it is neither the null set nor the
universal set.

For example, the notion of regular Turing reduction

T
A <, B

would mean that a finite state recognizer for B could be used to build a finite state recognizer
for A. So, if A and B are regular languages, then this relation holds in both directions.
Nontriviality of B is not needed for Turing reductions.

96 PAUL CULL

A similar result holds for a version of many-one reduction which I’ll call constant space
Turing machine many-one reduction. In this reduction the reducing machine is a Turing
machine with an input tape, a fixed size work tape (or equivalently no work tape), and
an output tape. For any regular language A and any nontrivial regular language B, there
is such a Turing machine which reduces A to B. This operation is very simple. The AB
Turing machine simply simulates M4 (a finite state recognizer for A) on an input string z.
This can be done in fixed finite (or no) work space since the simulating machine only needs
to remember one of the finite number of states of M 4. At the end of z, the AB machine
knows by the state of M4 it is remembering whether or not z is accepted by M4. If = is
accepted, then the AB machine outputs a string in B, say by, and if = is not accepted,
then the AB machine outputs a string not in B, say bn,. Obviously, if we let T'(x) be the
output of AB on input z, then

ze A iff T(z) €eB

and we have an easy to compute many-one reduction from A to B. (Note that the AB
machine only reads the input once, while some notions of transduction would allow multiple
reads of the input.)

While this may seem reasonable, we claim that it is really based on a “trick” which
violates our idea of finite state reduction. The “trick” is that the AB machine can wait until
and sense the end of the input. AB does not produce an output until it has found the end of
the input. We think that this is unreasonable. In a more reasonable interpretation of finite
state reduction, we would expect the transforming machine to actually work sequentially
by outputting a string based on what it has seen so far and not based on the rest of the
input which it has not yet seen.

2 Finite State Reductions The usual simplest complexity class is the Regular lan-
guages which are the set of strings which are recognized by finite automata. We want to
consider finite state reductions of such languages.

2.1 Finite State Mappings A machine takes as input a string over some alphabet
and outputs a string over the same or a different alphabet. We want to discuss the string
transformations which are possible when the machine has a finite memory. (We are modeling
areal computer with its finite internal memory. Unbounded external memory is not included
in this model.) A machine with this memory limitation is usually called a finite state
machine. Such a machine is described by specifying the input and output alphabet, the
finite number of states, and two functions — the next state function and the output function.

The next state function calculates the new state given the present state and the
present input symbol. This can be symbolized as

a1 = F(ai, s¢)

where ¢y is the state at time ¢ 4+ 1 and it is determined from g¢;, the state at time ¢, and
st, the input symbol at time ¢. We call F'(q, s) the next state function.

The output of the machine could depend on the present state or on the present state and
the input symbol. It turns out that either of these two choices for the output function will
lead to essentially the same mappings and so we will choose the slightly simpler convention
that the output is only a function of the present state. [3] A machine with this output
convention is called a Moore machine. [9] Such machines are usually allowed to have only
one output symbol for each time step, but we will find it more convenient to allow an output
string for each time step. Symbolically, we write

wy = G(gqt)

MOORE REDUCIBILITY FOR REGULAR LANGUAGES 97

and mean that if the machine is in state ¢; at time ¢, then it outputs the string w;.

A Mealy machine has its output depending on both the state and the current input
symbol. [3] In particular, this means that a Mealy machine gives no output for the null
string. For a Mealy machine with state set () and output alphabet 2, we can define a
Moore machine with state set) x %, so that this Moore machine transitions to state
(g, w) when the Mealy machine transitions to state ¢ while outputting string w. Clearly,
this Moore machine will produce the same output as the Mealy machine for any nonnull
input sequence. For the null sequence, we give the Moore machine the initial state (go, A)
so it will produce a null output just like the Mealy machine. As defined, the Moore machine
has an infinite number of states, but the Moore machine only uses those states reachable
from its initial state and this submachine is a finite state machine because the number of its
states is bounded by the product of the number of states and input symbols for the Mealy
machine.

