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MOORE REDUCIBILITY FOR REGULAR LANGUAGESPaul CullRe
eived September 25, 2008Abstra
t. We investigate a simple notion of redu
tion for Regular sets. We 
allthis Moore redu
tion be
ause the transformations use Moore ma
hines. We show thatunder this redu
tion the Regular sets form a bi-hierar
hy with 
omplete sets.1 Introdu
tion When is one regular language simpler than another? There are a vari-ety of answers based on various metri
s for various representations of the languages. Forexample: [2℄ [8℄ [11℄(a) number of states in the minimal automaton,(b) star height of the regular expression,(
) number of loops in the state diagram,(d) number of loops in the 
ir
uit diagram,(e) number of neurons in the neural net diagram,(f) loop depth in the 
ir
uit or neural net diagram,(g) et
.In ea
h of these representations, there is reasonable idea of \minimal" and a language 
annothave a representation with a smaller value than its minimum value for the metri
. Ea
h ofthese metri
s gives a hierar
hy for regular sets. Sets at a higher level 
annot be representedwith only the resour
es for a lower level. It seems obvious that there 
annot be any 
ompleteregular sets be
ause ea
h of these metri
s gives values in the natural numbers, and so there
annot be an upper bound on the 
omplexity of all regular languages.Most 
omplexity 
lasses other than the regular languages are usually des
ribed withsome notion of \redu
ibility". For example, the BIG open question ?P = NP ? is usu-ally des
ribed using polynomial time redu
ibility. [5℄ We will investigate some notions ofredu
ibility for regular languages.In a re
ent 
ourse, I made an o�-hand remark that if a 
lass of sets had a 
orrespondingfun
tion 
lass, then any non-trivial set in the 
lass is 
omplete for the 
lass when the notionof redu
tion is many-one redu
tion with transformers from the fun
tion 
lass. When Iattempted to demonstrate this 
laim for regular languages, I ran into some problems anddis
overed a reasonable notion of regular redu
tion under whi
h the regular sets form anin�nite hierar
hy but also have 
omplete sets.1.1 Trivial Redu
tions Question about redu
tions for regular languages is usually re-garded as trivial be
ause all nontrivial regular languages are equivalent with respe
t to
ertain notions of redu
tion. A language is nontrivial if it is neither the null set nor theuniversal set.For example, the notion of regular Turing redu
tionA �Treg Bwould mean that a �nite state re
ognizer forB 
ould be used to build a �nite state re
ognizerfor A. So, if A and B are regular languages, then this relation holds in both dire
tions.Nontriviality of B is not needed for Turing redu
tions.
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PAUL CULLA similar result holds for a version of many-one redu
tion whi
h I'll 
all 
onstant spa
eTuring ma
hine many-one redu
tion. In this redu
tion the redu
ing ma
hine is a Turingma
hine with an input tape, a �xed size work tape (or equivalently no work tape), andan output tape. For any regular language A and any nontrivial regular language B, thereis su
h a Turing ma
hine whi
h redu
es A to B. This operation is very simple. The ABTuring ma
hine simply simulatesMA (a �nite state re
ognizer for A) on an input string x.This 
an be done in �xed �nite (or no) work spa
e sin
e the simulating ma
hine only needsto remember one of the �nite number of states of MA. At the end of x, the AB ma
hineknows by the state of MA it is remembering whether or not x is a

