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MOORE REDUCIBILITY FOR REGULAR LANGUAGESPaul CullReeived September 25, 2008Abstrat. We investigate a simple notion of redution for Regular sets. We allthis Moore redution beause the transformations use Moore mahines. We show thatunder this redution the Regular sets form a bi-hierarhy with omplete sets.1 Introdution When is one regular language simpler than another? There are a vari-ety of answers based on various metris for various representations of the languages. Forexample: [2℄ [8℄ [11℄(a) number of states in the minimal automaton,(b) star height of the regular expression,() number of loops in the state diagram,(d) number of loops in the iruit diagram,(e) number of neurons in the neural net diagram,(f) loop depth in the iruit or neural net diagram,(g) et.In eah of these representations, there is reasonable idea of \minimal" and a language annothave a representation with a smaller value than its minimum value for the metri. Eah ofthese metris gives a hierarhy for regular sets. Sets at a higher level annot be representedwith only the resoures for a lower level. It seems obvious that there annot be any ompleteregular sets beause eah of these metris gives values in the natural numbers, and so thereannot be an upper bound on the omplexity of all regular languages.Most omplexity lasses other than the regular languages are usually desribed withsome notion of \reduibility". For example, the BIG open question ?P = NP ? is usu-ally desribed using polynomial time reduibility. [5℄ We will investigate some notions ofreduibility for regular languages.In a reent ourse, I made an o�-hand remark that if a lass of sets had a orrespondingfuntion lass, then any non-trivial set in the lass is omplete for the lass when the notionof redution is many-one redution with transformers from the funtion lass. When Iattempted to demonstrate this laim for regular languages, I ran into some problems anddisovered a reasonable notion of regular redution under whih the regular sets form anin�nite hierarhy but also have omplete sets.1.1 Trivial Redutions Question about redutions for regular languages is usually re-garded as trivial beause all nontrivial regular languages are equivalent with respet toertain notions of redution. A language is nontrivial if it is neither the null set nor theuniversal set.For example, the notion of regular Turing redutionA �Treg Bwould mean that a �nite state reognizer forB ould be used to build a �nite state reognizerfor A. So, if A and B are regular languages, then this relation holds in both diretions.Nontriviality of B is not needed for Turing redutions.
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PAUL CULLA similar result holds for a version of many-one redution whih I'll all onstant spaeTuring mahine many-one redution. In this redution the reduing mahine is a Turingmahine with an input tape, a �xed size work tape (or equivalently no work tape), andan output tape. For any regular language A and any nontrivial regular language B, thereis suh a Turing mahine whih redues A to B. This operation is very simple. The ABTuring mahine simply simulatesMA (a �nite state reognizer for A) on an input string x.This an be done in �xed �nite (or no) work spae sine the simulating mahine only needsto remember one of the �nite number of states of MA. At the end of x, the AB mahineknows by the state of MA it is remembering whether or not x is aepted by MA. If x isaepted, then the AB mahine outputs a string in B, say byes, and if x is not aepted,then the AB mahine outputs a string not in B, say bno. Obviously, if we let T (x) be theoutput of AB on input x, then x 2 A i� T (x) 2 Band we have an easy to ompute many-one redution from A to B. (Note that the ABmahine only reads the input one, while some notions of transdution would allow multiplereads of the input.)While this may seem reasonable, we laim that it is really based on a \trik" whihviolates our idea of �nite state redution. The \trik" is that the AB mahine an wait untiland sense the end of the input. AB does not produe an output until it