2.2 Homomorphism This may be a reasonable place to mention homomorphism. A
homomorphism is a mapping h,

h: ¥ — QF
which preserves concatenation. That is,
h(zy) = h(z-y) = h(z)-h(y) forallz and y,

and in particular, h(A) = A. Such a mapping corresponds to a Mealy transformation
computable by a one state Mealy machine.

It is known that the Regular sets are closed under both homomorphism and inverse
homomorphism. [3] Further, CFL (the class of context free languages without the null
string) has a complete set with respect to homomorphic many-one reduction. [10]

On the other hand, there can be no complete regular sets with respect to homomorphism
because sets requiring more states cannot be homomorphically reduced to sets requiring
fewer states. Specifically, if the minimal machine for A has more states than the minimal
machine for B, then any homomorphism will map non-equivalent strings, say = and y, for A
to equivalent strings h(z) and h(y) for B,i.e. Fa(qo,) # Fa(qo, y) and Fg(qo, h(z)) =
Fg(qo, h(y)). But, then by the homomorphism property, h(zw) = h(z)-h(w) and
h(yw) = h(y) h(w), and so

Fp(qo, h(zw)) = Fs(Fr(qo, h(x)), h(w)) =
Fp(Fp(qo, h(y)), h(w)) = Fr(qo, h(yw)).
Hence, choosing w so that zw € A and yw ¢ A will give either both h(zw) and h(yw) are
in B, or both h(zw) and h(yw) are not in B, violating the conditions for a valid reduction.

2.3 Moore Transformations At the moment, both F' and G deal with one symbol at a
time. We want to extend these functions so that they become functions of the whole input
string. To do so, we define F'* which is a mapping from input strings to sequences of states:

(g z) = q if z = A (Null string)
qF*(F(g s),y) if z=sy

where s is a single input symbol and z and y are input strings. In fact, F'* gives us several
mappings, one for each state ¢q. If we specify one state, say g, as the initial state, then

98 PAUL CULL

F*(qu, z) is the state sequence mapping for the machine, and it maps an input string
x = z ...z, to a sequence (go,q1,-.-,q,) of states. For convenience, we’ll also use
F(gq,) to mean the last state in the sequence F*(gq, z).

Since the output function maps each state to an output sequence, the overall output
produced by the input string « is

G(q) - G(q1)- ... G(gqn)

where G(¢;) is the output string corresponding to the state ¢; and - indicates that all of
these strings are being concatenated together. We can represent this entire concatenated
string symbolically as

G*(z)

and think of G* as mapping input strings to output strings. Notice that G* does not map
strings of length n to strings of length n. Because G(¢) is a string and may possibly be the
null string, the concatenation of n + 1 such strings may produce a string shorter or longer
than n characters. Of course, if we knew m = max, | G(¢) | then we could be sure that

|G (z)| < m([z]+1).

2.4 Moore Reduction These Moore transformations allow us to place an ordering on
sets. Let A be a set of strings over ¥ and let B be a set of strings over 2. We say that

A SMoore B

if there is a Moore transformation 7" which for all strings z in X* produces a string 7'(z) in
* so that
z e A iff T(z) € B.

This, of course, is a many-one reduction [4] with very strong restrictions on the allowed
transformations.

We may note that HALT, the halting set, is RE-complete with respect to <M°°r gince
for every RE set B, there is a Turing acceptor Mp and

x € B iff Mp:xz € HALT

and Mp : x can be computed from x by a Moore machine which outputs from its initial
state the string representing the Turing code for Mp followed by the separator : and then
computes the identity transformation on z. The identity transformation is computed by a
Moore machine with one state for each symbol of ¥. On each input symbol, this machine
transitions to the state associated with the symbol and then outputs the symbol.

Moore reductions are probably not of much use for bounded versions of the halting
problem, because the necessary transformations require the calculation of a bound p(|z|) as
well as Mp and z, and a finite state machine cannot even compute an operation as simple
as multiplication.