epted by MA. If x isa

epted, then the AB ma
hine outputs a string in B, say byes, and if x is not a

epted,then the AB ma
hine outputs a string not in B, say bno. Obviously, if we let T (x) be theoutput of AB on input x, then x 2 A i� T (x) 2 Band we have an easy to 
ompute many-one redu
tion from A to B. (Note that the ABma
hine only reads the input on
e, while some notions of transdu
tion would allow multiplereads of the input.)While this may seem reasonable, we 
laim that it is really based on a \tri
k" whi
hviolates our idea of �nite state redu
tion. The \tri
k" is that the AB ma
hine 
an wait untiland sense the end of the input. AB does not produ
e an output until it has found the end ofthe input. We think that this is unreasonable. In a more reasonable interpretation of �nitestate redu
tion, we would expe
t the transforming ma
hine to a
tually work sequentiallyby outputting a string based on what it has seen so far and not based on the rest of theinput whi
h it has not yet seen.2 Finite State Redu
tions The usual simplest 
omplexity 
lass is the Regular lan-guages whi
h are the set of strings whi
h are re
ognized by �nite automata. We want to
onsider �nite state redu
tions of su
h languages.2.1 Finite State Mappings A ma
hine takes as input a string over some alphabetand outputs a string over the same or a di�erent alphabet. We want to dis
uss the stringtransformations whi
h are possible when the ma
hine has a �nite memory. (We are modelinga real 
omputer with its �nite internal memory. Unbounded external memory is not in
ludedin this model.) A ma
hine with this memory limitation is usually 
alled a �nite statema
hine. Su
h a ma
hine is des
ribed by spe
ifying the input and output alphabet, the�nite number of states, and two fun
tions { the next state fun
tion and the output fun
tion.The next state fun
tion 
al
ulates the new state given the present state and thepresent input symbol. This 
an be symbolized asqt+1 = F ( qt; st )where qt+1 is the state at time t+ 1 and it is determined from qt, the state at time t, andst, the input symbol at time t. We 
all F (q; s) the next state fun
tion.The output of the ma
hine 
ould depend on the present state or on the present state andthe input symbol. It turns out that either of these two 
hoi
es for the output fun
tion willlead to essentially the same mappings and so we will 
hoose the slightly simpler 
onventionthat the output is only a fun
tion of the present state. [3℄ A ma
hine with this output
onvention is 
alled a Moore ma
hine. [9℄ Su
h ma
hines are usually allowed to have onlyone output symbol for ea
h time step, but we will �nd it more 
onvenient to allow an outputstring for ea
h time step. Symboli
ally, we writewt = G( qt )
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MOORE REDUCIBILITY FOR REGULAR LANGUAGESand mean that if the ma
hine is in state qt at time t, then it outputs the string wt.A Mealy ma
hine has its output depending on both the state and the 
urrent inputsymbol. [3℄ In parti
ular, this means that a Mealy ma
hine gives no output for the nullstring. For a Mealy ma
hine with state set Q and output alphabet 
, we 
an de�ne aMoore ma
hine with state set Q � 
�, so that this Moore ma
hine transitions to state( q ; w ) when the Mealy ma
hine transitions to state q while outputting string w. Clearly,this Moore ma
hine will produ
e the same output as the Mealy ma
hine for any nonnullinput sequen
e. For the null sequen
e, we give the Moore ma
hine the initial state ( q0 ; � )so it will produ
e a null output just like the Mealy ma
hine. As de�ned, the Moore ma
hinehas an in�nite number of states, but the Moore ma
hine only uses those states rea