has found the end ofthe input. We think that this is unreasonable. In a more reasonable interpretation of �nitestate redution, we would expet the transforming mahine to atually work sequentiallyby outputting a string based on what it has seen so far and not based on the rest of theinput whih it has not yet seen.2 Finite State Redutions The usual simplest omplexity lass is the Regular lan-guages whih are the set of strings whih are reognized by �nite automata. We want toonsider �nite state redutions of suh languages.2.1 Finite State Mappings A mahine takes as input a string over some alphabetand outputs a string over the same or a di�erent alphabet. We want to disuss the stringtransformations whih are possible when the mahine has a �nite memory. (We are modelinga real omputer with its �nite internal memory. Unbounded external memory is not inludedin this model.) A mahine with this memory limitation is usually alled a �nite statemahine. Suh a mahine is desribed by speifying the input and output alphabet, the�nite number of states, and two funtions { the next state funtion and the output funtion.The next state funtion alulates the new state given the present state and thepresent input symbol. This an be symbolized asqt+1 = F ( qt; st )where qt+1 is the state at time t+ 1 and it is determined from qt, the state at time t, andst, the input symbol at time t. We all F (q; s) the next state funtion.The output of the mahine ould depend on the present state or on the present state andthe input symbol. It turns out that either of these two hoies for the output funtion willlead to essentially the same mappings and so we will hoose the slightly simpler onventionthat the output is only a funtion of the present state. [3℄ A mahine with this outputonvention is alled a Moore mahine. [9℄ Suh mahines are usually allowed to have onlyone output symbol for eah time step, but we will �nd it more onvenient to allow an outputstring for eah time step. Symbolially, we writewt = G( qt )
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MOORE REDUCIBILITY FOR REGULAR LANGUAGESand mean that if the mahine is in state qt at time t, then it outputs the string wt.A Mealy mahine has its output depending on both the state and the urrent inputsymbol. [3℄ In partiular, this means that a Mealy mahine gives no output for the nullstring. For a Mealy mahine with state set Q and output alphabet 
, we an de�ne aMoore mahine with state set Q � 
�, so that this Moore mahine transitions to state( q ; w ) when the Mealy mahine transitions to state q while outputting string w. Clearly,this Moore mahine will produe the same output as the Mealy mahine for any nonnullinput sequene. For the null sequene, we give the Moore mahine the initial state ( q0 ; � )so it will produe a null output just like the Mealy mahine. As de�ned, the Moore mahinehas an in�nite number of states, but the Moore mahine only uses those states reahablefrom its initial state and this submahine is a �nite state mahine beause the number of itsstates is bounded by the produt of the number of states and input symbols for the Mealymahine.2.2 Homomorphism This may be a reasonable plae to mention homomorphism. Ahomomorphism is a mapping h, h : � ! 
�whih preserves onatenation. That is,h(xy ) = h(x � y ) = h(x ) � h( y ) for all x and y ;and in partiular, h( � ) = �. Suh a mapping orresponds to a Mealy transformationomputable by a one state Mealy mahine.It is known that the Regular sets are losed under both homomorphism and inversehomomorphism. [3℄ Further, CFL (the lass of ontext free languages without the nullstring) has a omplete set with respet to homomorphi many-one redution. [10℄On the other hand, there an be no omplete regular sets with respet to homomorphismbeause sets requiring more states annot be homomorphially redued to sets requiringfewer states. Spei�ally, if the minimal mahine for A has more states than the minimalmahine for B, then any homomorphism will map non-equivalent strings, say x and y, for Ato equivalent strings h(x) and h(y) for B, i.e. FA( q0; x ) 6= FA( q0; y ) and FB( q0; h(x) ) =FB( q0; h(y) ). But, then