3 Complete Sets A finite state machine has a YES/NO cycle if there are two states ¢;
and ¢, so that

q1 is an accepting state and g5 is a rejecting state,

there are two input sequences x5 and xa1,

so that F(ql, 112) = Q2 and F(QQ, 9321) = q1,

and ¢; and ¢o are reachable from the initial state.

MOORE REDUCIBILITY FOR REGULAR LANGUAGES 99

Theorem 1. A set is Regular-complete with respect to <M°°™® if and only if the set has a
finite state recognizer with a YES/NO cycle.

Proof. {IF} Let A be a set with a recognizer M4 with a YES/NO cycle. Let B be
any regular set. We construct f(z) which maps strings in B’s alphabet to strings in A’s
alphabet.

If A € B then f(A) = z; where Fa(qo,z1) = ¢1
else f(A) = z1212 where Fa(qo,T1212) = go.
Now assume that f(w) has been defined and consider f(ws) where s is a single symbol.

There are four cases

w e B ws € B flws) = f(w)A = f(w)

w € B ws € B fws) = f(w)zi2
w ¢ B ws € B flws) = f(w)za
w¢gB ws¢gB f(ws) = f(wA = f(w)

This maintains z € B iff f(z) € A because each of the f sequences takes M4 to one of the
two state q; or go and the inductive definition of f maintains this property. Further this f
is computable by a Moore finite state machine. (See the state digram below.) O

The following is a schematic diagram of the transforming Moore machine.

o

This 5 “state” machine (excluding the state labeled z1z2;1) is the transforming machine if
A € B. If A ¢ B, the machine with the state labeled x; omitted and the x; x5, state as
the initial state transforms B to A. This transformer operates following the 4 cases in the
above proof. Since, by assumption, A € B, the transformer ouputs z; on the null input.
This output string causes M4 to go to an accepting state g;. If M4 is in ¢; as a result of
the previous output string, then if the next character continues an input string which is in
B, the transformer goes to the state on the left labeled A and the output string causes no
further transition in M4 which stays in the accepting state g;. If the next input character
yields a string not in B, then the transformer goes to the state labeled z;2 and this output
causes M4 to transition to a rejecting state go. The cases when M4 is in a rejecting state
are handled in a similar manner. If A is not in B, then the transformer starts in the state

@@

100 PAUL CULL

labeled z1x12 which causes M4 to go to the rejecting state go. Subsequent input characters
are handled in a manner similar to the behavior when the transformer started in the state
labeled z;.

This is only a schematic picture. The actual transforming machine needs to keep track
of the states of Mp to determine if an input symbol causes Mp to transition to an accepting
or rejecting state. So each of the 4 middle “states” in the diagram should actually contain
a full copy of M. E.g. a “state” z;5 should be, for example, (712, ¢) and on a input
symbol s there should be a transition to (£, Fg(g”, s)) where 4 is a “state” in the dia-
gram. The actual transforming machine would have 4 |@ | + 1 states.

Proof. {ONLY IF} Conversely, assume that B has a YES/NO cycle, we show that A
also has a YES/NO cycle. Then there is a w so that

wz1y € B and wriaze; € B.

In fact, ' '
’w(93129321)29312 S B and ’LU($129321)Z+1 g B.

But, if B <M°°™¢ A then

f(w(mmmzl)imlg) € A and f(w(112m21)i+1) Q/ A

Since the transforming machine has a finite number of states f(w(z12721)""?) must form
an eventually periodic sequence wgy?. Further, the effect of this sequence on M4 is a
state sequence with an infinite number of occurrences of a rejecting state, say g». Similarly,
f(w(I12I21)iI12) must cause a state sequence in M4 with an infinite number of occurrences
of an accepting state, say g1. So the sequence of strings

w($129321), w(9312$21)$12, w(9312$21)2, w(9312$21)29312,

e ,w(mlgmgl)i,w($129321)i9312, e

must be transformed into a sequence of strings which causes M4 to enter ¢; an infinite
number of times and to enter g an infinite number of times. So in this state sequence ¢;
must occur before some occurrence of ¢; and also after some occurrence of ¢;. Hence there
is a path from ¢; to g» and also a path from ¢, to ¢; and this gives a YES/NO cycle in M 4.
0

Corollary 1. A regular set A is Regular-complete with respect to <M°°'® if and only if there
is an infinite word wy, (an infinite eventually periodic word p) with an infinite number of
prefizes in A and an infinite number of prefizes not in A.