hablefrom its initial state and this subma
hine is a �nite state ma
hine be
ause the number of itsstates is bounded by the produ
t of the number of states and input symbols for the Mealyma
hine.2.2 Homomorphism This may be a reasonable pla
e to mention homomorphism. Ahomomorphism is a mapping h, h : � ! 
�whi
h preserves 
on
atenation. That is,h(xy ) = h(x � y ) = h(x ) � h( y ) for all x and y ;and in parti
ular, h( � ) = �. Su
h a mapping 
orresponds to a Mealy transformation
omputable by a one state Mealy ma
hine.It is known that the Regular sets are 
losed under both homomorphism and inversehomomorphism. [3℄ Further, CFL (the 
lass of 
ontext free languages without the nullstring) has a 
omplete set with respe
t to homomorphi
 many-one redu
tion. [10℄On the other hand, there 
an be no 
omplete regular sets with respe
t to homomorphismbe
ause sets requiring more states 
annot be homomorphi
ally redu
ed to sets requiringfewer states. Spe
i�
ally, if the minimal ma
hine for A has more states than the minimalma
hine for B, then any homomorphism will map non-equivalent strings, say x and y, for Ato equivalent strings h(x) and h(y) for B, i.e. FA( q0; x ) 6= FA( q0; y ) and FB( q0; h(x) ) =FB( q0; h(y) ). But, then by the homomorphism property, h(xw ) = h(x ) � h(w ) andh( yw ) = h( y ) � h(w ), and soFB( q0; h(xw) ) = FB(FB( q0; h(x) ); h(w) ) =FB(FB( q0; h(y) ); h(w) ) = FB( q0; h(yw) ):Hen
e, 
hoosing w so that xw 2 A and yw 62 A will give either both h(xw) and h(yw) arein B, or both h(xw) and h(yw) are not in B, violating the 
onditions for a valid redu
tion.2.3 Moore Transformations At the moment, both F and G deal with one symbol at atime. We want to extend these fun
tions so that they be
ome fun
tions of the whole inputstring. To do so, we de�ne F � whi
h is a mapping from input strings to sequen
es of states:F �( q; x ) = (q if x = � (Null string)q F �(F (q; s); y ) if x = sywhere s is a single input symbol and x and y are input strings. In fa
t, F � gives us severalmappings, one for ea
h state q. If we spe
ify one state, say q0, as the initial state, then
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PAUL CULLF �( q0; x ) is the state sequen
e mapping for the ma
hine, and it maps an input stringx = x1 : : : xn to a sequen
e hq0; q1; : : : ; qni of states. For 
onvenien
e, we'll also useF ( q; x ) to mean the last state in the sequen
e F �( q; x ).Sin
e the output fun
tion maps ea
h state to an output sequen
e, the overall outputprodu
ed by the input string x isG( q0 ) �G( q1 ) � : : : �G( qn )where G( qi ) is the output string 
orresponding to the state qi and � indi
ates that all ofthese strings are being 
on
atenated together. We 
an represent this entire 
on
atenatedstring symboli
ally as G�(x )and think of G� as mapping input strings to output strings. Noti
e that G� does not mapstrings of length n to strings of length n. Be
ause G( q ) is a string and may possibly be thenull string, the 
on
atenation of n+ 1 su
h strings may produ
e a string shorter or longerthan n 
hara
ters. Of 
ourse, if we knew m = maxq jG( q ) j then we 
ould be sure thatjG�(x ) j � m ( jxj+ 1 ):2.4 Moore Redu
tion These Moore transformations allow us to pla
e an ordering onsets. Let A be a set of strings over � and let B be a set of strings over 
. We say thatA �Moore Bif there is a Moore transformation T whi
h for all strings x in �� produ
es a string T (x) in
� so that x 2 A i� T (x) 2 B:This, of 
ourse, is a many-one redu
tion [4℄ with very strong restri
tions on the allowedtransformations.We may note that HALT , the halting set, is RE-
omplete with respe
t to �Moore sin
efor every RE set B, there is a Turing a