by the homomorphism property, h(xw ) = h(x ) � h(w ) andh( yw ) = h( y ) � h(w ), and soFB( q0; h(xw) ) = FB(FB( q0; h(x) ); h(w) ) =FB(FB( q0; h(y) ); h(w) ) = FB( q0; h(yw) ):Hene, hoosing w so that xw 2 A and yw 62 A will give either both h(xw) and h(yw) arein B, or both h(xw) and h(yw) are not in B, violating the onditions for a valid redution.2.3 Moore Transformations At the moment, both F and G deal with one symbol at atime. We want to extend these funtions so that they beome funtions of the whole inputstring. To do so, we de�ne F � whih is a mapping from input strings to sequenes of states:F �( q; x ) = (q if x = � (Null string)q F �(F (q; s); y ) if x = sywhere s is a single input symbol and x and y are input strings. In fat, F � gives us severalmappings, one for eah state q. If we speify one state, say q0, as the initial state, then
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PAUL CULLF �( q0; x ) is the state sequene mapping for the mahine, and it maps an input stringx = x1 : : : xn to a sequene hq0; q1; : : : ; qni of states. For onveniene, we'll also useF ( q; x ) to mean the last state in the sequene F �( q; x ).Sine the output funtion maps eah state to an output sequene, the overall outputprodued by the input string x isG( q0 ) �G( q1 ) � : : : �G( qn )where G( qi ) is the output string orresponding to the state qi and � indiates that all ofthese strings are being onatenated together. We an represent this entire onatenatedstring symbolially as G�(x )and think of G� as mapping input strings to output strings. Notie that G� does not mapstrings of length n to strings of length n. Beause G( q ) is a string and may possibly be thenull string, the onatenation of n+ 1 suh strings may produe a string shorter or longerthan n haraters. Of ourse, if we knew m = maxq jG( q ) j then we ould be sure thatjG�(x ) j � m ( jxj+ 1 ):2.4 Moore Redution These Moore transformations allow us to plae an ordering onsets. Let A be a set of strings over � and let B be a set of strings over 
. We say thatA �Moore Bif there is a Moore transformation T whih for all strings x in �� produes a string T (x) in
� so that x 2 A i� T (x) 2 B:This, of ourse, is a many-one redution [4℄ with very strong restritions on the allowedtransformations.We may note that HALT , the halting set, is RE-omplete with respet to �Moore sinefor every RE set B, there is a Turing aeptor MB andx 2 B i� MB : x 2 HALTand MB : x an be omputed from x by a Moore mahine whih outputs from its initialstate the string representing the Turing ode for MB followed by the separator : and thenomputes the identity transformation on x. The identity transformation is omputed by aMoore mahine with one state for eah symbol of �. On eah input symbol, this mahinetransitions to the state assoiated with the symbol and then outputs the symbol.Moore redutions are probably not of muh use for bounded versions of the haltingproblem, beause the neessary transformations require the alulation of a bound p(jxj) aswell as MB and x, and a �nite state mahine annot even ompute an operation as simpleas multipliation.3 Complete Sets A �nite state mahine has a YES/NO yle if there are two states q1and q2, so thatq1 is an aepting state and q2 is a rejeting state,there are two input sequenes x12 and x21,so that F ( q1; x12 ) = q2 and F ( q2; x21 ) = q1,and q1 and q2 are reahable from the initial state.
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MOORE REDUCIBILITY FOR REGULAR LANGUAGESTheorem 1. A set is Regular-omplete with respet to �Moore if and only if the set has a�nite state reognizer with a YES/NO yle.Proof. fIFg Let A be a set with a reognizer MA with a YES/NO yle. Let B beany regular set. We onstrut f(x) whih maps strings in B's alphabet to strings in A'salphabet.If � 2 B then f(�) = x1 where FA(q0; x1) = q1else f(�) = x1x12 where FA(q0; x1x12) = q2.Now assume that f(w) has been de�ned and onsider f(ws) where s is a single symbol.There are four asesw 2 B ws 2 B f(ws) = f(w)� = f(w)w 2 B ws 62 B f(ws) = f(w)x12w 62 B ws 2 B f(ws) = f(w)x21w 62 B ws 62 B f(ws) = f(w)� = f(w):This maintains x 2 B i� f(x) 2 A beause eah of the f sequenes takesMA to one of thetwo state q1 or q2 and the indutive de�nition of f maintains this property. Further this fis omputable by a Moore �nite state mahine. (See the state digram below.)The following is a shemati diagram of the transforming Moore mahine.x1 �x12 �x21 x1x21