Proof. The YES/NO cycle in M4 can be used to construct po.. Conversely assume that
Weo €xists. Since an infinite number of prefixes of w, are in A, an infinite number of these
prefixes cause M 4, which has a finite number of states, to be an accepting state g; and an
infinite number of these prefixes cause M 4 to be a rejecting state go. Consider the sequence
of M 4’s states caused by ws. Since the number of g;’s in this sequence is infinite and the
number of ¢5’s is also infinite, there must be some occurrence of ¢; followed eventually by an
occurrence of go which is followed eventually by an occurrence of ¢;. So there will be some
subsequence of w,, which causes M4 to transition from g; to ¢ and some subsequence of
Woe which causes M4 to transition from g to ¢, and the YES/NO cycle is established. O

MOORE REDUCIBILITY FOR REGULAR LANGUAGES 101

4 Hierarchy

4.1 Alternating Chains Let M4 be a finite state recognizer for a set A. We can limit
the states of M4 to those which are reachable from the initial state gy without effecting
the recognition properties. M4 will have two types of states — accepting and rejecting. For
convenience, we’ll say that two states have different parity if one is an accepting state
and the other is a rejecting state. Similarly, two states have the same parity if they are
both accepting or both rejecting. We can consider the state diagram of M4 as a directed
graph. In the usual way, a sequence of states forms a path if there is a transition (an arrow)
to each state from its predecessor in the sequence.

Since we saw in Section 3 that recognizers with YES/NO cycles correspond to complete
sets, we here want to consider recognizers without such cycles. Such a recognizer has an
alternating chain of length K iff there is a path M4 in which the parity changes K
times. For example,

has an alternating chain of length 0, since (go) is a path with no parity changes.
On the other hand,

has an alternating chain of length 0 since {(qg, g2) forms such a path. This machine also has
an altenating path of length 2, (g0, ¢1, g2), and an alternating path of length 1, (g1, g2).
We say that M4 has K alternations, if M 4 has an alternating chain of length K and no
longer alternating chain. So, for example, the two above machines have respectively K = 0
and K = 2 alternations.
It is obvious that to find K we only have to consider paths which start in the initial

state. Because, if there were a sequence (¢;1, gso, - - -, i) with alternating length K, then
since we only care about reachable states, there is a path from gg to g;; and the alternating
length of (qo, ..., Gi1, @i2s - -, Qir) is at least K.

The parity of the maximum alternating chain depends on the parity of the initial state
qo. We'll say that the maximum alternating chain has length K if gy is accepting, and
length K_ if qg is rejecting.

For recognizers with YES/NO cycles we can make a (non-simple) path which repetitively
goes over the YES/NO cycle, and thus produces an alternating path with arbitarily large
length. Reasonably, we set K = oo for such recognizers. Here, we do not have to make a
distinction between sequences which start in an accepting state and those which start in a
rejecting state, and so there will only be unsigned oco.