eptor MB andx 2 B i� MB : x 2 HALTand MB : x 
an be 
omputed from x by a Moore ma
hine whi
h outputs from its initialstate the string representing the Turing 
ode for MB followed by the separator : and then
omputes the identity transformation on x. The identity transformation is 
omputed by aMoore ma
hine with one state for ea
h symbol of �. On ea
h input symbol, this ma
hinetransitions to the state asso
iated with the symbol and then outputs the symbol.Moore redu
tions are probably not of mu
h use for bounded versions of the haltingproblem, be
ause the ne
essary transformations require the 
al
ulation of a bound p(jxj) aswell as MB and x, and a �nite state ma
hine 
annot even 
ompute an operation as simpleas multipli
ation.3 Complete Sets A �nite state ma
hine has a YES/NO 
y
le if there are two states q1and q2, so thatq1 is an a

epting state and q2 is a reje
ting state,there are two input sequen
es x12 and x21,so that F ( q1; x12 ) = q2 and F ( q2; x21 ) = q1,and q1 and q2 are rea
hable from the initial state.
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MOORE REDUCIBILITY FOR REGULAR LANGUAGESTheorem 1. A set is Regular-
omplete with respe
t to �Moore if and only if the set has a�nite state re
ognizer with a YES/NO 
y
le.Proof. fIFg Let A be a set with a re
ognizer MA with a YES/NO 
y
le. Let B beany regular set. We 
onstru
t f(x) whi
h maps strings in B's alphabet to strings in A'salphabet.If � 2 B then f(�) = x1 where FA(q0; x1) = q1else f(�) = x1x12 where FA(q0; x1x12) = q2.Now assume that f(w) has been de�ned and 
onsider f(ws) where s is a single symbol.There are four 
asesw 2 B ws 2 B f(ws) = f(w)� = f(w)w 2 B ws 62 B f(ws) = f(w)x12w 62 B ws 2 B f(ws) = f(w)x21w 62 B ws 62 B f(ws) = f(w)� = f(w):This maintains x 2 B i� f(x) 2 A be
ause ea
h of the f sequen
es takesMA to one of thetwo state q1 or q2 and the indu
tive de�nition of f maintains this property. Further this fis 
omputable by a Moore �nite state ma
hine. (See the state digram below.)The following is a s
hemati
 diagram of the transforming Moore ma
hine.x1 �x12 �x21 x1x21
This 5 \state" ma
hine (ex
luding the state labeled x1x21) is the transforming ma
hine if� 2 B. If � 62 B, the ma
hine with the state labeled x1 omitted and the x1x21 state asthe initial state transforms B to A. This transformer operates following the 4 
ases in theabove proof. Sin
e, by assumption, � 2 B, the transformer ouputs x1 on the null input.This output string 
auses MA to go to an a

epting state q1. If MA is in q1 as a result ofthe previous output string, then if the next 
hara
ter 
ontinues an input string whi
h is inB, the transformer goes to the state on the left labeled � and the output string 
auses nofurther transition in MA whi
h stays in the a

epting state q1. If the next input 
hara
teryields a string not in B, then the transformer goes to the state labeled x12 and this output
auses MA to transition to a reje
ting state q2. The 
ases when MA is in a reje
ting stateare handled in a similar manner. If � is not in B, then the transformer starts in the state
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PAUL CULLlabeled x1x12 whi
h 
ausesMA to go to the reje
ting state q2. Subsequent input 
hara
tersare handled in a manner similar to the behavior when the transformer started in the statelabeled x1.This is only a s
hemati
 pi
ture. The a
tual transforming ma
hine needs to keep tra
kof the states ofMB to determine if an input symbol 
ausesMB to transition to an a

eptingor reje
ting state. So ea
h of the 4 middle \states" in the diagram should a
tually 
ontaina full 
opy of MB . E.g. a \state" x12 should be, for example, (x12; qBi ) and on a inputsymbol s there should be a transition to ( x̂; FB( qBi ; s ) ) where x̂ is a \state" in the dia-gram. The a
tual transforming ma
hine would have 4 jQBj + 1 states.Proof. fONLY IFg Conversely, assume that B has a YES/NO 
y
le, we show that Aalso has a YES/NO 
y
le. Then there is a w so thatwx12 2 B and wx12x21 62 B:In fa
t, w(x12x21)ix12 2 B and w(x12x21)i+1 62 B:But, if B �Moore A thenf(w(x12x21)ix12 ) 2 A and f(w(x12x21)i+1 ) 62 A:Sin
e the transforming ma
hine has a �nite number of states f(w(x12x21)i+1 ) must forman eventually periodi
 sequen
e w0 yj . Further, the e�e
t of this sequen
e on MA is astate sequen
e with an in�nite number of o

urren
es of a reje
ting state, say q2. Similarly,f(w(x12x21)ix12 ) must 
ause a state sequen
e inMA with an in�nite number of o