This 5 \state" mahine (exluding the state labeled x1x21) is the transforming mahine if� 2 B. If � 62 B, the mahine with the state labeled x1 omitted and the x1x21 state asthe initial state transforms B to A. This transformer operates following the 4 ases in theabove proof. Sine, by assumption, � 2 B, the transformer ouputs x1 on the null input.This output string auses MA to go to an aepting state q1. If MA is in q1 as a result ofthe previous output string, then if the next harater ontinues an input string whih is inB, the transformer goes to the state on the left labeled � and the output string auses nofurther transition in MA whih stays in the aepting state q1. If the next input harateryields a string not in B, then the transformer goes to the state labeled x12 and this outputauses MA to transition to a rejeting state q2. The ases when MA is in a rejeting stateare handled in a similar manner. If � is not in B, then the transformer starts in the state
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PAUL CULLlabeled x1x12 whih ausesMA to go to the rejeting state q2. Subsequent input haratersare handled in a manner similar to the behavior when the transformer started in the statelabeled x1.This is only a shemati piture. The atual transforming mahine needs to keep trakof the states ofMB to determine if an input symbol ausesMB to transition to an aeptingor rejeting state. So eah of the 4 middle \states" in the diagram should atually ontaina full opy of MB . E.g. a \state" x12 should be, for example, (x12; qBi ) and on a inputsymbol s there should be a transition to ( x̂; FB( qBi ; s ) ) where x̂ is a \state" in the dia-gram. The atual transforming mahine would have 4 jQBj + 1 states.Proof. fONLY IFg Conversely, assume that B has a YES/NO yle, we show that Aalso has a YES/NO yle. Then there is a w so thatwx12 2 B and wx12x21 62 B:In fat, w(x12x21)ix12 2 B and w(x12x21)i+1 62 B:But, if B �Moore A thenf(w(x12x21)ix12 ) 2 A and f(w(x12x21)i+1 ) 62 A:Sine the transforming mahine has a �nite number of states f(w(x12x21)i+1 ) must forman eventually periodi sequene w0 yj . Further, the e�et of this sequene on MA is astate sequene with an in�nite number of ourrenes of a rejeting state, say q2. Similarly,f(w(x12x21)ix12 ) must ause a state sequene inMA with an in�nite number of ourrenesof an aepting state, say q1. So the sequene of stringsw(x12x21); w(x12x21)x12; w(x12x21)2; w(x12x21)2x12;: : : ; w(x12x21)i; w(x12x21)ix12; : : :must be transformed into a sequene of strings whih auses MA to enter q1 an in�nitenumber of times and to enter q2 an in�nite number of times. So in this state sequene q1must our before some ourrene of q2 and also after some ourrene of q2. Hene thereis a path from q1 to q2 and also a path from q2 to q1 and this gives a YES/NO yle inMA.Corollary 1. A regular set A is Regular-omplete with respet to �Moore if and only if thereis an in�nite word w1 (an in�nite eventually periodi word p1) with an in�nite number ofpre�xes in A and an in�nite number of pre�xes not in A.Proof. The YES/NO yle inMA an be used to onstrut p1. Conversely assume thatw1 exists. Sine an in�nite number of pre�xes of w1 are in A, an in�nite number of thesepre�xes ause MA, whih has a �nite number of states, to be an aepting state q1 and anin�nite number of these pre�xes auseMA to be a rejeting state q2. Consider the sequeneof MA's states aused by w1. Sine the number of q1's in this sequene is in�nite and thenumber of q2's is also in�nite, there must be some ourrene of q1 followed eventually by anourrene of q2 whih is followed eventually by an ourrene of q1. So there will be somesubsequene of w1 whih auses MA to transition from q1 to q2 and some subsequene ofw1 whih auses MA to transition from q2 to q1, and the YES/NO yle is established.