102 PAUL CULL

4.2 Hierarchy Theorem

Theorem 2. Let Kp be the length of the longest alternating chain in the finite automaton
Mp which recognizes B.
(a) If K4 < Kp then A <M°°*¢ B gnd B ¢Moore A,
(b) If Kg = oo then B is a complete set for reqular languages with respect to <Moore,
(c) If Ku = Kp and if the longest alternating chains in M4 and Mp start in states with
the same parity then A <Mc°r® B gnd B <Moore A byt if these alternating chains
start in states of different parity then A £M°°¢ B and B g£Moore A,
(d) The degree diagram looks like:

K=0_.—=K=1_— ...\

4 4 K =00
K:0+—)K:1+—> /‘

Proof. (a) If M4 has an alternating chain of length K 4 then there is an input word w
which takes M4 through all the states which make up this chain. Some of the prefixes of
w, say

bo, P15 -+ -y PK

take M4 alternately to accepting and rejecting states. If A <Moot B then there is a finite
state function f, so that

f(pU)a f(pl)a vey f(pK)

take Mp alternately to accepting and rejecting states. But since this is a finite state
mapping, for each i, f(p;) is a prefix of f(p;+1) and so f(w) will take Mp through an
alternating chain of length K 4. So if A <M°°" B then K4 < Kp. If K4 < Kg and the
parities of the initial states doesn’t match, the K4 chain would induce a K4 + 1 chain in
Mp. So,if K4 < K and A <M°°*¢ B then the parity of K4 is the same as the parity of
Kp .

If Ky < Kg, or K4 = Kpg with identical parities, we will construct f which reduces
A to B. Let the sequence wg, wi, ..., wx be the strings which take Mp to successive
alternating states on its longest alternating chain. Define f(A) = wq or f(A) = wow; so
that the parity of the initial state for M 4 matches the parity of Fg(qo,wq) or Fg(go, wow:).
Now assume that f(w) has been defined and consider f(ws) where s is a single symbol.
There are four cases

we A ws € A flws) = f(w)A = f(w)
we A ws ¢ A flws) = f(w)wisa
w ¢ A ws € A flws) = flw)witq
wEg A wsg A fws) = fw)A = f(w).

Here w;; is the next string in the above sequence which takes Mp to a state of the other
parity. This reducing function f always keeps Mp on its longest alternating chain. Since
any chain in A has at most K4 alternations, this is a valid reduction as long as K4 < Kp,
or K4 = Kpg with identical parities.

(b) This is just a re-statement of Theorem 1.

MOORE REDUCIBILITY FOR REGULAR LANGUAGES 103

(c) The (a) construction shows that if K4 = Kpg and if the parity of K4 is the same as the
parity of K, then A <M°°r¢ B and B <Moore 4 But if A and B have opposite parities
then, as in the above proof, prefixes of a word in one set must map to prefixes of a word
in the other set, and for a valid reduction the number of alternations in the second word
must be as great as the number of alternations in the first word. Unfortunately, because
the parities differ, the second word is one alternation short.

(d) The degree diagram is simply a graphical re-statement of the theorem.
a

4.3 Least Upper Bounds A set C is the least upper bound (lub) with respect to <
for the sets A and B, if A < C and B < C and for all D such that A < D and B < D,
then C < D.

The usual lub construction [4] uses the symbols a and b, and builds

C = {z|z=az withz € Aor z=1by withy € B}.

To show that A <Meore ' and B <Moore (7 we need to show that this construction allows
a finite state reduction. But f4(z) = az is a Moore mapping defined by f4(A) = a and
fa(ws) = fa(w)s. Since there is a similar mapping for B, C' is an upper bound on A
and B, but it is not clear that C is a least upper bound. In fact C is often not an lub.

A picture of the recognizer for C is

b

Y —{a,b}

We can see that a rejecting initial state has been added to the machines M 4 and Mp. Let’s
assume that K4 > Kpg then B <Moore 4 Gq if C is an lub then C <M°°™® A and also
K¢ = K4. By the Hierarchy Theorem this will occur exactly when M4 has — parity. If
K4 = Kp and they both have — parity, K¢ will equal K 4 and Kg and C will be an lub.
If Ky = Kp and they both have + parity, then Ko = K4 + 1 and C will not be an lub.
Finally, if K4 = Kp and they have mixed parity, Ko = K4 + 1 and C will not be an lub
because, in this case, no lub can exist, i.e. A and B have upper bounds in (K4 + 1); and
in (K4 + 1)_ but neither of these upper bounds is reducible to the other.