urren
esof an a

epting state, say q1. So the sequen
e of stringsw(x12x21); w(x12x21)x12; w(x12x21)2; w(x12x21)2x12;: : : ; w(x12x21)i; w(x12x21)ix12; : : :must be transformed into a sequen
e of strings whi
h 
auses MA to enter q1 an in�nitenumber of times and to enter q2 an in�nite number of times. So in this state sequen
e q1must o

ur before some o

urren
e of q2 and also after some o

urren
e of q2. Hen
e thereis a path from q1 to q2 and also a path from q2 to q1 and this gives a YES/NO 
y
le inMA.Corollary 1. A regular set A is Regular-
omplete with respe
t to �Moore if and only if thereis an in�nite word w1 (an in�nite eventually periodi
 word p1) with an in�nite number ofpre�xes in A and an in�nite number of pre�xes not in A.Proof. The YES/NO 
y
le inMA 
an be used to 
onstru
t p1. Conversely assume thatw1 exists. Sin
e an in�nite number of pre�xes of w1 are in A, an in�nite number of thesepre�xes 
ause MA, whi
h has a �nite number of states, to be an a

epting state q1 and anin�nite number of these pre�xes 
auseMA to be a reje
ting state q2. Consider the sequen
eof MA's states 
aused by w1. Sin
e the number of q1's in this sequen
e is in�nite and thenumber of q2's is also in�nite, there must be some o

urren
e of q1 followed eventually by ano

urren
e of q2 whi
h is followed eventually by an o

urren
e of q1. So there will be somesubsequen
e of w1 whi
h 
auses MA to transition from q1 to q2 and some subsequen
e ofw1 whi
h 
auses MA to transition from q2 to q1, and the YES/NO 
y
le is established.
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MOORE REDUCIBILITY FOR REGULAR LANGUAGES4 Hierar
hy4.1 Alternating Chains Let MA be a �nite state re
ognizer for a set A. We 
an limitthe states of MA to those whi
h are rea
hable from the initial state q0 without e�e
tingthe re
ognition properties. MA will have two types of states { a

epting and reje
ting. For
onvenien
e, we'll say that two states have di�erent parity if one is an a

epting stateand the other is a reje
ting state. Similarly, two states have the same parity if they areboth a

epting or both reje
ting. We 
an 
onsider the state diagram of MA as a dire
tedgraph. In the usual way, a sequen
e of states forms a path if there is a transition (an arrow)to ea
h state from its prede
essor in the sequen
e.Sin
e we saw in Se
tion 3 that re
ognizers with YES/NO 
y
les 
orrespond to 
ompletesets, we here want to 
onsider re
ognizers without su
h 
y
les. Su
h a re
ognizer has analternating 
hain of length K i� there is a path MA in whi
h the parity 
hanges Ktimes. For example, q0has an alternating 
hain of length 0, sin
e hq0i is a path with no parity 
hanges.On the other hand,q0 q1 q2has an alternating 
hain of length 0 sin
e hq0; q2i forms su
h a path. This ma
hine also hasan altenating path of length 2, hq0; q1; q2i, and an alternating path of length 1, hq1; q2i.We say that MA has K alternations, if MA has an alternating 
hain of length K and nolonger alternating 
hain. So, for example, the two above ma
hines have respe
tively K = 0and K = 2 alternations.It is obvious that to �nd K we only have to 
onsider paths whi
h start in the initialstate. Be
ause, if there were a sequen
e h qi1; qi2; : : : ; qir i with alternating length K, thensin
e we only 
are about rea
hable states, there is a path from q0 to qi1 and the alternatinglength of h q0; : : : ; qi1; qi2; : : : ; qir i is at least K.The parity of the maximum alternating 
hain depends on the parity of the initial stateq0. We'll say that the maximum alternating 
hain has length K+ if q0 is a

epting, andlength K� if q0 is reje
ting.For re
ognizers with YES/NO 
y
les we 
an make a (non-simple) path whi
h repetitivelygoes over the YES/NO 
y
le, and thus produ
es an alternating path with arbitarily largelength. Reasonably, we set K = 1 for su
h re
ognizers. Here, we do not have to make adistin
tion between sequen
es whi
h start in an a