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MOORE REDUCIBILITY FOR REGULAR LANGUAGES4 Hierarhy4.1 Alternating Chains Let MA be a �nite state reognizer for a set A. We an limitthe states of MA to those whih are reahable from the initial state q0 without e�etingthe reognition properties. MA will have two types of states { aepting and rejeting. Foronveniene, we'll say that two states have di�erent parity if one is an aepting stateand the other is a rejeting state. Similarly, two states have the same parity if they areboth aepting or both rejeting. We an onsider the state diagram of MA as a diretedgraph. In the usual way, a sequene of states forms a path if there is a transition (an arrow)to eah state from its predeessor in the sequene.Sine we saw in Setion 3 that reognizers with YES/NO yles orrespond to ompletesets, we here want to onsider reognizers without suh yles. Suh a reognizer has analternating hain of length K i� there is a path MA in whih the parity hanges Ktimes. For example, q0has an alternating hain of length 0, sine hq0i is a path with no parity hanges.On the other hand,q0 q1 q2has an alternating hain of length 0 sine hq0; q2i forms suh a path. This mahine also hasan altenating path of length 2, hq0; q1; q2i, and an alternating path of length 1, hq1; q2i.We say that MA has K alternations, if MA has an alternating hain of length K and nolonger alternating hain. So, for example, the two above mahines have respetively K = 0and K = 2 alternations.It is obvious that to �nd K we only have to onsider paths whih start in the initialstate. Beause, if there were a sequene h qi1; qi2; : : : ; qir i with alternating length K, thensine we only are about reahable states, there is a path from q0 to qi1 and the alternatinglength of h q0; : : : ; qi1; qi2; : : : ; qir i is at least K.The parity of the maximum alternating hain depends on the parity of the initial stateq0. We'll say that the maximum alternating hain has length K+ if q0 is aepting, andlength K� if q0 is rejeting.For reognizers with YES/NO yles we an make a (non-simple) path whih repetitivelygoes over the YES/NO yle, and thus produes an alternating path with arbitarily largelength. Reasonably, we set K = 1 for suh reognizers. Here, we do not have to make adistintion between sequenes whih start in an aepting state and those whih start in arejeting state, and so there will only be unsigned 1.
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PAUL CULL4.2 Hierarhy TheoremTheorem 2. Let KB be the length of the longest alternating hain in the �nite automatonMB whih reognizes B.(a) If KA < KB then A �Moore B and B 6�Moore A.(b) If KB = 1 then B is a omplete set for regular languages with respet to �Moore.() If KA = KB and if the longest alternating hains in MA and MB start in states withthe same parity then A �Moore B and B �Moore A but if these alternating hainsstart in states of di�erent parity then A 6�Moore B and B 6�Moore A.(d) The degree diagram looks like:K = 0� �! K = 1� �! : : : &%& %& K =1K = 0+ �! K = 1+ �! : : : %Proof. (a) If MA has an alternating hain of length KA then there is an input word wwhih takes MA through all the states whih make up this hain. Some of the pre�xes ofw, say p0; p1; : : : ; pKtake MA alternately to aepting and rejeting states. If A �Moore B then there is a �nitestate funtion f , so that f(p0); f(p1); : : : ; f(pK)take MB alternately to aepting and rejeting states. But sine this is a �nite statemapping, for eah i, f(pi) is a pre�x of f(pi+1) and so f(w) will take MB through analternating hain of length KA. So if A �Moore B then KA � KB . If KA � KB and theparities of the initial states doesn't math, the KA hain would indue a KA + 1 hain inMB . So, if KA � KB and A �Moore B, then the parity of KA is the same as the parity ofKB .If KA < KB, or KA = KB with idential parities, we will onstrut f whih reduesA to B. Let the sequene w0; w1; : : : ; wK be the strings whih take MB to suessivealternating states on its longest alternating hain. De�ne f(�) = w0 or f(�) = w0w1 sothat the parity of the initial state forMA mathes the parity of FB(q0; w0) or FB(q0; w0w1).Now assume that f(w) has been de�ned and onsider f(ws) where s is a single symbol.There are four asesw 2 A ws 2 A f(ws) = f(w)� = f(w)w 2 A ws 62 A f(ws) = f(w)wi+1w 62 A ws 2 A f(ws) = f(w)wi+1w 62 A ws 62 A f(ws) = f(w)� = f(w):Here wi+1 is the next string in the above sequene whih takes MB to a state of the otherparity. This reduing funtion f always keeps MB on its longest alternating hain. Sineany hain in A has at most KA alternations, this is a valid redution as long as KA < KB ,or KA = KB with idential parities.(b) This is just a re-statement of Theorem 1.