Corollary 2. If the lub for A and B exists, then the lub is one of A and B.

4.4 Calculation of Classification Let’s assume that we have a finite state recognizer
Mp for the set B. We want to find B’s position in the hierarchy.

It is easy to determine if Mp has a YES/NO cycle. For example, a depth first search
from each state could determine whether or not there is a YES/NO cycle. At most, this

104 PAUL CULL

would take O(nE) or O(n®) time where n is the number of states and E is the number of
edges in Mpg. Of course, more efficient algorithms are possible.

If there is no YES/NO cycle, we need to determine the length of the longest alternating
chain. At first glance, this may seem difficult because it seems to be the notorious A/P-hard
longest path problem. But it isn’t, because we can restrict the search to a directed acyclic
graph (a DAG). Consider any strongly connected component of Mp’s digraph. Since Mp
has no YES/NO cycle, every state in a component must have the same parity. Hence,
the search for the longest alternating chain can be done on a DAG whose nodes are the
strongly connected components of Mp. As is well known [6] the longest path in a DAG
can be found via dynamic programming. A slight variation on this technique can find the
longest alternating chain in time O(n?).

5 EXAMPLES

5.1 Complete Sets Extremely simple looking finite automata can represent complete
sets. For example, the following diagram shows an automaton which accepts ODD the set
of all odd length strings.

®

by

This represents a complete set because it has a YES/NO cycle.

5.2 Minimal Sets The lowest levels of the hierarchy contain only the two trivial sets)
and *. Specifically, 0 is the only set with K = 0_ and X* is the only set with K = 0.
Obviously, either of these sets can be reduced to any nontrivial set by finite state mappings
which handle the null string appropriately and then map each subsequent character to the
null string. Of course, no nontrivial set can be reduced to either of these trivial sets, and
neither trivial set can be reduced to the other.

5.3 Finite/coFinite and Definite Events Finite/coFinite is a simple subclass of the
regular events. It is the smallest Boolean Algebra which contains the finite sets, or equiva-
lently the smallest concatenation closed Boolean algebra which contains the unit sets.

The Definite Events are those sets which can be reconized by neural nets without circles
(or feedback loops) in their connections.[7] This class is often confused with Finite/coFinite
because each Definite Event can be expressed in the form

S F

where F' represents a Finite or coFinite set. In spite of this close relationship,
(a) sets in Finite/coFinite occur at every finite level of the Moore Hierarchy,
(b) no sets in Finite/coFinite are Moore complete,
(c) each nontrivial Definite Event is Moore complete.

(a) For any K, consider the following machine with the convention that any missing arrow
goes to gx and the dotted arrow indicates a sequence of alternating parity states.

MOORE REDUCIBILITY FOR REGULAR LANGUAGES

105
—(O——O*
Clearly, this machine accepts { A, aa,a?, ..., a1} and nothing else. This example shows
that the degrees with K = Odd. contain finite sets.
Similarly,

_» a @ a O_____c_z____ @

shows the degrees with K = Even_ contain finite sets. Similar examples show that
K = Even; and K = Odd_ contain co-finite sets. Note that K = Even; and K = Odd_
cannot contain finite sets, and K = Even_ and K = Odd cannot contain co-finite sets.

(b) Since a complete set has a YES/NO cycle, the accepted set must be infinite and the
rejected set must be infinite, and so the complete set is neither finite nor co-finite.

(c) Let D be a nontrivial Definite Event. Then there is a string = so that wz € D for all
w € Y¥*, and similarly, there is a string y so that wy & D for all w € ¥*. Consider the
infinite sequence zy zy Obviously all the prefixes of this sequence which end in = are
in D, while all the prefixes which end in y are not in D, and so by Corollary 1, D is Regular
complete with respect to <Moore,

strings

)y

A schematic representation of an automaton which recognizes a nontrivial definite event.
After accepting a fixed length string, the machine resets to consider the next fixed length
string. (This is only schematic because the machine does not necessarily have to reset to
the initial state, and it does not have to loop around the initial state.) The point of this
diagram is that the machines for definite events must have YES/NO cycles.