epting state and those whi
h start in areje
ting state, and so there will only be unsigned 1.
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PAUL CULL4.2 Hierar
hy TheoremTheorem 2. Let KB be the length of the longest alternating 
hain in the �nite automatonMB whi
h re
ognizes B.(a) If KA < KB then A �Moore B and B 6�Moore A.(b) If KB = 1 then B is a 
omplete set for regular languages with respe
t to �Moore.(
) If KA = KB and if the longest alternating 
hains in MA and MB start in states withthe same parity then A �Moore B and B �Moore A but if these alternating 
hainsstart in states of di�erent parity then A 6�Moore B and B 6�Moore A.(d) The degree diagram looks like:K = 0� �! K = 1� �! : : : &%& %& K =1K = 0+ �! K = 1+ �! : : : %Proof. (a) If MA has an alternating 
hain of length KA then there is an input word wwhi
h takes MA through all the states whi
h make up this 
hain. Some of the pre�xes ofw, say p0; p1; : : : ; pKtake MA alternately to a

epting and reje
ting states. If A �Moore B then there is a �nitestate fun
tion f , so that f(p0); f(p1); : : : ; f(pK)take MB alternately to a

epting and reje
ting states. But sin
e this is a �nite statemapping, for ea
h i, f(pi) is a pre�x of f(pi+1) and so f(w) will take MB through analternating 
hain of length KA. So if A �Moore B then KA � KB . If KA � KB and theparities of the initial states doesn't mat
h, the KA 
hain would indu
e a KA + 1 
hain inMB . So, if KA � KB and A �Moore B, then the parity of KA is the same as the parity ofKB .If KA < KB, or KA = KB with identi
al parities, we will 
onstru
t f whi
h redu
esA to B. Let the sequen
e w0; w1; : : : ; wK be the strings whi
h take MB to su

essivealternating states on its longest alternating 
hain. De�ne f(�) = w0 or f(�) = w0w1 sothat the parity of the initial state forMA mat
hes the parity of FB(q0; w0) or FB(q0; w0w1).Now assume that f(w) has been de�ned and 
onsider f(ws) where s is a single symbol.There are four 
asesw 2 A ws 2 A f(ws) = f(w)� = f(w)w 2 A ws 62 A f(ws) = f(w)wi+1w 62 A ws 2 A f(ws) = f(w)wi+1w 62 A ws 62 A f(ws) = f(w)� = f(w):Here wi+1 is the next string in the above sequen
e whi
h takes MB to a state of the otherparity. This redu
ing fun
tion f always keeps MB on its longest alternating 
hain. Sin
eany 
hain in A has at most KA alternations, this is a valid redu
tion as long as KA < KB ,or KA = KB with identi
al parities.(b) This is just a re-statement of Theorem 1.
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MOORE REDUCIBILITY FOR REGULAR LANGUAGES(
) The (a) 
onstru
tion shows that if KA = KB and if the parity of KA is the same as theparity of Kb then A �Moore B and B �Moore A. But if A and B have opposite paritiesthen, as in the above proof, pre�xes of a word in one set must map to pre�xes of a wordin the other set, and for a valid redu
tion the number of alternations in the se
ond wordmust be as great as the number of alternations in the �rst word. Unfortunately, be
ausethe parities di�er, the se
ond word is one alternation short.(d) The degree diagram is simply a graphi
al re-statement of the theorem.4.3 Least Upper Bounds A set C is the least upper bound (lub) with respe
t to �for the sets A and B, if A � C and B � C and for all D su
h that A � D and B � D,then C � D.The usual lub 
onstru
tion [4℄ uses the symbols a and b, and buildsC = f z j z = ax with x 2 A or z = by with y 2 B g:To show that A �Moore C and B �Moore C, we need to show that this 
onstru
tion allowsa �nite state redu
tion. But fA(x ) = ax is a Moore mapping de�ned by fA( � ) = a andfA(ws ) = fA(w ) s. Sin
e there is a similar mapping for B, C is an upper bound on Aand B, but it is not 
lear that C is a least upper bound. In fa
t C is often not an lub.A pi
ture of the re
ognizer for C is