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MOORE REDUCIBILITY FOR REGULAR LANGUAGES() The (a) onstrution shows that if KA = KB and if the parity of KA is the same as theparity of Kb then A �Moore B and B �Moore A. But if A and B have opposite paritiesthen, as in the above proof, pre�xes of a word in one set must map to pre�xes of a wordin the other set, and for a valid redution the number of alternations in the seond wordmust be as great as the number of alternations in the �rst word. Unfortunately, beausethe parities di�er, the seond word is one alternation short.(d) The degree diagram is simply a graphial re-statement of the theorem.4.3 Least Upper Bounds A set C is the least upper bound (lub) with respet to �for the sets A and B, if A � C and B � C and for all D suh that A � D and B � D,then C � D.The usual lub onstrution [4℄ uses the symbols a and b, and buildsC = f z j z = ax with x 2 A or z = by with y 2 B g:To show that A �Moore C and B �Moore C, we need to show that this onstrution allowsa �nite state redution. But fA(x ) = ax is a Moore mapping de�ned by fA( � ) = a andfA(ws ) = fA(w ) s. Sine there is a similar mapping for B, C is an upper bound on Aand B, but it is not lear that C is a least upper bound. In fat C is often not an lub.A piture of the reognizer for C is

�� fa; bg
MAMBab

We an see that a rejeting initial state has been added to the mahinesMA andMB . Let'sassume that KA > KB then B �Moore A. So if C is an lub then C �Moore A and alsoKC = KA. By the Hierarhy Theorem this will our exatly when MA has { parity. IfKA = KB and they both have { parity, KC will equal KA and KB and C will be an lub.If KA = KB and they both have + parity, then KC = KA + 1 and C will not be an lub.Finally, if KA = KB and they have mixed parity, KC = KA+1 and C will not be an lubbeause, in this ase, no lub an exist, i.e. A and B have upper bounds in (KA + 1)+ andin (KA + 1)� but neither of these upper bounds is reduible to the other.Corollary 2. If the lub for A and B exists, then the lub is one of A and B.4.4 Calulation of Classi�ation Let's assume that we have a �nite state reognizerMB for the set B. We want to �nd B's position in the hierarhy.It is easy to determine if MB has a YES/NO yle. For example, a depth �rst searhfrom eah state ould determine whether or not there is a YES/NO yle. At most, this
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PAUL CULLwould take O(nE) or O(n3) time where n is the number of states and E is the number ofedges in MB. Of ourse, more eÆient algorithms are possible.If there is no YES/NO yle, we need to determine the length of the longest alternatinghain. At �rst glane, this may seem diÆult beause it seems to be the notoriousNP-hardlongest path problem. But it isn't, beause we an restrit the searh to a direted ayligraph (a DAG). Consider any strongly onneted omponent of MB 's digraph. Sine MBhas no YES/NO yle, every state in a omponent must have the same parity. Hene,the searh for the longest alternating hain an be done on a DAG whose nodes are thestrongly onneted omponents of MB . As is well known [6℄ the longest path in a DAGan be found via dynami programming. A slight variation on this tehnique an �nd thelongest alternating hain in time O(n3).5 EXAMPLES5.1 Complete Sets Extremely simple looking �nite automata an represent ompletesets. For example, the following diagram shows an automaton whih aepts ODD the setof all odd length strings.p q��This represents a omplete set beause it has a YES/NO yle.5.2 Minimal Sets The lowest levels of the hierarhy ontain only the two trivial sets ;and ��. Spei�ally, ; is the only set with K = 0� and �� is the only set with K = 0+.Obviously, either of these sets an be redued to any nontrivial set by �nite state mappingswhih handle the null string appropriately and then map eah subsequent harater to thenull string. Of ourse, no nontrivial set an be redued to either of these trivial sets, andneither trivial set an be redued to the other.5.3 Finite/oFinite and De�nite Events Finite/oFinite is a simple sublass of theregular events. It is the smallest Boolean Algebra whih ontains the �nite sets, or equiva-lently the smallest onatenation losed Boolean algebra whih ontains the unit sets.The De�nite Events are those sets whih an be reonized by neural nets without irles(or feedbak loops) in their onnetions.[7℄ This lass is often onfused with Finite/oFinitebeause eah De�nite Event an be expressed in the form�� Fwhere F represents a Finite or oFinite set. In spite of this lose relationship,(a) sets in Finite/oFinite our at every �nite level of the Moore Hierarhy,(b) no sets in Finite/oFinite are Moore omplete,() eah nontrivial De�nite Event is Moore omplete.(a) For any K, onsider the following mahine with the onvention that any missing arrowgoes to qK and the dotted arrow indiates a sequene of alternating parity states.