5.4 Incomplete Sets There are many sets which are infinite and co-infinite and yet are
not Moore complete. One of my favorite examples is the Towers of Hanoi [1] set which is

106 PAUL CULL

the set of strings over { a, b, ¢} which represent the legal configurations of the disks on the
towers a, b, and ¢ during the minimal move sequence which takes the disks from tower a to
c. I usually take the symbols as being in “reverse” order in the sense that the first character
of the input represents the tower on which the largest disk is located. For example, the
string abbb, says the largest disk is on tower a and the other 3 disks are on tower b. This
abbb represents a legal configuration in moving 4 disks from tower a to tower ¢. On the
other hand baaa says that the largest disk is on tower b and the other 3 disks are on tower
a and this is not legal configuration.
This is a recognizer for the Towers of Hanoi language:

Notice that this is an infinite and co-infinite language. For each n > 0, there are 3" strings,
but only 2" of these strings are in the languge. For this machine K = 1., so this language
appears at a very low level in the hierarchy.

6 CONCLUSION We have shown that a “reasonable” notion of reduction can be de-
fined for the Regular sets. We've called this Moore reduction since it uses a Moore finite
state machine to compute the reducing function. We’'ve shown that not all Regular sets are
equivalent under <M°°r® = Specifically, we let K4 be the length of the longest alternating
chain in the minimal recognizer for A, and showed that if K4 > Kp, then A gMecore B
but B <Meore A By considering the parity (whether or not the initial state of the recog-
nizer is accepting), we were able to establish a bi-hierarchy of <M°°r® degrees. We showed
that sets whose recogniers contained a YES/NO cycle are <M°° —complete.

A number of features of this reduction seem strange. For example, the lub construction
fails, and some seemingly simple sets like ODD are complete sets, while other seemingly
more complicated sets are not complete. We’ll leave it to others to decide whether this
notion of reduction is useful, but at least it serves as a basis for several counterexamples.

REFERENCES

[1] P. Cull and E.F. Ecklund Jr. Towers of hanoi and analysis of algorithms. American Mathe-
matical Monthly, 92:407-420, 1985.

[2] P. Dunne. The Complexity of Boolean Networks. Academic Press, London, 1988.

MOORE REDUCIBILITY FOR REGULAR LANGUAGES 107

[3] J. E. Hopcroft and J. D. Ullman. Introduction to Automata Theory, Languages, and Compu-
tation. Addison-Wesley, Reading, MA, 1979.

[4] Hartley Rogers Jr. Theory of Recursive Functions and Effective Computability. MIT Press,
Cambridge, MA, 1987.

[6] Richard E. Ladner. On the structure of polynomial time reducibility. Journal of the ACM
(JACM), 22:155-171, 1975.

[6] E. Lawler. Combinatorial Optimization: networks and matroids. Holt, Rinehart and Winston,),
New York, NY, 1976.

[7] W. S. McCulloch and W. Pitts. A logical calculus of the ideas immanent in nervous activity.
Bulleti of Mathematical Biophysics, 5:18-27, 1943.

[8] R. McNaughton and S. Papert. Counter-Free Automata. MIT Press, Cambridge, MA, 1971.

[9] E. F. Moore. Gedanken experiments on sequential machines. In C. E. Shannon and J. Mc-
Carthy, editors, Automata Studies, pages 129-153. Princeton Univ. Press, Princeton, NJ, 1956.

[10] G. E. Revesz. Introduction to Formal Languages. McGraw-Hill, New York, NY, 1983.
[11] 1. Wegener. The Complexity of Boolean Functions. Teubner, Stuttgart, 1987.

Computer Science Dept.
Oregon State University
Corvallis, OR 97331 USA

pc@Qcs.orst.edu