�� fa; bg
MAMBab

We 
an see that a reje
ting initial state has been added to the ma
hinesMA andMB . Let'sassume that KA > KB then B �Moore A. So if C is an lub then C �Moore A and alsoKC = KA. By the Hierar
hy Theorem this will o

ur exa
tly when MA has { parity. IfKA = KB and they both have { parity, KC will equal KA and KB and C will be an lub.If KA = KB and they both have + parity, then KC = KA + 1 and C will not be an lub.Finally, if KA = KB and they have mixed parity, KC = KA+1 and C will not be an lubbe
ause, in this 
ase, no lub 
an exist, i.e. A and B have upper bounds in (KA + 1)+ andin (KA + 1)� but neither of these upper bounds is redu
ible to the other.Corollary 2. If the lub for A and B exists, then the lub is one of A and B.4.4 Cal
ulation of Classi�
ation Let's assume that we have a �nite state re
ognizerMB for the set B. We want to �nd B's position in the hierar
hy.It is easy to determine if MB has a YES/NO 
y
le. For example, a depth �rst sear
hfrom ea
h state 
ould determine whether or not there is a YES/NO 
y
le. At most, this
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PAUL CULLwould take O(nE) or O(n3) time where n is the number of states and E is the number ofedges in MB. Of 
ourse, more eÆ
ient algorithms are possible.If there is no YES/NO 
y
le, we need to determine the length of the longest alternating
hain. At �rst glan
e, this may seem diÆ
ult be
ause it seems to be the notoriousNP-hardlongest path problem. But it isn't, be
ause we 
an restri
t the sear
h to a dire
ted a
y
li
graph (a DAG). Consider any strongly 
onne
ted 
omponent of MB 's digraph. Sin
e MBhas no YES/NO 
y
le, every state in a 
omponent must have the same parity. Hen
e,the sear
h for the longest alternating 
hain 
an be done on a DAG whose nodes are thestrongly 
onne
ted 
omponents of MB . As is well known [6℄ the longest path in a DAG
an be found via dynami
 programming. A slight variation on this te
hnique 
an �nd thelongest alternating 
hain in time O(n3).5 EXAMPLES5.1 Complete Sets Extremely simple looking �nite automata 
an represent 
ompletesets. For example, the following diagram shows an automaton whi
h a

epts ODD the setof all odd length strings.p q��This represents a 
omplete set be
ause it has a YES/NO 
y
le.5.2 Minimal Sets The lowest levels of the hierar
hy 
ontain only the two trivial sets ;and ��. Spe
i�
ally, ; is the only set with K = 0� and �� is the only set with K = 0+.Obviously, either of these sets 
an be redu
ed to any nontrivial set by �nite state mappingswhi
h handle the null string appropriately and then map ea
h subsequent 
hara
ter to thenull string. Of 
ourse, no nontrivial set 
an be redu
ed to either of these trivial sets, andneither trivial set 
an be redu
ed to the other.5.3 Finite/
oFinite and De�nite Events Finite/
oFinite is a simple sub
lass of theregular events. It is the smallest Boolean Algebra whi
h 
ontains the �nite sets, or equiva-lently the smallest 
on
atenation 
losed Boolean algebra whi
h 
ontains the unit sets.The De�nite Events are those sets whi
h 
an be re
onized by neural nets without 
ir
les(or feedba
k loops) in their 
onne
tions.[7℄ This 
lass is often 
onfused with Finite/
oFinitebe
ause ea
h De�nite Event 
an be expressed in the form�� Fwhere F represents a Finite or 
oFinite set. In spite of this 
lose relationship,(a) sets in Finite/
oFinite o

ur at every �nite level of the Moore Hierar
hy,(b) no sets in Finite/
oFinite are Moore 
omplete,(
) ea
h nontrivial De�nite Event is Moore 
omplete.(a) For any K, 
onsider the following ma
hine with the 
onvention that any missing arrowgoes to qK and the dotted arrow indi
ates a sequen
e of alternating parity states.
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MOORE REDUCIBILITY FOR REGULAR LANGUAGESq0 qKa a a
Clearly, this ma
hine a