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MOORE REDUCIBILITY FOR REGULAR LANGUAGESq0 qKa a a
Clearly, this mahine aepts f�; aa; a4; : : : ; aK�1 g and nothing else. This example showsthat the degrees with K = Odd+ ontain �nite sets.Similarly,q0 qKa a a
shows the degrees with K = Even� ontain �nite sets. Similar examples show thatK = Even+ and K = Odd� ontain o-�nite sets. Note that K = Even+ and K = Odd�annot ontain �nite sets, and K = Even� and K = Odd+ annot ontain o-�nite sets.(b) Sine a omplete set has a YES/NO yle, the aepted set must be in�nite and therejeted set must be in�nite, and so the omplete set is neither �nite nor o-�nite.() Let D be a nontrivial De�nite Event. Then there is a string x so that wx 2 D for allw 2 ��, and similarly, there is a string y so that wy 62 D for all w 2 ��. Consider thein�nite sequene xy xy : : : . Obviously all the pre�xes of this sequene whih end in x arein D, while all the pre�xes whih end in y are not in D, and so by Corollary 1, D is Regularomplete with respet to �Moore.strings�A shemati representation of an automaton whih reognizes a nontrivial de�nite event.After aepting a �xed length string, the mahine resets to onsider the next �xed lengthstring. (This is only shemati beause the mahine does not neessarily have to reset tothe initial state, and it does not have to loop around the initial state. ) The point of thisdiagram is that the mahines for de�nite events must have YES/NO yles.5.4 Inomplete Sets There are many sets whih are in�nite and o-in�nite and yet arenot Moore omplete. One of my favorite examples is the Towers of Hanoi [1℄ set whih is
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PAUL CULLthe set of strings over f a; b;  g whih represent the legal on�gurations of the disks on thetowers a, b, and  during the minimal move sequene whih takes the disks from tower a to. I usually take the symbols as being in \reverse" order in the sense that the �rst haraterof the input represents the tower on whih the largest disk is loated. For example, thestring abbb, says the largest disk is on tower a and the other 3 disks are on tower b. Thisabbb represents a legal on�guration in moving 4 disks from tower a to tower . On theother hand baaa says that the largest disk is on tower b and the other 3 disks are on towera and this is not legal on�guration.This is a reognizer for the Towers of Hanoi language:a bb a�
Notie that this is an in�nite and o-in�nite language. For eah n � 0, there are 3n strings,but only 2n of these strings are in the languge. For this mahine K = 1+, so this languageappears at a very low level in the hierarhy.6 CONCLUSION We have shown that a \reasonable" notion of redution an be de-�ned for the Regular sets. We've alled this Moore redution sine it uses a Moore �nitestate mahine to ompute the reduing funtion. We've shown that not all Regular sets areequivalent under �Moore . Spei�ally, we let KA be the length of the longest alternatinghain in the minimal reognizer for A, and showed that if KA > KB , then A 6�Moore B,but B �Moore A. By onsidering the parity (whether or not the initial state of the reog-nizer is aepting), we were able to establish a bi-hierarhy of �Moore degrees. We showedthat sets whose reogniers ontained a YES/NO yle are �Moore {omplete.A number of features of this redution seem strange. For example, the lub onstrutionfails, and some seemingly simple sets like ODD are omplete sets, while other seeminglymore ompliated sets are not omplete. We'll leave it to others to deide whether thisnotion of redution is useful, but at least it serves as a basis for several ounterexamples.Referenes[1℄ P. Cull and E.F. Eklund Jr. Towers of hanoi and analysis of algorithms. Amerian Mathe-matial Monthly, 92:407{420, 1985.[2℄ P. Dunne. The Complexity of Boolean Networks. Aademi Press, London, 1988.
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