epts f�; aa; a4; : : : ; aK�1 g and nothing else. This example showsthat the degrees with K = Odd+ 
ontain �nite sets.Similarly,q0 qKa a a
shows the degrees with K = Even� 
ontain �nite sets. Similar examples show thatK = Even+ and K = Odd� 
ontain 
o-�nite sets. Note that K = Even+ and K = Odd�
annot 
ontain �nite sets, and K = Even� and K = Odd+ 
annot 
ontain 
o-�nite sets.(b) Sin
e a 
omplete set has a YES/NO 
y
le, the a

epted set must be in�nite and thereje
ted set must be in�nite, and so the 
omplete set is neither �nite nor 
o-�nite.(
) Let D be a nontrivial De�nite Event. Then there is a string x so that wx 2 D for allw 2 ��, and similarly, there is a string y so that wy 62 D for all w 2 ��. Consider thein�nite sequen
e xy xy : : : . Obviously all the pre�xes of this sequen
e whi
h end in x arein D, while all the pre�xes whi
h end in y are not in D, and so by Corollary 1, D is Regular
omplete with respe
t to �Moore.strings�A s
hemati
 representation of an automaton whi
h re
ognizes a nontrivial de�nite event.After a

epting a �xed length string, the ma
hine resets to 
onsider the next �xed lengthstring. (This is only s
hemati
 be
ause the ma
hine does not ne
essarily have to reset tothe initial state, and it does not have to loop around the initial state. ) The point of thisdiagram is that the ma
hines for de�nite events must have YES/NO 
y
les.5.4 In
omplete Sets There are many sets whi
h are in�nite and 
o-in�nite and yet arenot Moore 
omplete. One of my favorite examples is the Towers of Hanoi [1℄ set whi
h is
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PAUL CULLthe set of strings over f a; b; 
 g whi
h represent the legal 
on�gurations of the disks on thetowers a, b, and 
 during the minimal move sequen
e whi
h takes the disks from tower a to
. I usually take the symbols as being in \reverse" order in the sense that the �rst 
hara
terof the input represents the tower on whi
h the largest disk is lo
ated. For example, thestring abbb, says the largest disk is on tower a and the other 3 disks are on tower b. Thisabbb represents a legal 
on�guration in moving 4 disks from tower a to tower 
. On theother hand baaa says that the largest disk is on tower b and the other 3 disks are on towera and this is not legal 
on�guration.This is a re
ognizer for the Towers of Hanoi language:a
 bb 
a�
Noti
e that this is an in�nite and 
o-in�nite language. For ea
h n � 0, there are 3n strings,but only 2n of these strings are in the languge. For this ma
hine K = 1+, so this languageappears at a very low level in the hierar
hy.6 CONCLUSION We have shown that a \reasonable" notion of redu
tion 
an be de-�ned for the Regular sets. We've 
alled this Moore redu
tion sin
e it uses a Moore �nitestate ma
hine to 
ompute the redu
ing fun
tion. We've shown that not all Regular sets areequivalent under �Moore . Spe
i�
ally, we let KA be the length of the longest alternating
hain in the minimal re
ognizer for A, and showed that if KA > KB , then A 6�Moore B,but B �Moore A. By 
onsidering the parity (whether or not the initial state of the re
og-nizer is a

epting), we were able to establish a bi-hierar
hy of �Moore degrees. We showedthat sets whose re
ogniers 
ontained a YES/NO 
y
le are �Moore {
omplete.A number of features of this redu
tion seem strange. For example, the lub 
onstru
tionfails, and some seemingly simple sets like ODD are 
omplete sets, while other seeminglymore 
ompli
ated sets are not 
omplete. We'll leave it to others to de
ide whether thisnotion of redu
tion is useful, but at least it serves as a basis for several 
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